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Abstract

In this section we investigate a powerful form of proof called
induction. This is useful for demonstrating that a property,
call it P (n), holds for all natural numbers (integers n greater
than or equal to 1).

Actually, the “1” above is not essential: any “base integer”
will do (like 0, for example: it really only matters that there be
a beginning – a “ground floor”, or “base case”, or “anchor”).

1 Induction

Induction is a very beautiful and somewhat subtle method of proof:
the objective is to demonstrate a property associated with the natural
numbers1, IN = 1, 2, 3, . . . , n, . . .. As a typical example, consider a
theorem of the following type (which we might call “Gauss’s theorem,”
hypothesized when he was seven or so):

Prove that the sum of the first n natural numbers is n(n+1)
2

.

An induction proof goes something like this:

• We’ll show that it’s true for the first case (usually k = 1, called
the base case). While the first case is often k = 1, this isn’t
mandatory: we simply need to be sure that there is a first case
for which the property is true. k = 0 is another popular choice....

• Then we’ll show that, if the property is true for the kth case, then
it’s true for the (k + 1)th case (the inductive step).

• Then we’ll put them together: if it’s true for 1, then it’s true
for 2; if it’s true for 2, then it’s true for 3; .... “to infinity, and
beyond!” Or “up the ladder”, as our author would say.

Imagine dominoes falling. That’s what it’s like.

The most commonly used form of the principle of induction is ex-
pressed as follows:

First Principle of Mathematical Induction:

1. P (1) is true
2. (∀k)[P (k) true → P (k + 1) true ]

}

→ P (n) true for all positive integers n

1(or another subset of the integers with a “least” element)

https://thekidshouldseethis.com/post/longest-domino-line-ever-15524-dominoes-a-world-record


or, more succinctly,

P (1) ∧ (∀k)[P (k) → P (k + 1)] → (∀n)P (n)

where the domain of the interpretation is the natural numbers. This is
just modus ponens applied over and over again. Put modus ponens into
an infinite loop, because we want it to run off to infinity! This might
be the first infinite loop you’ve ever liked....

Vocabulary:

• inductive hypothesis: P (k). This is an assertion, about k.

• basis step (“base case”, “anchor”): establish P (1).

• inductive step (implication): P (k) → P (k + 1). For this step,
you will assume P (k) is true, and then show that P (k+1) follows.
Attention: one almost never writes “P (k + 1) = ....”. P (k + 1)
is an assertion, to be established; it is not a quantity!

Example: Dominoes

Example: Practice 7 (or “Gauss’s theorem”), p. 115 Prove that,

for any natural number n, 1 + 2 + 3 + . . .+ n = n(n+1)
2

.

Example: Exercise 39, p. 125 Prove that n! ≥ 2n−1 for n ≥ 1.

This is important for computer scientists especially (and all scien-
tists, really): it means that factorial functions grow even faster than
exponential functions.

http://www.nku.edu/~longa/classes/mat385/days/resources/problems/2.2/2.2.html
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A second (and seemingly more powerful) form of induction is given by
the Second Principle of Mathematical Induction:

1. P (1) is true
2. (∀k)[P (r) true for all r,

1 ≤ r ≤ k → P (k + 1) true ]











→ P (n) true for all positive integers n

This principle is useful when we cannot deduce P (k + 1) from P (k)
(for k alone), but we can deduce P (k + 1) from all preceeding cases,
beginning with the base case.

Example: Exercise 72b, p. 127. Use the second principle of
induction to prove that the sum of the interior angles of an n-sided
simple closed polygon is (n− 2)180o for all n ≥ 3.

In spite of appearances, these two forms (or principles) of mathemat-
ical induction are equivalent; furthermore they are also equivalent to
the Principle of Well-Ordering, which states that every collection
of positive integers that contains any members at all has a smallest
member.

Example: Prove that the first principle of induction implies well-
ordering. We’ll do this by combining contradiction and induction.

http://www.nku.edu/~longa/classes/mat385/days/resources/problems/2.2/2.2.html
http://www.nku.edu/~longa/classes/mat385/days/resources/problems/2.2/2.2.html
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A Couple of Fun Examples:

(a) All natural numbers are interesting.

(b) The prisoner’s last request (finite backwards induction!)

A prisoner, condemned to die by the Sultan of an antique land,
made a plaintive request: “Please Sultan, if you would only grant
me two favors: one, that you have me executed in the month of
January (next month), and two, that you don’t allow me to know
the day of my death until 10 a.m. of the day upon which I am to
die.” The Sultan, being a merciful man, granted these requests,
whereupon the prisoner demonstrated that it was impossible to
execute him subject to these conditions. How?2

(c) Now that we understand induction, let’s use it to prove an amaz-
ing fact: All horses are the same color.

Proof: By induction, on the number of horses.

Base case: 1 horse. No problem! Same color.

Inductive step: we’ll show that if it is true for any group of N
horses, that all have the same color, then it is true for any group
of N + 1 horses.

Well, given any set of N +1 horses, if you exclude the last horse,
you get a set of N horses. By the inductive step these N horses
all have the same color. But by excluding the first horse in the
pack of N+1 horses, you can conclude that the last N horses also
have the same color. Therefore all N + 1 horses have the same
color.

QED – or have we?

2What do you think happened to the prisoner?
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