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Abstract

There is one final axiom to add to those already studied (the axioms of an ordered
field being a group of reals under addition, a monoid under multiplication, multiplica-
tive inverses (when able, i.e. x 6= 0), distributivity, and the order axiom establishing
the positive numbers and the law of trichotomy).

There are “holes” in the set of rational numbers – interesting numbers that aren’t
rational. This completeness axiom merely asserts that all the holes are filled in for the
real numbers (with the additional of the irrational numbers).

1 Completeness

The problem: if we start with the ring of integers, which the Pythagoreans loved (except
for that x = 0 thing, which came later), and then add in the divisors (except when x = 0), and
decide which integers are positive, we’ve got a wonderful ordered field (the rationals). The
Pythagoreans are still happy: everything is integers, or ratios of integers. Then, one dark and
stormy night, they discovered holes in their number (and hence their whole philosophical)
system: they discovered that

√
2 is irrational – can’t be represented as ratios of whole

numbers.

Question: Do you know how to prove that? [The usual proof uses contradiction, and
requires you to know that a rational can be represented as a quotient of integers in lowest
terms (numerator and denominator have no common prime factors).]

Definition: upper bound, bound above: Let A be a set of real numbers. If there is a
real number b for which x ≤ b for every x ∈ A, then b is said to be an upper bound

¯
for A.

A set that has an upper bound is said to be bounded above.
Definitions for lower bound and bounded below are the obvious analogues.

To do: Write them down by analogy.

To do: Draw a picture to represent both cases.



Definition: least upper bound, supremum: Let A be a set of real numbers that is
bounded below. The number b is called the least upper bound (or supremum of the set
A (denoted lub(A) or sup(A)) if

(I) b is an upper bound of A, and

(II) If c is also an upper bound of A, then b ≤ c.

Definitions for greatest lower bound and infimum are the obvious analogues.

To do: Write them down by analogy.

Definition: complete: Let S be an ordered field. Then S is said to be complete if for
any nonempty subset A of S that is bounded above, the least upper bound of A is in S.

Observe: The rational numbers do not form a complete ordered field (just an ordered field).

Axiom of Completeness: The real number are complete.

Theorem 1-14: If the least upper bound and greatest lower bound of a set of real numbers
exist, they are unique.

Observe: In the previous section, we defined powers when the exponent was rational: we
now extend that definition to include irrational powers.

Definition: xr : Let x > 1 be a positive real number and r a positive irrational number.
Then the number xr is the least upper bound of the set A where

A = {xp|p is a positive rational number less than r}

Theorem 1-15:

(I) A number α is the least upper bound of a set of real numbers A if and only if

(a) α is an upper bound of A, and

(b) Given an ε > 0, there is a number x(ε) in A for which x(ε) > α− ε.

(II) Similarly for the greatest lower bound.

To do: Write the definition in this case.

Proof: Let’s prove this. Since this is a bi-directional (iff) theorem, we need to prove it in
both directions:



(I) →:

We assume that α is the lub(A). As a lub, it is an upper bound, so it’s the second part
that we must establish: that is, that given an ε > 0, there is a number x(ε) in A for
which x(ε) > α− ε.

We do this by contradiction. Assume not. Then there is no number x(ε) in A with
x(ε) > α− ε. But then α− ε is a smaller lower bound than α, which is a contradiction
to the assertion that α is the lub(A).

(II) ←:

Now, let’s assume that α is an upper bound of A, and that given an ε > 0, there is a
number x(ε) in A for which x(ε) > α− ε. We need to show that α is the lub(A).

Again, let’s do it by contradiction. Assume that α is not the lub(A). Then there is an
upper bound smaller than α (call it α). Now let ε = α − α; by assumption, there is
a number x(ε) in A for which x(ε) > α − ε = α. But this contradicts the assumption
that α is an upper bound.

Q.E.D.

Theorem 1-16: Let α = lub(A), and α /∈ A. Then ∀ε > 0, the interval (α− ε, α) contains
an infinite number of points of A.

Proof: : I want to do this by contradiction. Let α = lub(A), but that α /∈ A. Now assume
that there is some ε > 0 such that the interval (α − ε, α) contains only a finite number of
points of A. Then call the largest point x(ε). Then x(ε) is actually the least upperbound,
since x(ε) < α, and no x ∈ A is greater (since α is an upperbound, and there is no other
element in the interval (α− ε, α). This is a contradiction, and the theorem is proved.

The author claims to do a proof by contraposition. I prefer a proof by contradiction, but
that’s just because I’m contradictory by nature...;). What’s the difference?
Proof by contraposition:

(P → Q)←→ (Q′ → P ′)

Proof by contradiction:
(P → Q)←→ (P ∧Q′ → 0)

Here’s the theorem:

α ≡ lub(A) ∧ (α /∈ A)→ (∀ε) [(ε > 0)→ (α− ε, α) contains an infinite subset of A]

Here’s an equivalent version of the theorem (that we might use for the contraposition):

α ≡ lub(A)→ ((α /∈ A)→ (∀ε) [(ε > 0)→ (α− ε, α) contains an infinite subset of A])



The author’s proof by contraposition might be the following (in the domain of all upper
bounds):

((α /∈ A)→ (∀ε) [(ε > 0)→ (α− ε, α) contains an infinite subset of A])′ → (α ≡ lub(A))′

If you work out the negation on the left hand side, it comes to

(α /∈ A) ∧ (∃ε) [(ε > 0)→ (α− ε, α) contains no infinite subset of A]→ (α ≡ lub(A))′

Now, what does our author assume? He picks a value of ε, which will ultimately create
an interval that contains only a finite subset of A. Then he assumes the hypotheses α ≡
lub(A)∧ (α /∈ A) (in order to determine that the interval (α−ε, α) contains a point of A, for
example). Then he assumes the negation of the conclusion (i.e., that there is only a finite
number of elements of A in the interval). He then arrives at the conclusion that α is not
the lub(A) (i.e. he contradicts one of his hypotheses). Looks like a proof by contradiction
to me....

Theorem 1-17: Let A be a bounded set of real numbers, and suppose c is a real number.
Then

(I) If c > 0

(a) lub(c · A) = c · lub(A)

(b) glb(c ·A) = c · glb(A)

(II) If c < 0

(a) lub(c · A) = c · glb(A)

(b) glb(c ·A) = c · lub(A)

Theorem 1-18 (The Archimedean Principle): If a and b are real numbers with a > 0,
then there is a positive integer n such that na > b.

Corollary 1-18: Let a be a positive real number and b be any real number. Then there is
a positive integer n such that

b

n
< a

2 Cardinality

The cardinality of a set measures its size. “Counting” for infinite sets is done via 1-1
correspondence: it two sets can be put into correspondence, then they are, in some sense,
relabellings of each other.



Definition: cardinality, equivalent: Two sets A and B are said to have the same
cardinality if there is a 1-1 onto function from the set A to the set B. In this case we say
that A is equivalent to B.

Definition: finite with cardinality n, countable, uncountable: A set S is said to be
finite with cardinality n if S is equivalent to {1, 2, 3, . . . , n}. The empty set is finite with
cardinality 0. Sets that do not have finite cardinality are infinite sets. A set S is called
countable if it has the same cardinality as some subset of the positive integers. Sets that
are not countable are said to be uncountable.

Observation: The smallest infinite set is the natural numbers, and its size is indicated
using the Hebrew alphabet (ℵ0 – pronounced “aleph-null”).

Theorem 1-19: The union of a countable collection of countable sets is countable.
An example of such a collection is the lattice of points of the plane with natural numbered

coordinates. The y-coordinate gives the set number, and the x-coordinate gives the ordered
element in the countable set. Our author chooses a very nice 1-1 mapping into the natural
number, which exploits the prime factorization theorem: he maps

(m, n)→ 2m3n

It’s 1-1 because 2m3n = 2M3N ⇐⇒ (m = M) ∧ (n = N). It’s into (and not onto) because
no coordinate pair maps to 5, for example.

Observe: The rationals are countable. (This is a corollary of the Motel ∞ problem of the
infinity (naturally numbered) of school buses, each with an infinity (naturally numbered) of
seats, each fully occupied. The positive double infinite lattice of grid points in the plane
with natural numbered coordinates – representing the buses and their seats – can be mapped
onto the rationals. If set A can be mapped onto set B, then Card(A) ≥ Card(B) – can
you prove that?)

Theorem 1-20: The real numbers in (0, 1) form an uncountable set.

Observe: It’s the irrationals that are uncountable – that overwhelm the Motel ∞. You
can prove it informally to yourself by thinking of each in their popular personas: ratio-
nals are repeating decimals (possibly terminating – i.e., 0 repeats forever), and irrationals
are non-repeating. If you had to throw a “10-sided die” to generate a random decimal
.32421793817277...., what’s the chance that it would be repeating? Let’s suppose that it
repeated a string of digits 100 long 4000 times. What’s the chance that you could keep it up
on the next throw? That’s right – about zero.... So it’s far easier to throw a non-repeating
decimal expansion (i.e. irrational).

Theorem 1-21 (Cantor’s Theorem): For X any set, let ℘(X) denote the set of subsets
of X. Then the cardinal number of ℘(X) is strictly larger than the cardinal number of X.



Observe: The proof of Cantor’s Theorem is a generalization of the diagonalization argument.

Observe: This means that there are an infinity of successively larger infinities: the power
set of the reals is bigger than the reals: Card(℘(IR)) > Card(IR); Card(℘(℘(R))) >
Card(℘(R)); etc.

Note: A couple of notions you can rely on about infinity:
• a subset never has greater cardinality than the set itself.

• if there exists an onto map from A to B, then the cardinality of A is at least that of
B.

• if there exists a 1-1 map from A to B, then the cardinality of A is no more than that
of B.

Example: Exercise 9, p. 34 Let y be a positive real number, and let n be a positive
integer. Let A = {x|xn < y}.

(I) Show that A is nonempty and bounded above.

0 ∈ A, since 0n = 0 < y. Hence A is non-empty. Cases:

(a) Suppose 0 < y ≤ 1. Then x ≤ 1 (by #8, p. 24): if x > 1, then xn > 1; but
xn < y – contradiction. Hence 1 is an upper bound on the set A.

(b) Suppose y > 1. Then y is an upper bound. If xn < y, then x ≤ y: otherwise,
if x > y, then xn > y by induction. Base case: x > y. Consider xk > y. Then
xk+1 > xy > y. So xn > y for all n ∈ IN. But this is a contradiction.

(II) Let z = lub(A). Show that zn = y. Thus z = y
1

n , and we have proven Theorem 1-8.

Suppose that zn 6= y. Then define ε ≡ y − zn > 0. We proceed by induction, using
the binomial theorem to find an element z + δ that slips between zn and y, showing
that z 6= lub(A).

(z + δ)n =
n
∑

k=0

(

n

k

)

zn−kδk = zn +
n
∑

k=1

(

n

k

)

zn−kδk = zn + δ
n
∑

k=1

(

n

k

)

zn−kδk−1

Now everything in the sum multiplied by δ in the final term can be bounded above.
For example, we can always demand that δ < 1, and we have an upper bound (call it
α) on z. So we can assert that

(z + δ)n ≤ zn + δ
n
∑

k=1

(

n

k

)

αn−k ≡ zn + δβ where β is just some number, and δ must be

chosen to be less than 1.

Now choose δ so that δβ < ε (and δ < 1). We can always choose δ < min(
ε

β
, 1).

zn < (z + δ)n ≤ zn + δ
n
∑

k=1

(

n

k

)

αn−k = zn + δβ < zn + ε < y



Hence, by definition, z + δ ∈ A, which contradicts that z = lub(A).

Now suppose that zn > y. Then z /∈ A, because it doesn’t satisfy the definition of
elements of A. Furthermore, there is no element of A within an ε-neighborhood of z,
which is a contradiction of z = lub(A).

Take ε ≡ zn − y. Then using a similar application of the binomial theorem, we can
show that, ∀x ∈ A, ∃δ > 0 such that

(x + δ)n < xn + δβ < y + ε = zn

But (x+ δ)n is not less than y, so (x+ δ) /∈ A. Hence there is a gap between x ∈ A and
z, with no elements in it, so this contradicts z = lub(A) (since, if z /∈ A, ∃ an infinite
number of elements in every ε−neighborhood of z).

Hence, by elimination, and the trichotomy property, zn = y. We have found an nth

root of y.

(III) Let B = {x|xn > y ∧ x > 0}. Show that B is nonempty and bounded below.

By definition elements of B satisfy x > 0. Hence B is bounded below by 0.

Now to show that B is nonempty. We need to find an element of B. Two cases: if
0 < y ≤ 1, we have that 1 ∈ B (since 1n = 1 ≥ y). Suppose y > 1: then y ∈ B, since
yn > y (by induction: y > 1; Suppose yk > y; then yk+1 > y2 > y · 1 = y).

(IV) Now we want to show that lub(A) = glb(B). Let z ≡ glb(B). To show this we can
simply show that z satisfies zn = y. The proof is essentially the same as that for A
above. We prove this by contradiction: assume not. Then either zn < y or zn > y.
Begin by assuming that zn < y, and let ε = y − zn. Then we can pass by the same
process we did earlier to show that ∃δ > 0 such that

zn < (z + δ)n ≤ zn + δ
n
∑

k=1

(

n

k

)

αn−k = zn + δβ < zn + ε < y

Again, this shows that z is not the glb(B), since z + δ is not an element of B – nor is
any element in the interval (z, z + δ): since z /∈ B (since it doesn’t meet the definition)
and z = lub(A), that neighborhood must contain an infinite number of points of B (by
Theorem 1-16). This is a contradiction.

If zn > y, then let ε = zn− y, and consider y
1

n + δ (where by y
1

n we mean the lub(A)).
Using the binomial theorem in “the usual way”, we have that

(y
1

n + δ)n ≤ y + δβ

and we can choose δ such that δ <
ε

β
, so that

(y
1

n + δ)n < y + ε = zn



Hence we have a contradiction of z = glb(A), since y
1

n + δ ∈ B, and y
1

n + δ < z.

Thus, by the trichotomy, we have zn = y, or lub(A) = glb(B). Q.E.D.

In the end, we see that we are able to define nth roots for any real number y (not just the
rationals, as we did previously).
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