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Medieval Mathematics'

Because much mathematics and astronomy available in the 121
century was written in Arabic, the Europeans learned Arabic. By the
end of the 12 century the best mathematics was done in Christian Italy.
During this century there was a spate of translations of Arabic works
to Latin. Later there were other translations.

Arabic — Spanish
Arabic — Hebrew (— Latin)

Greek — Latin.

Example. Elements in Arabic — Latin in 1142 by Adelard of Bath
(ca. 1075-1160). He also translated Al-Khwarizmi’s astronomical tables
(Arabic — Latin) in 1126 and in 1155 translated Ptolemy’s Almagest
(Greek — Latin) (The world background at this time was the crusades.)

An interesting note is that while mathematics as a research subject
was at a low point during the early middle ages, the notion of proof
survived and was even reinvigorated by some of the authors and trans-
lators. Perhaps the proof, carrying with it a sense of absolute, which
transcended other forces of the age, was the solice of the academician.

1 Gherard of Cremona (1114 - 1187)

Gherard’s name is sometimes written as Gerard. He travelled to Toledo,
Spain to learn Arabic so he could read Ptolemy’s Almagest, since no
Latin translations existed at that time. He remained there for the rest
of his life. Gherard made translations of Ptolemy (1175) and of Euclid
from Arabic. Some of these translations from Arabic became more
popular than the (often earlier) translations from Greek. In making
translations of other Arabic work he translated the Arabic word for
sine into the Latin sinus, from where our sine function comes. He also
translated Al-Khwarizmi.

1©G. Donald Allen, 2000
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2  Adelard of Bath, (1075 - 1160)

During this period (12 century) the Hindu numerals became known to
Latin readers by Adelard of Bath, also known as Robert of Chester.
Adelard studied and taught in France and traveled in Italy, Syria and
Palestine before returning to Bath. He was a teacher of the future King
Henry II. Adelard translated Euclid’s Elements from Arabic sources.
The translation became the chief geometry textbook in the West for
centuries. He translated al’Khwarizmi’s tables and also wrote on the
abacus and on the astrolabe. One book, his Quaestiones naturales
consists of 76 scientific discussions based on Arabic science.

3 Leonardo Pisano Fibonacci (1170 - 1250)

Fibonacci or Leonard of Pisa,
played an important role in
reviving ancient mathematics while
making significant contributions of
his own. Leonardo Pisano is better
known to us by his nickname
Fibonacci, which was not given
him until the mid-nineteenth
century by the mathematical
historian Guillaume Libri. He
played an important role in
reviving ancient mathematics and
made significant contributions of
his own. with his father,

Fibonacci was born in the city-state of Tuscany (now in Italy) but
was educated in North Africa where his father held a diplomatic post.
He traveled widely recognizing and the enormous advantages of the
mathematical systems used in these countries.

Leonardo Liber abbaci (Book of the Abacus), published in 1202
after his return to Italy, is based on bits of arithmetic and algebra that
Leonardo had accumulated during his travels. The title Liber abbaci
has the more general meaning of mathematics and calculations or ap-
plied mathematics than the literal translation of a counting machine.
The mathematicians of Tuscany following Leonardo were in fact called
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Maestri d’Abbaco, and for more than three centuries afterwards learned
from this venerated book. Almost all that is known of his life comes
from a short biography therein, though he was associated with the court
of Frederick II, emperor of the Holy Roman Empire.

’] joined my father after his assignment by his homeland
Pisa as an officer in the customhouse located at Bugia [Al-
geria] for the Pisan merchants who were often there. He had
me marvelously instructed in the Arabic-Hindu numerals and
calculation. I enjoyed so much the instruction that I later
continued to study mathematics while on business trips to
Egypt, Syria, Greece, Sicily, and Provence and there enjoyed
discussions and disputations with the scholars of those places.
Returning to Pisa I composed this book of fifteen chapters
which comprises what I feel is the best of the Hindu, Arabic,
and Greek methods. I have included proofs to further the
understanding of the reader and Italian people. If by chance
I have omitted anything more or less proper or necessary, |
beg forgiveness, since there is no one who is without fault
and circumspect in all matters.”

The Liber abbaci introduced the Hindu-Arabic place-valued deci-
mal system and the use of Arabic numerals into Europe. Liber abbaci
did not appear in print until the 19" century. A problem in Liber abbaci
led to the introduction of the Fibonacci numbers and the Fibonacci se-
quence for which Fibonacci is best remembered today. The Fibonacci
Quarterly is a modern journal devoted to studying mathematics related
to this sequence.

Fibonacci’s other books of major importance are Practica geome-
triae in 1220 containing a large collection of geometry and trigonometry.
Also in Liber quadratorum in 1225 he approximates a root of a cubic
obtaining an answer which in decimal notation is correct to 9 places.

3.1 Liber abbaci

Features of Liber abbaci include:

e a treatise on algebraic methods and problem which advocated the
use of Hindu-Arabic numerals. What is remarkable is that neither
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European nor Arab businessmen use these numerals in their trans-
actions, and when centuries later they caught on in Europe, it was
the Europeans that taught the Arabs of their use.

e used the horizontal bar for fractions.

e in fractions though the older systems of unit and sexagesimal were
maintained!

e contained a discussion of the now-called Fibonacci Sequence —
inspired by the following problem:

“How many pairs of rabbits will be produced in a year, beginning with a
single pair, if in every month each pair bears a new pair which becomes
productive from the second month on.”

The sequence is given by
1,1,2,3,5,8,13,21, ..., Uy, ...
which obeys the recursion relation

Up = Up—1 + Up—2

e Some of Fibonacci’s results:
Theorem. (i) Every two successive terms are relatively prime.
(i) lim w1 /u, = (V5 —1)/2.

Proof. (i) u, = u, 1 + U, 2. If plu, and plu, 1, then plu, » =
plun_3... = plug. #.

(i1) From u,, = u,_1 + u,_o we have

Uy Up—
1 — L 2
Up, Uy,
_ Up—1 + Up—2 Un—1

Un, Up—1 Un,
So, if lim “Z;l exists and equals r, it follows that
—1++5 5—1
l=r+7r* r= V5 — V5 .

2 2
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This is a golden section connection. To show that u,,_;/u,, converges,
define s, = u,_1/u,. Clearly, u, 1/u, > % Then

1

1=s,(1 n— or y = —————
Sn(1+ 8p-1) s T—

f(2) =t (@) = ik e > 0[] < 1

80— Sn-1l = [f(sn-1) = f(sn—2)|

< f/(an)|sn—l - Sn—2| < ﬂn|3n—l — Sp—2|-

Since 3, < k < 1, this establishes convergence.

Alternatively: 5,10 = ﬁ This is a decreasing sequence
1+sn
because sg > ‘/52_1. So sg > s9 > s4 > ---. Now give a lower bound
using si, So,| > .... Next show that the limits must be the same.
etc,etc,etc.
Other properties:
U1 = U3z — U2
U9 = Ugq — U3
us = U — Uy
Up—1 = Up+1 — Up
Up = Up42 — Upi41-
So to get
n
(1) DUy = Upga — Us.
Jj=1

Un—1

This formula can also be used to prove that lim 2=+ exists. Also

(2) U2, = UpUni2 + (—1)"  (prove by induction)
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The Pascal triangle connection.

| 1 1.1 2
1 1 315

1 2 1 8 13

1 3 3 1 21
1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
Fibonacci Sequence in Pascal's Triangle

Beginning with each one (1) going down the left diagonal, sum up the
diagonal entries where the diagonal slope is 1/3 (i.e. 3 cells right, 1
cell up, ...). This scheme generates the Fibonacci sequence.

The modern, general form: Given a, b, c, and d. Let
To=a z1=20
Tpio = CTpy1 + dTy,.

There are many results about such sequences, some similar to those
already shown.

A cubic equation. In what appears at an attempt toward proving
that solutions of cubic equations may not be constructible numbers,
Fibonacci showed that the solution to the cubic equation

22+ 222 + 102 = 20

can have no solution of the form a + /b, where @ and b are rational.
He gives an approximation 1; 22, 7, 42, 33, 4, 40 — best to that time,
and for another 300 years. Note the use of sexagesimal numbers.

3.2 Liber abbaci

As a summary we may note that for the Liber abbaci:

e Sources — Islamic texts
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o Contents

— Rules for positional arithmetic,

— Rules for the calculation of profits, currency, conversions,
measurement

e Problem types — mixture problems, motion problems, container
problems, Chinese remainder problem, quadratics, summing series

e Methods — wide and varied — most are original

Another Example. (A) If you give me a coin, we have the same.

(B) If I give you a coin, you have ten times what I have.

T =me
y =you
z =x+y

is the total amount.

Solution. Add = + 1 to both sides of the first equation to get

z+1 :%z
y+1 :%z.
g 9 _ (L4 10y, _ 31
oxr+y+ (5+11)2 = 5372
9
., - 9
29°
z = 44/9
44 1 32
r = — - = —
18 L
2% 13
18 9

3.3 Liber quadratorum

He also wrote Liber quadratorum, a brilliant work on intermediate
analysis. This work was clearly a summary of number theory of the
time. It was extensively quoted by Luca Pacioli in his book Summa
de arithmetica, geometrica proportioni et proportionalita published in
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1494 more than two centuries after the publication date. The book was
also known to Tartaglia half a century later. Yet no manuscript was un-
available generally until the mid-nineteenth century, when a manuscript
was uncovered by the medieval scholar Baldassarre Boncompagni in
the Ambrosian Library in Milan. Boncompagni, in fact, corrected the
edition he discovered and republished it in Latin.

Consider the Diophantine-like problem posed by Master John of
Palermo. The number 5, added or subtracted from the square, the result
will be the square of a rational. In modern form

r?4+5=s* r?—5=1¢ r,s,t
rational

The solution of this problem appears as Proposition 17 of the 24
propositions in the work. Fibonacci’s resolution is remarkably sophis-
ticated. First, he defines the notion of congruous numbers: numbers
of the form ab(a+b)(a—b) if a+b is even or 4ab(a+b)(a—b) if a+b
is odd. Such numbers he shows must be divisible by 24. Moreover,
the system 22 +m = s? and 22 — m = 2 has integers solutions only if
m is congruous. Next, he shows that 5 is not congruous, but 122 - 5 is
congruous. From this he is able to find a rational solution. Answer:?)%.

3.3.1 Congruous numbers

Let a and b be integers. We say that the following numbers are con-
gruous

ab(a +b)(a—>b) if a+0b iseven
dab(a+b)(a—b) if a+b isodd

Proposition. Congruous numbers are divisible by twelve.

Proof. We assume that a + 0 is even. Thus either both a
and b are even or both odd. In both even case we may write this
asa =0 (mod2) and b = 0 (mod2). Thus ¢ = 0 (mod2) and
ab=0 (mod2), a+b=0 (mod2) and a —b =0 (mod2). Hence
the expression ab(a + b)(a — b) is divisible by 8. To show it is divisible
by 3, we suppose several cases.

1. a=0 (mod3). In this case the result holds.
2. a=1 (mod3) and b =2 (mod3). In this case 3| (a + b)
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3.a=1 (mod3) and b=1 (mod3) In this case 3| (a — b)
4. a =2 (mod3) and b =2 (mod3) In this case 3| (a — b)

The other cases follow by symmetry. In the case that a +b is odd,
this means that either a or b is is even and the other is odd. Thus
we have the factor 8. To obtain the factor of 3 we can apply the same
argument above. It remains to find a factor of 2. To this end since
a + b 1s odd, this means that even is even and the other is odd.

3.3.2 More results

In Liber quadratorum Fibonacci makes frequent use of the identities

(a®>+ b)) (A +d*) = (ac+bd)*+ (bc — ad)?
= (ad +bc)® + (ac — bd)?,

which had also appeared in Diophantus. Most of the results have a
distinct number-theoretic flavor. The twenty-four propositions, all in-
volving squares of numbers often in combination with other squares,
are interesting and clever. As a further sampling we have:

Proposition 1.  Find two square numbers which sum to a square
number.

A rather clever proof is given based on the result 37 (25 — 1) = n?,
which is in fact proved as Proposition 4. Fibonacci adheres to the
tradition that quantities should be measurable lengths or areas.

Proposition 2. Any square number exceeds the square immediately
before it by the sum of the roots.

Proposition 3. Find two square numbers which sum to a square num-
ber.
A second proof of Proposition 1 is given.

Proposition 5. Find a square number that can be written as the sum of
two squares in two different ways.
Typically a geometric proof is given.

The last and second last results extend far beyond any practical needs.
Proposition 23. Find three squares so that the sum of the first and
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second as well as all three numbers are square numbers.

An English translation made from the Latin edition (Boncompagni, Bal-
dassarre. Liber guadratorum. In Scritti di Leonardo Pisano. Rome,
1862.) by L. E. Sigler and was published in 1987. (L. E. Sigler,The
Book of Squares, Academic Press, ISBN 0-12-643130-2)

3.4 Fibonacci on geometry

Fibonacci also wrote on geometry. In his De practica geometriae,
1220, he draws heavily upon the Greek masters, Euclid, Archimedes,
and Ptolemy to name three. It was a practical treatise that included
instructions on surveying. It also included instructions on how to find
areas of segments and sectors of circles. To do this he needed a table
of arcs and chords. His chord table is based on a circle of radius 21.
(Note with the approximation of 7 = 3%, this gives the semicircle to
be integral.) He uses Pisan measures of feet (6 to the rods) and unicae
(18 to the foot) and points (20 to the unicae). He also shows how
to interpolate the table, thus allowing the reader to compute areas for
circles of other radii. Interestingly, when he gives discussion on calcu-
lating heights he does not use trigonometry, but rather uses similarity
of triangles by using a pole of a given height and then using an angular
siting together with marking off distances.

4 Medieval Universities

The modern university evolved from medieval schools known as studia
generalia, recognized places of study open to students from all of Eu-
rope. As indicated earlier, these studia were created from the need to
educate clerks and monks, at a level beyond the monastic schools. They
included scholars from other countries, and this constituted a primary
difference between the studia and the schools from which they grew.

The very earliest Western institution that could be termed a uni-
versity was a 9" century medical school at Salerno, Italy. Drawing
students from all of Europe, it was renown as a medical school. The
first true universities, comprised of many disciplines, were founded at
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Bologna late in the 11" century, the University of Paris, founded be-
tween 1150 and 1170, and the University of Oxford in England, which
was well established by the end of the 12" century. The later two were
composed of colleges, which in fact were endowed residence halls for
scholars.

These universities were societies or guilds enjoyed wide ranging in-
dependence, given at the discretion of kings, emperors, and popes, who
only required that neither heresy or atheism could be taught. The price
of the independence was that they pay their own way. This required that
the scholars charged tuition to gain a livlihood. As such they needed
to satisfy the students on whom they depended for fees. As a conse-
quence various universities were in vogue or not as hosts of students
might migrate from one institution to another. Indeed, the University
of Cambridge was founded by disgruntled students from Oxford.

From the 13" century onwards, all major cities had a university.
The curriculum consisted of the classical #rivium and quadrivium of the
classical age of Greece. Thus the subjects studied were logic - grammar
- thetoric - arithmetic - geometry - music - astronomy. Study focused
on the works of the great philosophers such as Aristotle and Plato.
Mathematical studies included the texts by Euclid and Nicomachus.

The first university, modern secular sense, was founded in Halle?
(Germany) by Lutherans in 1694. This school renounced religious or-
thodoxy of all kinds, favoring rational and objective intellectual inquiry.
Also, lectures were given in the vernacular (German) instead of Latin.
Halle’s innovations were later adopted by the University of Gottingen
(founded in 1737) and subsequently by most universities.

5 Jordanus Nemorarius

(fl. 1220) Jordanus (fl. 1220) was younger than Fibonacci and was the
founder of the Medieval school of mechanics. Almost nothing about
him is known, except it is believed he taught at the new university in
Paris about 1220. He wrote on geometry, arithmetic and mechanics. His
fame was assured by his solution of a problem that eluded Archimedes,
namely the problem of the inclined plane,

F = mgsiné.

2The great set theorist, Georg Cantor, was a faculty member at Halle.
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mg

F
0

Inclined Plane

He wrote the book Arithmetica. In it he demonstrates a mastery of
the theory of proportion as well as facility with quadratic terms. Some
examples of his results:

Theorem. A multiple of a perfect® number is number is abundant. A
divisor of a perfect number is deficient.

Note the rhetorical base significant for the use of letters instead of
numerals for numbers. The uniqueness of the solution of division prob-
lems is considered by Jordanus as follows:

Theorem. If a given number is divided in two parts whose difference
is given, each of the parts is determined.

Theorem. If a given number is divided into two parts whose product
is determined each of the parts is determined.

Theorem. If a given number is divided into however many parts, whose
continued proportions are given, then each of the parts is determined.

6 Nicole Oresme

Nicole Oresme (1323 - 1382), after studying theology in Paris, became
bursar in the University of Paris and later dean of Rouen. In 1370 he
was appointed chaplain to King Charles V as his financial advisor.

Oresme invented coordinate geometry before Descartes whereby he
established the logical equivalence between tabulated values and their

3Recall that a number is termed perfect if its divisors add up to itself. A number is abundant if its
divisors sum to a number greater than itself. A number is deficient if its divisors sum to a number smaller
than itself. For example, 6 and 28 are perfect; 12 and 36 are abundant; 7 and 21 are deficient. In general,
all prime numbers are deficient.
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graphs. He proposed the use of a graph for plotting a variable magnitude
whose value depends on another. It is possible that Descartes was
influenced by Oresme’s work since it was reprinted several times over
100 years after its first publication. Oresme also worked on infinite
series which we shall discuss presently.

Another work by Oresme contains the first use of a fractional expo-
nent, although, of course, not in modern notation. Oresme also opposed
the theory of a stationary Earth as proposed by Aristotle and taught mo-
tion of the Earth — 200 years before Copernicus.

Latitude of forms. in about 1361 he conceived of the idea to visualize
or picture the way things vary (function representation at an early stage).
Everything measurable, Oresme wrote, is imaginable in the manner of
continuous quantity. In this way he drew a velocity-time graph for a
body moving with uniform acceleration. In this connection he used
the terms latitude and longitude as we use abscissa and ordinate. His
graphical representation is akin to our analytic geometry. His use of
coordinates was not new however. (Apollonius) His main interest was in
quadratures, and therefore he missed noticing functions and functional
ideas per se.

The graphical representation of function, known as the latitude
of forms was a popular topic from the time of Oresme to Galileo.
His Tractatus de figuratione potentiarum et mensurarum was printed
four times between 1482 and 1515. Oresme even suggested a three
dimensional version of his latitude of forms.

Oresme generalized Bradwardinés rule of proportion to include
fractional powers giving the equivalents of our laws of exponents

suggested the use of irrational powers — zV2 but failed due to termi-
nology and notation and ...

6.1 The Merton school

The Merton School was one of the colleges at Oxford where a step
toward a more modern physics was advanced by Thomas Bradwardine.
One of his main interests was the investigation of infinite decomposabil-
ity of the continuum. He also considered geometrical shapes in terms of
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the points that comprise them. One problem that he exposed dated from
Euclid’s time, that being the angle between a curve and its tangent. He
argued that if the angle is positive there results a contradiction, while if
it is zero there can be no angle. A paradox? One of his greatest efforts
was toward proving the Mean Speed Rule — distance traveled by an
object in uniform acceleration, namely that the mean speed achieved
halfway through the accelerated motion. Graphically, we have

//

Mean Speed = A

gl

Time

Velocity

Distance = sum of velocities x time step
= area

He goes further. Consider this:
Halves Area 1st half : Area 2nd half=1: 3 (Mean Speed Rule)

Thirds: Ay : Aopg : Aspg=1:3:5
Fourths: Ay : Aopg: Aspg : Ay, =1:3:5:7

and so on. In as much as the sums of the odd integers are n?, the total
distance covered varies as the square of time x Galileo: law of motion.

7 Infinite series

In the fourteenth century mathematicians had imagination and preci-
sion of thought, but lacked algebraic and geometric facility. Hence,
they could at most equal the ancients in the same area. However, as
we have seen they ventured into new areas. Another direction was
toward infinite series. We emphasize here again the importance of a
new philosophical viewpoint which permits new thoughts unconfined
by past taboos. Nicole Oresme ventured boldly in this new direction
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without the horror infiniti of the Greeks. Among the many series he
summed was: 1 9 3

n
e s =9
stitgt o tmt

He produced a beautiful geometric proof.

1/8
1/4 [1/8
172 /4 |1/8

Rearrangement of areas? or
Summing an infinite series?

This appearance of computing infinite sums may be illusory if
taken from Oresme’s viewpoint. Recall that at the time, philosophy was
still very much Aristotelian, and Aristotle’s conception of infinity was
essentially temporal. An infinite process is one which does not end.
But could this be applied to permanent objects? There were tensions.

Aristotle views that continuous objects were infinitely divisible.
But when one divides a length into halves, then one of the halves into
halves, one of those quarters into halves and so on indefinitely. Are
those pieces really there? Aristotle would say they are only potentially
there.

Mathematicians such as William of Ockham and Gregory of Rimini
maintained that they were indeed there —- but there was no last member.
This is the usual problem in dealing with the infinite.

An interpretation. What Oresme may have been doing is experiment-
ing with moving these parts around. He conceived of two squares, each
a foot in length. He divided the second square into proportional parts
by means of vertical slices. These parts were then moved one on top of
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the other, creating a vertical tower. The total area was two square feet.
Oresme’s main interest, however, was in showing how a finite object
could be infinite in this respect.

Robert Suiseth, (or Swineshead) (fl. ca. 1350), an English logi-
cian, better known as Calculator solved the following infinite series
problem :

If throughout the first half of a given time interval a variation
continues at a certain intensity, throughout the next quarter of
the interval at double this intensity, throughout the following
eighth at triple the intensity and so ad infinitum; then the
average intensity for the whole interval will be the intensity
of the variation during the second subinterval.

This is equivalent to saying the sum of the series

1+2+3+ =2
2 4 8 T

Calculator gave a long and tedious proof, not knowing the graphical
representation.

Alternate proof: (modern)

1+2+3+4-%5+
2 4 8 16 32
= 1+1+1+1-%1+
2 4 8 16 32
1 1

1 1
+1—|—§+1—6+§—|—---
1 1 1
ts Tttt
= 1+§(1)+Z(1)—|—-~
= 2
* Oresme also summed
1-3+2-3+2-3+'”+2-3+”. _y
4 16 64 4n
* He proved the harmonic series diverges by grouping
11 1 1 1 1 1 1 1

stztiTrrgtatgtgt -+
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Recall, the standard grouping argument to establish the divergence of
the harmonic series. We first group % with itself. Then group % + i.
This quantity is greater than % Next group % + % + % + %. Again
this quantity is greater than % Continue in this fashion taking the next
eight terms, then the following sixteen terms, and so on. Each time we
obtain a lower bound of % We thus establish that partial sums of this
series can be made greater than any multiple of % This implies that

the harmonic series diverges.

8 The conflict between religion and philosophy

A conflict was gradually brewing within the social structure of priests
and philosophers. On the one hand the clergy was instructed in the
required Peripatetic physics, and on the other hand was the dogma of
Christian, Mohammedan, and Jewish belief in eternal souls. Of all
subjects, the conflict centered on the arcane subject of infinity. The
repercussions of this conflict was not an open dismissal of one set of
beliefs in favor of the other, but a seeding of new ideas that would bear
fruit in the next several centuries.

Let us review that for Aristotle the entire theory of infinity is en-
capsulated in four statements.

1. The existence of an actual infinity of distinct objects is contradic-
tory.

2. A multitude of objects may be infinite potentially, and a finite
number of objects can be made larger by addition.

3. The existence of an actual continuous infinite magnitude is con-
tradictory.

4. The existence of a potential continuous infinity in magnitude is an
impossibility. Essentially, magnitudes cannot become indefinitely
large because the “container” is finite. That is the world is limited.

Now Aristotle could not do without potential infinity because of the
self-evident truths all of which imply indefinite processes:

1. Number can be indefinitely augmented by addition.
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2. Continuous magnitude can be indefinitely subdivided.

3. Time had no beginning and will have no end.

Also, Aristotle made no special provision for the beginning of mankind.
In his philosophy, mankind always existed. From this, and being mind-
ful that religious beliefs are among the most powerful we have, it is
evident that a conflict with a simple deduction: If time has no begin-
ning and life has no beginning, then there must be an actual infinitude
of souls (of the dead).

We may ask how Aristotle, or Peripatetic philosophy, might handle
this problem. He might deny the individual survival of the soul, that it
dies with the body, as was the opinion of Alexander of Aphrodisias. Or
as the Spanish-Arabic philosopher Averroes* suggested on his behalf,
all souls unite into a single intelligence common to all humanity.

The pagan philosophers would not be worried by the objection, and
the neo-Platonists believe souls were limited in number via the process
of reincarnation. The Stoics denied any belief in the immortality of the
soul. Hence, the Greek philosophy was not challenged to resolve this
issue. However, all three religions, Christianity, Judaism, and Islam,
did believe in the individual survival of the souls and moreover denied
reincarnation. However, if the past was finite there could be but a finite
number of souls. Thus the problem is shifted to reconcile

e The Peripatetic metaphysical doctrine that neither the world nor
humanity had a beginning, and

e The religious belief that the human souls subsists after death, dis-
tinct from other souls, and exempt from reincarnation.

The Islamic philosopher Avicenna®, allowed that the impossibility

4Abul Walid Mahommed Tbn Achmed, Tbn Mahommed Tbn Roschd (Averroes), 1128 -
1198, was born in Cordova, the son and grandson of judges. He devoted himself to jurispru-
dence, medicine, and mathematics, as well as to philosophy and theology, and particularly the
philosophy of Aristotle. Though his commentaries were based on a rather imperfect Arabic
translation of the Syriac version of the Greek text, they were of great influence in determining
the philosophical and scientific interpretation of Aristotle in the Christian, Jewish and Islamic
worlds. His influence waned somewhat during the renaissance though St. Thomas Aquinas
used the commentaries of Averroes as his model.

5ABN ALI AL HOSAIN IBN ABDALLAH IBN SINA, called by the Latins AVICENNA,
(987-1037) was an Iranian physician, and probably the most famous and influential of the
philosopher-scientists of Islam. He was particularly noted for his contributions in the fields

of Aristotelian philosophy and medicine. He composed the Book of Healing , an expansive
th
2

philosophical and scientific encyclopedia. This book was translated into Latin in the 1
century and strongly influenced scholastic thinking.
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of an actual infinite multitude is not absolute. There is, he maintained,
a basic difference between

(1) An infinite multitude of objects occupying a position, and

(i) An infinite multitude of objects stripped of all position. This ar-
gument seems to set a criterion to differentiate which infinities can be
actual and which potential, but there are exceptions. Avicenna contin-
ues to argue that each thing has a cause and each cause has a cause and
sone. But there can be no infinite hierarchy of causes. There must be
a first cause. As causes do not occupy position, this exception proves
difficult to maintain or reason without the axiom that it can not be.
So, with Avicenna, we have that some actual infinities are possible, but
some are not. He distinguished between things whose nature implies a
natural or determined order and between things having no particular or-
der. The former cannot be actually infinite, while the latter can. There
are in the end four infinities, of which two exist and two do not exist.

1. The movement of heaven has neither beginning nor end.

2. There is an infinity of human souls, distinct and separated from
their bodies.

3. The may not be a body infinite in extent.

4. There can be no infinite series of causes for which no first cause
can be obtained.

All of this was rather unsettling to al-Gazali, who when he returned
to the teaching of the Koran denied the existence of actual infinity
altogether. Adding to his collection of issues was the self-contradictory
nature of two particular actual infinities: if the world has no beginning,
then both the sun and Saturn have both made an infinity of revolutions,
but the ration of these is a determined number.

To avoid the mounting problems with the infinity of souls, the
philosophers took the position that the world did have a beginning. This
is the current dogma of all three religions and maintained by Faith alone.
This was the dogma that Saint Thomas Aquinas defended ardently.
Thus the number of souls is finite. The rest of the infinities consisting
of planetary orbits, sequences of causes all disappeared as well. Thus
the conflict was resolved. However, the concept was loosed upon all
thinkers. Most specifically, with the experiments with various actual
infinities philosophers and mathematicians have a reduced apprehension
about the infinity concept. Indeed, by simply allowing the (a) world
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with no beginning, the infinities come right back. This seems to be
a most interesting interplay of philosophy and religion that ultimately
benefitted mathematics.

9 Decline of Medieval learning

e Black Plague

e Hundred Years War (England-France)
e War of the Roses

e Shift from England and France to

— Italy
— Poland

— Germany
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