
Egyptian Mathematics

Our Þrst knowledge of mankind�s use of mathematics beyond mere
counting comes from the Egyptians and Babylonians. Both civi-
lizations developed mathematics that was similar in some ways but
different in others. The mathematics of Egypt, at least what is
known from the papyri, can essentially be called applied arithmetic.
It was practical information communicated via example on how to
solve speciÞc problems.

Pyramids at Giza

This point, that mathematics was communicated by example, rather
than by principle, is signiÞcant and is different than today�s mathe-
matics that is communicated essentially by principle with examples
to illustrate principles. The reasons for this are unknown but could
be due partly to the fact that symbolism, the medium of principles,
did not exist in these early times. Indeed, much of mathematics for
many centuries was communicated in this way. It may be much eas-
ier to explain to a young student an algorithm to solve a problem
and for them to learn to solve like problems, than to explain the
abstract concept Þrst and basing examples upon this concept.

1 Basic facts about ancient Egypt.

Egyptian hieroglyphics are in great abundance throughout Egypt.
They were essentially indecipherable until 1799 when in Alexandria
the trilingual Rosetta Stone was discovered. The Rosetta stone,
an irregularly shaped tablet of black basalt measuring about 3 feet
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9 inches by 2 feet 4 inches, was found near the town of Rosetta
(Rashid) just a few miles northwest of Alexandria. Written in the
two languages (Greek and Egyptian but three writing systems (hi-
eroglyphics, its cursive form demotic script, and Greek, it provided
the key toward the deciphering of hieroglyphic writing. The inscrip-
tions on it were the benefactions conferred by Ptolemy V Epiphanes
(205 - 180 BCE) were written by the priests of Memphis. The trans-
lation was primarily due to Thomas Young1 (1773 - 1829) and

Temple at Al Karnak

Jean Francois Champollion (1790-1832)2 (1790-1832), who, very
early in his life was inspired to Egyptology by the French math-
ematician Jean Baptiste Joseph Fourier (1768 - 1830). Champollion
completed the work begun by Young and correctly deciphered the
complete stone. An Egyptologist of the Þrst rank, he was the Þrst to
recognize the signs could be alphabetic, syllabic, or determinative
(i.e. standing for complete ideas) He also established the original
language of the Rosetta stone was Greek, and that the hieroglyphic
text was a translation from the Greek. An unusual aspect of hiero-
glyphics is that they can be

1English physician and physicist established the principle of interference of light and thus
resurrected the century-old wave theory of light.

2French historian and linguist who founded scientiÞc Egyptology. Academically prodigious,
he had already mastered six ancient Oriental languages by the age of 16. At 19, he was
appointed professor of history at the lycé of Grenoble, where he was to remain for eight years.
Deciphering hieroglyphics became his constant preoccupation
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read from left to right, or
right to left, or vertically
(top to bottom). It is the
orientation of the glyphs that
gives the clue; the direction
of people and animals face
toward the beginning of the
line.

For the Egyptians
writing was an esthetic
experience, and they viewed
their writing signs as �God�s
words.� This could explain
the unnecessary complexity,
in face of the fact that
obviously simpliÞcations
would certainly have
occurred if writing were
designed for all citizens. Rosetta Stone

The demotic script was for more general use, the hieroglyphics con-
tinued to be used for priestly and formal applications.

The Egyptians established an annual calendar of 12 months of
30 days each plus Þve feast days. Religion was a central feature of
Egyptian society. There was a preoccupation with death. Many
of Egypt�s greatest monuments were tombs constructed at great
expense, and which required detailed logistical calculations and at
least basic geometry.

Construction projects on a massive scale were routinely carried
out. The logistics of construction require all sorts of mathematics.
You will see several mensuration (measurement) problems, simple
algebra problems, and the methods for computation.

Our sources of Egyptian mathematics are scarce. Indeed, much of
our knowledge of ancient Egyptian mathematics comes not from the
hieroglyphics3 (carved sacred letters or sacred letters) inscribed on
the hundreds of temples but from two papyri containing collections

3The words �hieroglyph� or �hieroglyphic� are derived from the Greek words grammata
hiera or grammata hieroglyphika respectively.



Egypt 4

of mathematical problems with their solutions.

� TheRhind Mathematical Papyrus named for A.H. Rhind (1833-
1863) who purchased it at Luxor in 1858. Origin: 1650 BCE
but it was written very much earlier. It is 18 feet long and
13 inches wide. It is also called the Ahmes Papyrus after the
scribe that last copied it.

� TheMoscow Mathematical Papyrus purchased by V. S. Golen-
ishchev (d. 1947). Origin: 1700 BC. It is 15 ft long and 3 inches
wide. Two sections of this chapter offer highlights from these
papyri.

Papyrus, the writing material of ancient times, takes its name from
the plant from which it is made. Long-
cultivated in the Nile delta
region in Egypt, the
Cyperus papyrus was grown
for its stalk, whose inner
pith was cut into thin strips
and laid at right angles on
top of each other. When
pasted and pressed
together, the result was
smooth, thin, cream-colored
papery sheets, normally
about Þve to six inches
wide. To write on it
brushes or styli, reeds with
crushed tips, were dipped
into ink or colored liquid. From the Duke Papyrus Archive*

A remarkable number of papyri, some dating from 2,500 BCE,
have been found, protected from decomposition by the dry heat
of the region though they often lay unprotected in desert sands or
burial tombs.

* See the URL: http://odyssey.lib.duke.edu/papyrus/texts/homepage.html
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2 Counting and Arithmetic � basics

The Egyptian counting system was decimal. Though non positional,
it could deal with numbers of great scale. Yet, there is no apparent
way to construct numbers arbitrarily large. (Compare that with
modern systems, which is positional, which by its nature allows and
economy for expressing huge numbers.)

The number system was decimal with special symbols for 1, 10,
100, 1,000, 10,000, 100,000, and 1,000,000. Addition was accom-
plished by grouping and regrouping. Multiplication and division
were essentially based on binary multiples. Fractions were ubiqui-
tous but only unit fractions, with two exceptions, were allowed. All
other fractions were required to be written as a sum of unit fractions.
Geometry was limited to areas, volumes, and similarity. Curiously,
though, volume measures for the fractional portions of the hekat
a volume measuring about 4.8 liters, were symbolically expressed
differently from others.

Simple algebraic equations were solvable, even systems of equa-
tions in two dimensions could be solved.
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Symbolic notation for numbers.

1 = vertical stroke
10 = heal bone
100 = a snare
1,000 = lotus ßower
10,000 = a bent Þnger
100,000 = a burbot Þsh
1,000,000 = a kneeling Þgure

Note though that there are numerous interpretations of what
these hieroglyphs might represent.

Numbers are formed by grouping.
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Addition is formed by grouping

Note alternate forms for these numbers.

Multiplication is basically binary.

Example: Multiply: 47× 24

47 × 24
47 1 doubling process
94 2
188 4
376 8 *
752 16 *

Selecting 8 and 16 (i.e. 8 + 16 = 24), we have

24 = 16 + 8

47× 24 = 47× (16 + 8)
= 752 + 376

= 1128

Division is also basically binary.

Example: Divide: 329÷ 12
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329 ÷ 12
12 1 doubling 329
24 2 -192
48 4 137
96 8 -96
192 16 41
384 32 -24

17
-12
5

Now

329 = 16× 12 + 8× 12 + 2× 12 + 1× 12 + 5
= (16 + 8 + 2 + 1)× 12 + 5

So,

329÷ 12 = 27 5
12
= 27 +

1

3
+
1

12
.

Obviously, the distributive laws for multiplication and division were
well understood.

Fractions It seems that the Egyptians allowed only unit fractions,
with just two exceptions, 2

3
and 3

4
. All other fractions must be

converted to unit fractions. The symbol for unit fractions was
a ßattened oval above the denominator. In fact, this oval was
the sign used by the Egyptians for the �mouth.� In the case of
the volume measure hekat, the commonly used fractional parts of
1
2
, 1
4
, 1
8
, 1
16
, 1
32
,and 1

64
, were denoted by parts of the symbol for the

Horus-eye, symbolized as .4 For ordinary fractions, we have the
following.

1/3 1/10 1/25

There were special symbols for the fractions 1
2
, 2
3
, 3
4
, of which

one each of the forms is shown below.
4See Ifrah, p 169.
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2/3 3/41/2

All other fractions must be converted to unit fractions. For example:

2

15
=
1

10
+
1

30

Obviously there are but two cases to consider, unit fractions and
fractions with numerator two. All fractions can be reduced to a
sum of such fractions. Ahmes gives a table of unit fractions decom-
positions for fractions with numerator two.

2
n

1/p + 1/q + 1/r+. . .
5 3 15
7 4 28
9 6 18
11 6 66
13 8 52 104
15 10 30
...

� Decompositions are not necessarily unique. The Egyptians did
favor certain fractions and attempt to use them when possible.
For example, they seems to prefer taking halves when possible.
Thus the representation for 2/15 as

2

15
= 1/30 + 1/10

� The exact algorithm for determination for the decomposition is
unknown and this is an active topic of research today. However,
in other papyri, there is some indication of the application of
the formula

2

p · q =
1

p · p+q
2

+
1

q · p+q
2

being used. It gives some, but not all, of the table, and certainly
does not give decompositions into three or more fractions.
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� It seems certain that the Egyptians understood general rules
for handling fractions.

3 The Ahmes Papyrus

The Ahmes was written in hieratic, and probably originated from
the Middle Kingdom: 2000-1800 BC. It claims to be a �thorough
study of all things, insight into all that exists, knowledge of all
obscure secrets.� In fact, it is somewhat less. It is a collection of
exercises, substantially rhetorical in form, designed primarily for
students of mathematics. Included are exercises in

� fractions
� notation
� arithmetic
� algebra
� geometry
� mensuration

The practical mathematical tools for construction?

To illustrate the level and scope of Egyptian mathematics of this
period, we select several of the problems and their solutions as found
in the two papyri. For example, beer and bread problems are com-
mon in the Ahmes.

Problem 72. How many loaves of �strength� 45 are equivalent to
100 loaves of strength 10? Fact:

strength := 1
grain density
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Invoking the rule of three5, which was well known in the ancient
world, we must solve the problem:

x

45
=
100

10

Answer: x = 100/10× 45 = 450 loaves.

Problem 63. 700 loaves are to be divided among recipients where
the amounts they are to receive are in the continued proportion

2

3
:
1

2
:
1

3
:
1

4

Solution. Add
2

3
+
1

2
+
1

3
+
1

4
=
7

4
.

700

7/4
= 700 · 4

7

= 700(
2

7
+
2

7
)

= 700(
2

7
+
1

7
+
2

28
+
1

14
)

= 700(
1

2
+
1

14
)

= 350 + 50

= 400

The Þrst value is 400. This is the base number. Now multiply
each fraction by 400 to obtain the recipient�s amount. Note the
algorithm nature of this solution. It reveals no principles at all. Only
when converting to modern notation and using modern symbols do
we see that this is correct We have

x1
x2
=

2
3
1
2

,
x2
x3
=

1
2
1
3

,

5The rule of three was the rule to determine the fourth and unknown quantity in the
expression a

b
= c

d
in which the other three are known
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etc. This will be the case if there is a base number a such that

x1 =
2

3
a

x2 =
1

2
a

x3 =
1

3
a

x4 =
1

4
a

Thus

x1 + x2 + x3 + x4 = (
2

3
+
1

2
+
1

3
+
1

4
)a = 700

Now add the fractions to get 7
4
and solve to get

a = 400.

Now compute x1, x2, x3, x4. This problem seems to indicate a
type of hierarchical chain for the distribution of goods was relatively
common. Similar problems are relatively rare in modern texts.

The solution of linear algebra problems is present in the Ahmes.
Equations of the modern form

x+ ax = b or x+ ax+ bx = x,

where a, b, and c are known are solved. The unknown, x, is called
the heep. Note the rhetorical problem statement.

Problem 24. Find the heep if the heap and a seventh of the heep is
19. (Solve x+ x/7 = 19.)

Method. Use the method of false position. Let g be the guess.
Substitute g+ag = c. Now solve c ·y = b. Answer: x = g ·y. Why?

Solution. Guess g = 7.

7 + 1/7 · 7 = 8

19÷ 8 = 2 + 3
8
= 2 +

1

4
+
1

8
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Answer:

7 · (2 + 3
8
) = 7(2 +

1

4
+
1

8
) = 16 +

1

2
+
1

8

Geometry and Mensuration Most geometry is related to mensura-
tion. The Ahmes contains problems for the areas of

� isosceles triangles (correct)
� isosceles trapezoids (correct)
� quadrilaterals (incorrect)
� frustum (correct)

� circle (incorrect)
� curvilinear areas

In one problem the area for the quadrilateral was given by

A = (
b1 + b2
2

)(
h1 + h2
2

)

which of course is wrong in general but correct for rectangles. Yet
the �Rope stretchers� of ancient Egypt, that is the land surveyors,
often had to deal with irregular quadrilaterals when measuring ar-
eas of land. This formula is quite accurate if the quadrilateral in
question is nearly a rectangle.
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2
2

1

1

h

h

b

b

Quadrilateral

The area for the triangle was given by replacement b2 = 0 in the
quadrilateral formula

A = (
b1
2
)(
h1 + h2
2

)

1

Triangle

h
h

b

2

1

On Rigor. There is in Egyptian mathematics a search for relation-
ships, but the Egyptians had only a vague distinction between the
exact and the approximate. Formulas were not evident. Only solu-
tions to speciÞc problems were given, from which the student was
left to generalize to other circumstances. Yet, as we shall see, sev-
eral of the great Greek mathematicians, Pythagoras , Thales, and
Eudoxus to name three, studied in Egypt. There must have been
more there than student exercises to learn!

Problem 79. This problem cites only �seven houses, 49 cats, 343
mice, 2401 ears of spelt, 16,807 hekats.�
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Note the similarity to our familiar nursery rhyme:

As I was going to St. Ives,
I met a man with seven wives;
Every wife had seven sacks,
Every sack had seven cats,
Every cat had seven kits.
Kits, cats, sacks, and wives,
How many were going to St. Ives?

This rhyme asked for the very impractical sum of all and thus il-
lustrates some knowledge and application of geometric progressions.

Problem 50. A circular Þeld of diameter 9 has the same area as a
square of side 8. This gives an effective π = 3 1

6
.

Problem 48 gives a hint of how this formula is constructed.

Side length = 9

Trisect each side. Remove the corner triangles. The resulting oc-
tagonal Þgure approximates the circle. The area of the octagonal
Þgure is:

9× 9− 4(1
2
· 3 · 3) = 63 ≈ 64 = 82
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Thus the number

4(
8

9
)2 = 3

13

81

plays the role of π. That this octagonal Þgure, whose area is easily
calculated, so accurately approximates the area of the circle is just
plain good luck. Obtaining a better approximation to the area using
Þner divisions of a square and a similar argument is not simple.

Geometry and Mensuration

Problem 56 indicates an understanding of the idea of geometric
similarity. This problem discusses the ratio

rise
run

The problem essentially asks to compute the cotα for some angle
α. Such a formula would be need for building pyramids.

Run

Rise

Note the obvious application to the construction of a pyramid for
which the formula for the volume, V = 1

3
b2h, was known. (How did

they Þnd that?)
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b

b
Pyramid

h

Geometry and Mensuration

The are numerous myths about the presumed geometric relationship
among the dimensions of the Great Pyramid. Here�s one:

[perimeter of base]=
[circumference of a circle of radius=height]

Such a formula would yield an effective π = 31
7
, not π = 31

6
, as

already discussed.

4 The Moscow Papyrus

The Moscow papyrus contains only about 25, mostly practical, ex-
amples. The author is unknown. It was purchased by V. S. Golen-
ishchev (d. 1947) and sold to the Moscow Museum of Fine Art.
Origin: 1700 BC. It is 15 feet long and about 3 inches wide.
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Problem 14. Volume of a frustum. The scribe directs one to square
the numbers two and four and to add to the sum of these squares
the product of two and four. Multiply this by one third of six. �See,
it is 56; your have found it correctly.� What the student has been
directed to compute is the number

V =
1

3
· 6(22 + 42 + 2 · 4) = 56

Here�s the picture that is found in the Moscow Papyrus.
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Here�s the modern version of the picture and a perspective drawing.

2

656

4

4

4

6

Frustum

2
2

The general formula for a frustum was evidently known to the
Egyptians. It is:

V =
1

3
h(b21 + b1b2 + b

2
2)

Taking b1 = 0, we get the formula

V =
1

3
hb2

This was evidently known also.

Question. Speculate on how the Egyptians could have known the
formula for a frustum, given that its derivation depends on the meth-
ods of modern calculus.
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Problem 10 Compute the surface area of a Quonset type hut roof,
which is the earliest estimation of curvilinear area.

Quonset roof

5 Summary of Egyptian Mathematics

In the few bullet items below we give a summary of known Egyptian
mathematical achievements. Records of conquests of pharohs and
other facts of Egyptian life are in abundance throughout Egypt, but
of her mathematics only traces have been found. These fragments,
from a civilization that lasted a millennium longer than the entire
Christian era, that undertook constructions projects on a seen not
seen again6 until this century, and that created abundance from a
desert, allow only the following conclusions.

� Egyptian mathematics remained remarkably uniform through-
out time.

� It was built around addition.
� Little theoretical contributions were evident. Only the slightest
of abstraction is evident. Yet exact versions of difficult to Þnd
formulas were available.

� It was substantially practical. The texts were for students. No
�principles� are evident, neither are there laws, theorems, ax-
ioms postulates or demonstrations; the problems of the papyri
are examples from which the student would generalize to the

6excluding the Great Wall of China constructed in third century BCE
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actual problem at hand. The papyri were probably not written
for self-study. No doubt there was a teacher present to assist
the student learning the examples and then giving �exercises�
for the student to solve.

� There seems to be no clear differentiation between the concepts
of exactness and approximate.

� Elementary congruencies were used only for mensuration.

Yet, there must have been much more to Egyptian mathemat-
ics. We know that Thales, Pythagoras and others visited Egypt to
study. If there were only applied arithmetic methods as we have
seen in the papyri, the trip would have had little value. But where
are the records of achievement? Very likely, the mathematics ex-
tant was absorbed into the body of Greek mathematics � in an age
where new and better works completely displaced the old, and in
this case the old works written in hieroglyphics. Additionally, the
Alexandrian library, one place where ancient Egyptian mathemat-
ical works may have been preserved, was destroyed by about 400
CE.


