Accuracy, Precision, and Significant Figures

accuracy – a measure of the deviation of the measured value from the true or accepted value (% error, etc.)

precision – a measure of the agreement of experimental measurements with each other (range, standard deviation, etc.)

Significant Figures

Digits expressing a measurement (or the results of a calculation involving such measurements) such that only the last digit is uncertain are called significant figures or significant digits.

Rules for counting the number of significant digits in a properly-reported measurement:

1. Nonzero digits are always significant.
 example: 1.245 m 4 sig. fig.
2. Leading zero’s (zero’s before any nonzero digit) are not significant.
 example: 0.00421 g 3 sig. fig.
3. Embedded zero’s are significant.
 example: 205.01 g 5 sig. fig.
4. Trailing zero’s behind the decimal point are significant
 example: 2.500 m 4 sig. fig.
 Trailing zero’s in front of the decimal point- can’t tell
 example: 1000 s ? 1, 2, 3 or 4, can’t tell

For a number in scientific notation, the pre-exponential factor indicates the number of significant digits.

example: 2.50 x 10^5 g 3 sig. fig.

An exact number can be considered to have a infinite number of significant digits. Many integers are exact. Some other numbers are exact; for example, there are exactly 2.54 cm in one inch.

Significant Figures and Mathematical Operations

addition and subtraction – retain as many digits to the right of the decimal as in the number with the fewest significant digits to the right of the decimal.

example: 215.47 g + 918.251 g - 0.000458 g = 1133.72 g

multiplication and division – retain as many significant digits as in the number with the fewest significant digits.

example: (214.21 g) x (11.2 cm) / (17.413 g) = 138 cm

Rounding

If the first digit to be discarded is a 4 or less, the value of the last digit retained is not changed.
example: 1.8453 rounded to two digits is 1.8

If the first digit to be discarded is a 5 or above, the value of the last digit retained is increased by 1.
example: 1.8453 rounded to the second decimal place is 1.85