The Chain rule is used to differentiate a function that is the result of composing two or more “smaller” functions.

- Suppose \(y = f(g(x)) \), then \(\frac{dy}{dx} = f'(g(x)) \cdot g'(x) \). This requires that you be able to identify the functions \(f \) and \(g \).

1. Differentiate \(y = (2x^3 + x)^4 \)

 Here \(f(x) = x^4 \), \(g(x) = 2x^3 + x \), \(f'(x) = 4x^3 \) and \(g'(x) = 6x^2 + 1 \). For \(y' \), we need to compose \(f' \) with \(g \), that is \(f'(g(x)) = 4(2x^3 + x)^3 = 4(x^3 + x)^3 \). Finally we substitute the required pieces into the Chain Rule to get
 \[
 \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = [4(2x^3 + x)^3] \cdot [6x^2 + 1] = 4(6x^2 + 1)(2x^3 + x)^3
 \]

2. Differentiate \(y = \sec \left(4\pi x - \frac{\pi}{3} \right) \)

 Here \(f(x) = \sec x \), \(g(x) = 4\pi x - \frac{\pi}{3} \), \(f'(x) = \sec x \tan x \) and \(g'(x) = 4\pi \). For \(y' \), we need to compose \(f' \) with \(g \), that is
 \[
 f'(g(x)) = \sec(g(x)) \tan(g(x)) = \sec \left(4\pi x - \frac{\pi}{3} \right) \tan \left(4\pi x - \frac{\pi}{3} \right).
 \]
 Finally we substitute the required pieces into the Chain Rule to get
 \[
 \frac{dy}{dx} = f'(g(x)) \cdot g'(x) = \sec \left(4\pi x - \frac{\pi}{3} \right) \tan \left(4\pi x - \frac{\pi}{3} \right) \cdot [4\pi]
 = 4\pi \sec \left(4\pi x - \frac{\pi}{3} \right) \tan \left(4\pi x - \frac{\pi}{3} \right)
 \]

3. Differentiate \(y = \sin^2 \left(\frac{x}{5} \right) \)

 Here we have the composition of three functions, \(y = f(g(h(x))) \), and now
 \[
 \frac{dy}{dx} = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x)
 \]
 where \(f(x) = x^2 \), \(g(x) = \sin x \), \(h(x) = \frac{x}{5} \), \(f'(x) = 2x \), \(g'(x) = \cos x \) and \(h'(x) = \frac{1}{5} \). For \(y' \), we need to compose \(f' \) with \(g(h(x)) = \sin \left(\frac{x}{5} \right) \), that is \(f'(g(h(x))) = 2(\sin(h(x))) = 2\sin \left(\frac{x}{5} \right) \). We also need to compose \(g' \) with \(h(x) \), that is \(g'(h(x)) = \cos(h(x)) = \cos \left(\frac{x}{5} \right) \). Finally we substitute the required pieces into the Chain Rule to get
 \[
 \frac{dy}{dx} = f'(g(h(x))) \cdot g'(h(x)) \cdot h'(x) = \left[2\sin \left(\frac{x}{5} \right) \right] \cdot \left[\cos \left(\frac{x}{5} \right) \right] \cdot \left[\frac{1}{5} \right]
 = \frac{2}{5} \sin \left(\frac{x}{5} \right) \cos \left(\frac{x}{5} \right)
 \]