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Abstract

The Bolzano-Weierstrass Theorem says something intuitive: that a set of numbers,

of infinite cardinality yet whose elements are bounded in size, is going to have to

huddle around at least one point. You can’t pack that many points into a confined

space without leaving a clump of them about some point.

We define a couple of new notions, lim sup and lim inf, related to the limits that

we’re going to find in such bounded sets with an infinite number of elements.

Definition: limit point: A number x is called a limit point (or cluster point or
accumulation point) of a set of real numbers A if, ∀ε > 0, the interval (x − ε, x + ε)
contains infinitely many points of A.

Theorem 2-12 (Bolzano-Weierstrass): Every bounded infinite set of real numbers has
at least one limit point.

Note: Clearly some bounded infinite sets of real numbers have no more than one limit
point (e.g. the set represented by the sequence {2−n}) – here thinking of a sequence as
representing a set. This is a potential cause for confusion! Be careful.... We’re transitioning
from sequences to general sets.

Proof: (sketch) Since A is bounded, ∃M > 0 / A ⊂ [−M, M ]. Now cut the interval in half,
and choose a half that has an infinite number of elements in it (WLOG A1 ≡ [0, M ]). Repeat
this process over and over, creating a set of nested intervals as in Theorem 2-7, whose widths
tend to zero. Thus there is some p such that ∩∞

n=1An = {p}. Using the intervals created, we
can create an appropriate sequence.

Theorem 2-13: Consider the sequence {an}. Then L is a subsequential limit of {an} if
and only if L satisfies either of the following conditions:

(i) There are infinitely many terms of {an} that equal L.

(ii) L is a limit point of the set consisting of the terms of {an}.
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Note: Here we are connecting a result about sequences and their convergence to a result
about sets and cluster points or accumulation points (i.e. limit points) – how suggestive
these names are!

Proof:

• →: Let’s assume that L is a subsequential limit of {an}. Then by theorem 2-11, ∀ε > 0,
∃ infinite number of terms in the interval (L− ε, L + ε).

If there are an infinite number of repeated terms L, then the set {an}may be a singleton
(and hence would have no limit point) – but we’ve satisfied the first condition of the
right-hand side.

Suppose not, therefore: then there is a subsequence of {an} that converges to L, call
it {bn}.

There can be no other value M such that there are an infinite number of terms M
in {bn} – otherwise, M would be a subsequential limit point different from L – a
contradiction of convergence to L.

Hence we can now construct an infinite set of distinctly different points in any ε−neighborhood
of L. Given ε > 0. Let ε0 = ε. Find an element different from L in the interval
(L − ε0, L + ε0) (call it e1). Now set ε1 = |e1 − L|. Find an element different from L
in the interval (L− ε1, L + ε1) (call it e2). In this way we will create an infinite set of
distinctly different points in the interval (L− ε, L + ε), and hence L is a limit point of
the terms of {an}.

• ← We assume that L satisfies either of the following conditions:

(i) There are infinitely many terms of {an} that equal L, or

(ii) L is a limit point of the set consisting of the terms of {an}.

Assume that there are infinitely many terms of {an} that equal L. Then choose those
elements of the sequence as the subsequence, which converges to L as a constant
sequence.

Hence, assume that there aren’t infinitely many terms equal to L , but that L is a
limit point of the set consisting of the terms of {an}. Then, by definition ∀ε > 0,
the interval (L − ε, L + ε) contains infinitely many points of A. Let’s construct a

subsequence that converges to L, by induction. Let εn =
1

2n
(this is an arbitrary

sequence that approaches 0 – I could just as well have chosen εn =
1

n
, for example).

Let s1 ≡ an1
be any element in the interval (L − ε1, L + ε1) (of which there are

infinitely many). Then to choose the next element, we seek any element in the interval
(L − ε2, L + ε2) (of which there are infinitely many); hence we can find the first one
past the index n1, for example, and call that index n2: s2 ≡ an2

.

The inductive proposition is

P (k) : sk ≡ ank
∈ (L− εk, L + εk) ∧ nk > nk−1
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Assuming P (k), we need to show P (k +1). Consider the subsequence of {an} where n > nk.
Since {an} contains an infinite number of elements in the interval (L − εk+1, L + εk+1, so
does the subsequence. Choose one such element, at index nk+1 (> nk), and set sk+1 ≡ ank+1

.
Then P (k + 1).

Hence, we conclude that there is a subsequence, {ank
}k∈IN such that ∀ε > 0 ∃N(ε) such that

n > N(ε)→ |an−L| < ε. Given any ε , we simply find the element εk =
1

2k
< ε, and all the

elements of the subsequence beyond the corresponding nk in the sequence we constructed
will be with the ε−neighborhood.

Theorem 2-14: Every bounded sequence has a convergent subsequence.

Corollary 2-14: A bounded sequence that does not converge has more than one subse-
quential limit point.

Note: We will prove this one as a homework exercise (#17, p. 59).

Theorem 2-15:

(i) A sequence that is unbounded above has a subsequence that diverges to ∞.

(ii) A sequence that is unbounded below has a subsequence that diverges to −∞.

Theorem 2-16: A sequence {an} converges if and only if it is bounded and has exactly
one subsequential limit point.

Definition: lim sup: Let {an} be a sequence of real numbers. Then lim sup an = lim an is
the least upper bound of the set of subsequential limit points of {an}, and lim inf an = lim an

is the greatest lower bound of the set of subsequential limit points of {an}.

Note: We show in exercise 16 that the supremum of a set of limit points is a limit point
of the sequence, as is the infimum. That means that the lim an and lim an are the max and
min of the subsequential limit points.

Theorem 2-17: Let {an} be a bounded sequence of real numbers. Then

(i) lim an = L if and only if, ∀ε > 0, there are infinitely many terms of {an} in (L−ε, L+ε)
but only finitely many terms of {an} with an > L + ε.

(ii) lim an = K if and only if, ∀ε > 0, there are infinitely many terms of {an} in (K −
ε, K + ε) but only finitely many terms of {an} with an < K − ε.

Corollary 2-17: A bounded sequence {an} of numbers converges if and only if

lim an = lim an

Theorem 2-18: Let {an} and {bn} be bounded sequences. Then
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(i) lim(an + bn) ≤ lim an + lim bn.

(ii) lim an + lim bn ≤ lim (an + bn).

Definition: bounded: We say that a function f is bounded if the range of f is a
bounded set.

Note: If f is bounded, we denote lub(R(f)) by sup f , and glb(R(f)) by inf f .

Theorem 2-19: Let f and g be bounded functions with the same domain. Then

(i) sup(f + g) ≤ sup f + sup g

(ii) inf f + inf g ≤ inf(f + g)

Example: Exercise 13, p. 58 (proof of Theorem 2-9, from section 2.1)
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