This document lists any typographical errors, etc. that have been found in our text, *Statistics: From Data to Understanding*, Preliminary Edition, by Dietrich and Snodgrass. If additional errors are found please report them by email to collinsmi@nku.edu

Page 13 Figure 2.4

The figure is labeled incorrectly. The corrected figure is below.

![Corrected Figure](image)

Page 16 There are two exercise #4's. The second one should be exercise 5.

page 23

In the Interpreting a Histogram box the numbers should be 1, 2, 3, 4 instead of 1, 2, 4, 5.

page 27 Exercise 2

In the data file `c02s03e02` the name of C1 is wrong. It should be `Years`.

page 52 Exercise 5

In the data file `c03s01e05` the name of C1 is wrong. It should be `Years`.

page 72 Exercise 11 should read:

11. A professor believes that if a class has unlimited time to work on an examination, the times to complete the test will have a mean of 40 minutes and a standard deviation of 6 minutes. How long should the professor allot for the examination if she wants most, but not almost all, of the class to finish the exam?
There is an extra word in the second sentence. It should read: The manager checks sales on the next day *sales* and finds …

page 89 above Figure 4.5 should read:

A. From the statement of the problem, \(\mu = 80 \) and \(\sigma = 6 \). The …

page 91 Exercise 4 part B should read:

B. What percentage of years is the annual return more than $150?

page 99 at the top of the page eliminate the words "to use" and the blank space and lines to get:

This rather extensive example demonstrates how Table 1 is used to find the proportion …

page 114 Figure 4.20

The correct value of the area in the left tail is 0.03

page 126 Exercise 2 Part C should read as follows:

C. On another day 525 items are produced. If the process is working as usual, what is the probability that 525 or more items will be produced?

page 163 Figure 5.13

The values are correct but the positioning is not. Correct positioning for the values in the figure is as below.
B. If you instead found a 99% confidence interval, how would its width compare to that of the interval in Part A? Answer without doing any calculation and explain your answer.

B. How many personnel files would the statistician have to select in order to estimate the desired mean to within a margin of error of 1.036 sick days (this is the same margin of error found in Part A) using 99% confidence?

5. Suppose that the average number of eggs eaten per year by each American is 265 with a standard deviation of 350. Senior citizens might be more concerned about the amount of cholesterol they ingest, and may thus tend to eat fewer eggs than the general populace. To see if this is the case, we randomly sample 850 senior citizens and calculate the sample mean number of eggs eaten per year. We find that $\bar{X} = 250$ eggs per year. Would you be willing to conclude that senior citizens tend to eat fewer eggs? Use $\alpha = .10$.

For it to be valid to form a confidence interval or test hypotheses about μ_D, the following must hold.

These data are in file c09s03e10.

B. Find the prediction equation relating the number of words used responding to the question, Y, to the length of time, X, before answering the question.

The chairperson surveys forty-two randomly selected recent graduates and records the starting salary, Y, (in thousands of dollars) and the grade-point average (GPA), X, in the major courses for each.
Appendix B Brief Answers

Section 2.3: 2.C. 88.9%, use a sorted list of years.

Chapter 3: In the answers for chapter 3 the bars have been left off of the x’s. In each case it should be \bar{x}, not x.

Section 4.1: 2.C. 33.2 mpg.

Section 4.2: 2.A. 96%

Section 4.2: 3.A. 9.2%

Section 4.4: 2. 33.536 mpg

Section 4.4: 5. A: Above 85.2, B: 79.4 to 85.2, C: 72.0 to 79.3, D: 67.4 to 71.9, F: Below 67.4

Chapter 4 Review 1. B. 15.55 minutes before 8:00

Chapter 4 Review 1. C. Using $z = +2.34$, 20.212 minutes before 8:00.

Section 5.1: 5.B. .004, no.

Section 5.1: 5.C. .038

Section 5.2: 1.A. .967

Section 5.2: 1.B. .111

Section 5.2: 4.A. .977

Section 5.2: 4.B. .782

Section 5.2: 5.A. .960

Section 5.2: 5.C. Both get smaller.

Section 5.2 9. B. .072

Section 7.2: 5.A. Yes. $z = -2.36$, p-value = .009

Section 7.2: 6. No, $z = 2.19$, p-value = .986

Chapter 7 Review 4.A. No, $z = 3.18$, p-value = .999

Section 8.1 The answer listed as 7.B should be listed as 7.E Using $\alpha = .01$, No., {$z = 1.88$, p-value = .030}

Section 9.3: 6. A. No, t = 0.65, p-value = 0.546.

Section 11.3 3. B. $Y = 0.513 + 0.185 X$

D. 20.888 or about 29 words.

E. 5.138 or about 5 words.

Chapter 11 Review 2. E. 45826 to 68588

Chapter 11 Review 2. F. 68588

Chapter 11 Review 6. F. Not appropriate.

Chapter 11 Review 9. F. $30375.80 to $31516.00