
Overview of Sections 8.1 to 9.3

April 29, 2025

1 Section 8.1: Boolean Algebra

• How do Boolean Algebras generalize propositional logic and set
theory?

• What is the definition, and how do we verify that [B,+, ·,′ , 0, 1]
is a Boolean algebra?

• What do we know about all finite Boolean algebras?

• Can you prove additional rules, such as De Morgan’s laws, uni-
versal bound, and idempotence.

• Can you use duality to save yourself work?

• Can you prove Boolean algebra equalities?

2 Section 8.2: Logic Networks

• Equivalent representations of a Logic Network:

– Truth Functions

– Boolean Expressions

– Logic Network

• Can you convert between the three forms?

• Algebraic simplification of the Boolean expressions reduces the
hardware needed.

• Can you draw a given Logic Network?

• Do you recall how we created a logic network to carry out binary
addition (as Boolean expressions, half-adder, full-adder)?

• Do you remember some of the clever choices of Boolean expres-
sions that reduced computation?



3 Section 8.3: Minimization

We studied two methods of simplification of Boolean expressions:
• Karnough maps – very visual (but really only works for up to four
variables).

• Quine-McCluskey – works for as many variables as you have; two
stage process (iterative phase, and final table)

The Karnough map illustrates the usefulness of idempotence, allow-
ing us to introduce multiple copies of (essentially reuse) elements for
matches (pairs, quads, etc.), which we can then can simplify.

Remember that you may use the techniques of the Karnough map to
produce different simplified Boolean expressions: make sure that you’ve
made things as simple as possible, but not simpler! (You can always
check your Boolean expressions to make sure that they are equal by
using the original “tuples” in the simplified expressions, and you should
get 1.)

In Quine-McCluskey, make sure that you’ve found all the “reduced”
expressions possible, comparing every pair that may differ in only a
single place.

When you’re done, you should check that every pair is essential,
with the second type of table.

4 Section 9.3: Finite State Machines

Definition: A finite-state machine M is a structure [S, I, O, fs, fo]
where

Table 1: Elements of a finite-state machine.

S states of the machine
I input alphabet (finite set of symbols
O output alphabet (finite set of symbols
fs fs : SxI → S, the next-state function
fo fo : S → O, the output function

We were able to construct finite-state machines to perform tasks, such
as

• binary addition, for example; or the sloppy copy machine.

• set recognition.



Given a machine, can you determine whether a set (a “regular set”)
is recognized by it or not? Or determine what sets are recognized by
it? Remember that machine recognition is defined as follows, with
emphasis on the word “ends” below:

Definition: Finite-State Machine Recognition A finite-state ma-
chine M with input alphabet I recognizes a subset S of I∗ (the set of
finite-length strings over the input alphabet I) if M , beginning in state
s0 and processing an input string α, ends in a final state (a state with
output 1) if and only if α ∈ S.

Regular expressions define sets of input strings which are the ones
that finite-state machines can actually recognize. The existence of
reasonable sets, which one should reasonably be able to detect (e.g.
S = {0n1n}, where an stands for n copies of a), finite-state machines
are obviously not sufficient to understand all of computation.

Minimization occurs by partitioning the states into k−equivalent sub-
sets.

a. 0-equivalent states have the same output: you can’t tell which
state you’re in by just inspecting the output – since 0-equivalent
states produce the same output.

b. Then you ask what happens if we provide any single input to
the 0-equivalent states. Would you be able to tell which one you
started in? If their outputs to each single input are 0-equivalent,
then you can’t tell them apart by input s of a single input. Hence
the states are 1-equivalent.

c. So in each case you look back “one equivalency”: to find out which
states are 2-equivalent, you ask which 1-equivalent states have
output under a single input that are 1-equivalent (more generally,
for k+ 1-equivalency, you check to see if k-equivalent states have
k-equivalent next states under a single input).

d. Iterate. When the output of this process repeats (no changes) in
the partition of states, you’re done – and each subset of states
that is still equivalent is equivalent under any string of input (so
the states can be combined into a single state).


	 Section 8.1: Boolean Algebra
	 Section 8.2: Logic Networks
	Section 8.3: Minimization
	Section 9.3: Finite State Machines

