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Preface

While teaching at the United States Military Academy (USMA) at West Point, New York from 2000 to 
2003, I had the immense good fortune to work with Fred Rickey on the history of the Olivier String Models 
owned by the USMA Department of Mathematical Sciences. Working with and researching these models1 
became a joy for me. One question led to another, and I became acquainted with all aspects of the models.

To understand the models and present the mathematical concepts they depict to students, I had to learn 
the mathematics involved in both current and historical terms. I also had to learn about those who developed 
the mathematics as well as those who developed and constructed the models. One of the aspects of this work 
that I found the most intriguing was tracking the history of the actual models: who constructed them, who 
bought them, where have they been since their construction, etc. In many cases, this was the most difficult 
part of the research. Along the way, I learned a lot of history about the Academy itself and the mathematics 
department while researching the models through the USMA archives. Fred and I had great fun searching 
the department for a few missing models that the archives said we should have. We did find one, only a 
picture of another, and alas, never did find a third. But we also found many other old and forgotten teaching 
aides, such as a chalk board globe, which we enjoyed bringing back into use in the classroom. Handling 
the models and bringing them back to working order was very enjoyable, while creating public displays for 
the models and presenting them to students and faculty allowed me to share these experiences with others.2 
Finally, I was inspired by the simple beauty of these mathematical models and now see the beauty in many 
other mathematical models and objects. Some mathematicians, like my colleague Bill Acheson, have been 
inspired to construct models themselves, while artists have been inspired by the clean lines of the string 
models to use those elements in string sculptures. 

All this led me to organize a MAA short course with Glen Van Brummelen at the 2004 Joint Mathematics 
Meetings in Phoenix, entitled The History of Mathematical Technologies: Exploring the Material Culture of 
Mathematics. I believe this short course was a great success, and led to this project. Many of the speakers 
who so graciously shared their expertise during those two days have contributed to this volume. I have add-
ed to their ranks other historians, researchers and professionals with an interest in the physical embodiment 
of mathematics and a wish to use that to enhance the teaching of mathematics. Several of these individuals 
were in the audience of the short course. 

All of us involved in this volume have a love of the physical manifestation of mathematics, a love of 
teaching, and a desire to bring the two together. I would like to thank all the contributors for sharing their 
knowledge and love of mathematical models. Finally, I would like to thank the MAA staff for their energy 
and dedication in creating the final product, and the readers for their time, care and diligence in giving help-
ful, insightful and honest feedback. 

Amy Shell-Gellasch
October 2006

1 USMA has twenty-four models constructed in the 1850s by French mathematician Theodore Olivier to depict concepts from 
descriptive geometry—see the sixth chapter in this volume.
2  See the chapter by Kidwell and Ackerberg-Hastings on creating displays.
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Introduction

With the advent of computers and classroom projectors, educators have a world of resources at their fin-
gertips. However, when we let our fingers do the walking in the virtual world, we and our students miss the 
physical and creative aspects of learning. Numerous studies have shown that doing (as opposed to simply 
listening or reading) is the best way to learn.  

Educators have always employed physical models to aid in instruction. During much of the nineteenth 
century and the twentieth up to the advent of classroom computers, makers of mathematical devices for the 
classroom abounded. See Multi-Sensory Aids in Teaching Mathematics (1966) of The National Council of 
Teachers of Mathematics, and reprinted by the American Mathematical Society for a look at the types and 
diversity of mathematical models and apparatus used in classrooms during the first half of the twentieth 
century. 

Historically, scientists and mathematicians have constructed models to help them explore the physical 
world, be it in engineering, chemistry, physics, astronomy, or the realm of pure mathematics. In addition, 
the daily practice and use of mathematics was tied to the use of devices such as counting boards and the 
abacus, and in science with the use of astrolabes, quadrant finders, and the like. The physical items used 
both in the practice of mathematics and its teaching, are an important part of our mathematical heritage. I 
believe exploring these items adds a level of understanding that is not available with computer simulations. 
Students can construct and manipulate a physical device to immediately explore their own questions and 
follow their own creativity in a much more personal and tactile way than simply typing commands into a 
keyboard or moving a mouse. 

This volume is meant to be a resource guide to help school and collegiate educators incorporate history 
into their classrooms in the form of historical devices. In our increasingly electronic society, students are 
losing “touch” with the physical aspects of mathematics and science. By bringing actual historical items 
into the classroom or by constructing replicas, students will be engaged in their learning in a more concrete 
manner. 

The papers in this volume represent a wide variety of topics and levels of mathematics as well as levels 
of difficulty of construction. They include short, one-day projects for the high school or junior high class-
room as well as longer projects to be constructed by motivated college students. All of the ideas presented 
here can also be used with student mathematics clubs or as individual or small group projects. I hope that 
the selection will encourage you to get back in touch with the physical heritage of mathematics and share 
that heritage with your students.  





xi

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Learning from the Medieval Master Masons: A Geometric Journey through the Labyrinth. . . . . . . . . . . .  1
Hugh McCague

Dem Bones Ain’t Dead: Napier’s Bones in the Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17
Joanne Peeples

The Towers of Hanoi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29
Amy Shell-Gellasch

Rectangular Protractors and the Mathematics Classroom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35
Amy Ackerberg-Hastings

Was Pythagoras Chinese? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
David E. Zitarelli

Geometric String Models of Descriptive Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49
Amy Shell-Gellasch and Bill Acheson

The French Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Brian J. Lunday

Area Without Integration: Make Your Own Planimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71
Robert L. Foote and Ed Sandifer

Historical Mechanisms for Drawing Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89
Daina Taimina

Learning from the Roman Land Surveyors: A Mathematical Field Exercise . . . . . . . . . . . . . . . . . . . . .  105
Hugh McCague

Equating the Sun: Geometry, Models, and Practical Computing in Greek Astronomy  . . . . . . . . . . . . .  115
James Evans

Sundials: An Introduction to Their History, Design, and Construction . . . . . . . . . . . . . . . . . . . . . . . . . . .125
J. L. Berggren

Why is a Square Square and a Cube Cubical?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139
Amy Shell-Gellasch

The Cycloid Pendulum Clock of Christiaan Huygens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  145
Katherine Inouye Lau and Kim Plofker



xii Hands On History

Build a Brachistochrone and Captivate Your Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  153
 V. Frederick Rickey

Exhibiting Mathematical Objects: Making Sense of your Department’s Material Culture. . . . . . . . . . .  163
Peggy Aldrich Kidwell and Amy Ackerberg-Hastings

About the Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175



�

Learning from the Medieval Master Masons:
A Geometric Journey through the Labyrinth

Hugh McCague
York University

Introduction
In recent years, there has been a resurgence in understanding, constructing, and walking mazes and laby-
rinths, many originating from the Middle Ages. For the student of mathematics, these novel geometric 
objects can be an experience in the power, beauty and utility of mathematics.

These qualities of mathematics were well appreciated by medieval master masons, the designers and 
builders of the great pavement labyrinths in some of the medieval churches and cathedrals. Master masons 
worked their way up the ranks of stonemasonry starting with demanding years of apprenticeship. There 
were many tools for stone cutting and sculpting to master. The key and emblematic tools for stonemasonry 
were large compass-dividers, set square [Figure 1], and measuring rod. These tools underscore the master 
masons’ skill in practical geometry, not in theoretical mathematics involving axioms, theorems and proofs 
[1]. Common mathematical and geometrical motifs of the master masons [2] were:

a) a square rotated a half of a right angle about its center,

b) the square’s side to its diagonal (in modern terms, unknown to the medieval mason, 1: 2),

c) the equilateral triangle’s half-side to its altitude (in modern terms 1: 3),

d) the regular pentagon’s side to its diagonal (in modern terms the ‘golden section’ and 5 1: 2− ), and
e) simple whole number ratios, e.g., 1 : 1, 1 : 2, and 3 : 4.

Designs were translated to full-scale templates, made of cloth and wood, for the cutting of limestone, sand-
stone, and marble [3]. Mathematics reigned throughout the process: practical geometry with those motifs 
allowed a repertoire of designs to be memorized and varied, and easily communicated to mason assistants. 
Indeed, in the earliest extant codified rules of this craft, dating from c. 1390–1400, stonemasonry is re-
ferred to as the “Art of Geometry” [4]. 

Master masons designed, guided and supervised the stonework of wide-ranging projects from well-to-
do houses to castles, from town wharfs to fortified city walls. A major part of their work was churches and 
cathedrals including stone pavement labyrinths.

The central formative story of labyrinths, important to these medieval pavement labyrinths, was the 
legend of Daedalus designing and building the ancient Cretan labyrinth that Theseus traversed in order 
to slay the Minotaur at the center [5]. The legend, as with records of later labyrinths, does not relate the 
historical mathematics applied in the construction. As a result, we must infer those methods from the extant 
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labyrinths themselves and our knowledge of the working methods and mathematical knowledge of earlier 
craftspersons such as the medieval masons.

During the construction of some of the French Cathedrals of the 13th century, masterworks of labyrinths 
were laid by masons in the pavements of the naves [Figure 2]. Only a moderate amount of historical 
documentation survives regarding the medieval masons during the 13th century and earlier, so much of 
our knowledge of the work by masons on labyrinths needs to be inferred from the buildings and labyrinths 
themselves. For example, the well-known circular pavement labyrinth at Chartres Cathedral (1194–c.1221) 
dates from c.1215–c.1221. The path’s border is made of blue-black marble, the path itself is made of 276 
white limestone slabs, and the outer diameter is 42.16¢ (12.85m) [6]. Amiens Cathedral (1220–1288) had 
an octagonal pavement labyrinth laid by Master Renaud de Cormont in 1288, but it was removed during 
1827–1828. An exact replica was laid back in place in 1894 [Figure 2]. White stones mark the border, black 
stones form the path, and the structure spans 39.83¢ (12.14m) [7]. The octagonal pavement labyrinth at 
Reims Cathedral (1211–c.1290) dated from c. 1290, but was destroyed in 1779. We are fortunate to have 
some drawings that recorded this labyrinth’s design which included octagonal ‘pods’ in the four corners 
[Figure 4]. This labyrinth had a white stone border and a black marble path. The width of the structure 
in its entirety was approximately 34¢ (10.2m). Of special note to us are the outer four octagonal ‘pods’ 
which commemorated and depicted the Cathedral’s successive master masons with their mathematical 
instruments [8].

Figure �. King Offa and a master mason, with large set square and compass in hand, directing stone-
masons at St. Albans Cathedral, from Matthew Paris, Life of St. Alban, c. 1245–52, Dublin, Trinity 
College Library, MS 177, fol.59v. Reproduced courtesy of The Board of Trinity College Dublin.

What is a labyrinth or maze?
A maze is a collection of connected paths that lead you to dead ends, a center or rest areas, and exits. The 
term ‘labyrinth’ here will be used to mean a maze with one path, a unicursal maze, that winds about itself 
and leads to a center without alternative routes and additional dead ends. This definition of labyrinth, pre-
ferred by many labyrinth practitioners, is not standard and, in general, the terms maze and labyrinth can be 
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used interchangeably. A labyrinth or maze can have vertical walls to make the structure 3-dimensional. The 
structures we will work with are floor or pavement labyrinths, unicursal mazes, in 2 dimensions.

We will follow step-by-step geometric instructions to recreate the design of the large pavement labyrinth 
at the great Gothic Cathedral at Amiens in northern France. Rather than working with stone as in the 
original, I will suggest some simpler inexpensive materials. The original pavement labyrinth at Amiens 
Cathedral was, as noted already, 39.83¢ (12.14m) across. I have scaled the size down to 14¢ because this 
is often a suitable size for fitting the labyrinth into a classroom. Additionally, as we will see, 14 has some 
helpful mathematical properties for laying out the design. You can scale up or down from 14¢ to make the 
labyrinth best suited for your rooms and usages. The path of a scaled-down labyrinth will of course be 
relatively narrow. As you walk such labyrinths, you need to center your attention on the path, and do not be 
concerned that your feet may be protruding over borders of the narrow path. You can also simply scale and 
construct the labyrinth with pencil on letter-size paper and trace the path with your fingers.

Materials and geometric tools for making labyrinths
The design can be laid out on large sheets of canvas (sewn together) or other material on the floor of the 
classroom or gymnasium or on the playground rather than on a stone floor of a cathedral. Large sheets of 
canvas can be purchased at canvas specialty companies, larger art supply stores, or at some home supply 

Figure �. View of the interior of Amiens Cathedral looking to the east. The pavement labyrinth, spanning 
the fourth and fifth bays from the west portal, is in the lower part of the picture. The path of the labyrinth 
consists of black stones with a border of white stones. Photograph by Stephen Murray.
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stores. Canvas is fairly strong and lasts well, but it is good to get a thickness greater than that used in small 
canvases that are stretched for paintings. A good quality double-sided carpet tape should be used to hold 
down the canvas stretched out smooth and tight on the floor. Otherwise the canvas will be loose with small 
bumps that frustrate laying out an accurate design. For the borders or sides of the labyrinth’s path, the bet-
ter quality black electrical tape works well on an off-white canvas, both in terms of visual contrast and in 
providing a good adhesive contact for longer term use. When laying the electrical tape down you may wish 
to stretch it to get a good straight line, making sure you take the tension off the tape when you finally press 
it on the canvas. If the tape is even slightly stretched when applied to the surface you will find that, when 
you come back the next day, the tape has contracted and has pulled up from the canvas. The trimming of 
the tape can be done with a small pair of sharp scissors or, even better, an ‘exacto’ (X-Acto) knife with the 
tape fully in place. Be sure to use light pressure, so only the tape is cut and not the canvas underneath. The 
tape may be much narrower than the borders of the original stone pavement labyrinth such as at Amiens, 
even taking into account the scaled-down size of the canvas labyrinth. The essential issue is that the border 
be well marked in defining the path, and black electrical tape can do this job well.

Alternatively, for a short-term and non-portable labyrinth, you may wish to lay out the structure with 
chalk on pavement. Side-walk chalk which washes off with water or rain may be preferable, if you need the 
labyrinth cleared off soon afterwards. Some people get so they can rapidly lay out a labyrinth with masking 
tape that can then be pulled up shortly afterwards from a gym floor or similar surface [9]. Of course, test 
the surface ahead of time with smaller pieces of masking tape to insure the surface is not damaged upon the 
removal of the tape.

If you are making the labyrinth for short-term use, you may wish to work at a pace that accepts moderate 
inaccuracies. The mathematical challenge is recognizing that some inaccuracies are acceptable while others 
will lead to difficulties. For this reason, even if you need to get the labyrinth ‘up’ in a few hours, check 
everything as you proceed. Do not expect to get a sizable masking-tape labyrinth laid out in a few hours 
until you have had a fair amount of practice.

We will use mathematical tools, some of which are essentially the same as those used by the medieval 
master masons. If you are laying out with chalk on a paved surface such as a school playground, you may 
wish to use a chalkline available at hardware stores. This device coats a stretched cord with chalk which 
when snapped down on the surface leaves a good quality straight line segment. This same basic procedure 
was used by the ancient Egyptians and Greeks [10]. It takes some practice to become proficient, but it 
soon becomes a rapid way to lay out straight line segments on larger surfaces. A chalkline is not suitable 
for canvas because of the smudges to the material. A longer-term option on a school playground, once the 
guiding lines are set, would be the use of an appropriate paint, but first obtain advice from a hardware or 
paint store.

In addition to the chalkline, there are other ways to draw longer straight line segments. A stretched 
string, without a chalk coating, provides a good straight line. There is no firm side to run your pencil 
against. Nevertheless, one can do a fair job running the pencil beside the string, but not pushing the string 
off course. Yard rules and meter sticks are very handy, but often too short for part of the construction. One 
can make longer wooden or metal rods with a rectangular, not circular, cross-section for accurate drawing. 
A set square is invaluable for drawing and checking right angles.

The medieval master masons had, as mentioned earlier, large compasses or dividers that stood about a 
yard high [Figure 1]. Such big compasses do not seem readily and inexpensively available today, though a 
person skilled in woodworking could make one. Smaller compasses can be used to check work done, such 
as constructed angles, but these instruments are not generally accurate enough for this large scale work. A 
swung string fixed at a pole can do quite well for making larger arcs. However, one does not have to use a 
compass or its equivalent for the particular labyrinth design that we are about to undertake.

Craftspersons normally remove evidence of their earlier layout work. If you wish to later remove 
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the guiding pencil marks, lightly use a pencil with a hard lead so the lines can be largely erased off the 
canvas. You may wish to leave the pencil marks intact so people can see direct evidence of the underlying 
geometrical process applied in this educational project.

Working methods and skill development
I suggest you view this exercise as a gradual learning process, not only in theoretical mathematics, but 
also in the application of mathematics that can give us an increased appreciation of the skill level of the 
medieval and later craftspersons. Your first labyrinth project may not be done as quickly and as accurately 
as you would like. If you make more labyrinths, you can increasingly apply what you have learned and it 
will be easier to guide others who are assisting you. Any related skills you and your helpers already have in 
building, landscaping, woodworking, machine shop work, art and graphic design, dress-making and other 
‘hands-on’ applications of mathematics will definitely come to the fore to assist you.

We will see what geometric methods work practically, and maintain a reasonable accuracy. For accuracy 
it is generally best to work from larger dimensions to smaller dimensions. Thus, we will start with a large 
outer 14¢ square, and work inward from points on the outer square to determine crucial diagonals and axes 
as illustrated in Steps 1 to 4. Errors or inaccuracies tend to diminish as we move inward, but tend to expand 
as one works outward. I suggest that you triple check everything at each step. This approach helps insure 
that an error can be immediately rectified, rather than later realizing that the construction is not working 
and that you now have to back-track like a detective through successive stages of your work that need to 
be redone. One way to do extra checks on your work is to apply more than one mathematical approach. 
For example, once we have constructed the major diagonals of the concentric octagons illustrated in Step 
3, check with a large protractor, a 45°-90°-45° drafting triangle, or by compass constructions (a smaller 
compass may not be so accurate, but it will still be a partial check) that the angles formed at the square’s 
center are in fact multiples of 45° or half a right angle.

With some ingenuity, a larger labyrinth could be made by one person. However, it is good to have 
at least two people with one acting as the ‘master’ craftsperson guiding the project. Five to six people can 
make the construction even easier for, say, a labyrinth 14¢ across as here. For even larger labyrinths, more 
people can be well utilized. Keeping those persons active and working accurately throughout takes practice. 
For a class, it may be best to have students take turns working on different stages of the project, or to make 
more than one labyrinth. In the process, there is a marked sense of mathematical accomplishment, as the 
group sees the labyrinth ‘manifest’ or take form before them.

The geometric construction steps

Step �
Lay out a square 14¢ by 14¢. First, draw a 14¢ side. Use the 
Pythagorean triplet of 3-4-5 to create and check the right an-
gles. You can use the triplet 3¢-4¢-5¢. However, I suggest the 
triplet 3 yards-4 yards-5 yards which is a little more involved 
to layout, but further magnifies any error in the right angle.

Cathedral pavement labyrinths are commonly oriented 
eastward, though not necessarily exactly due east. Thus, the 
entrance (to be constructed in Step 8) is in the west. The east 
side of the labyrinth will be pictured at the top, even though 

East

West
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today’s convention is to place north at the top. During the medieval period it was common to place east at 
the top of a map or spatially-oriented diagram. For this reconstruction of a medieval labyrinth we will do 
likewise.

From one end of the 14¢ side measure 3 yards along that side. Next, from the first end (a corner of the 
square to be), measure out 4 yards and keep the measuring tape in place. Now with a second measuring 
tape, measure from the second end of the 3-yard length over to the 4-yard mark on the first measuring tape. 
Adjust the two measuring tapes, while straight and taut, until the 4-yard mark on the first tape coincides 
with the 5-yard mark on the second tape. This point of intersection is then used to lay out the 2nd side of the 
square which needs to be extended to 14¢ to determine the 3rd corner of the square. In a similar fashion, the 
4th corner and the 2 remaining sides of the square can be determined.

This constructed square is the crucial ‘foundation’ for the rest of the construction, so take time to 
get it accurate (say within 1/2 on all sides). Also, check the square’s two diagonals in feet at 14√2 ≈ 
19.7989... ≈ 19¢ 9 1/2 (close to 20¢). If the diagonals are very close to this value (say within 3/4), the right 
angles are sufficiently achieved, and this rhombus can be considered a square as required. Conceptually, the 
construction of a square is simple, but the accurate laying out of a large square takes practice and patience. 
If the sides or the diagonals are not very close to equal, or the attempt at right angles are slightly off, it can 
be a good mathematical problem to figure 
out what went wrong and how to correct the 
situation.

Step �
Conceptually, a regular octagon can arise 
from the 8 intersection points of a square 
rotated a half of a right angle, or 45°, about 
its center. Generally, one is not using a big 
square that can be picked up and rotated ac-
curately, so an equivalent procedure is re-
quired. On the initial square, the intersection 
points measured out on a side starting from a 
corner or vertex will occur approximately

4.1005¢ and 9.8995¢ away, or
4¢ 1 1/4 and 9¢ 10 3/4 away, and
close to 4¢ and 10¢ away.

Using string, the medieval master mason could have 
swung the original square’s 2 lower half-diagonals down 
(with centers at the 2 lower corners) to determine these same 
points on the square’s side.

Step �
Join the 8 intersection points to form 4 diagonals that pass 
through the center of the square. With some care and pa-
tience, one can get the 4 diagonals to actually intersect close 
together. 

0.0000′ 4.1005′ 9.8995′ 14.0000′
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Step �
Next draw the two diagonals of the square. Also, join, pass-
ing through the square’s center, the midpoints of the square’s 
sides to form the axes. If the layout has been careful, their 
intersection point should be very close to the square’s center 
determined by the intersection of the other diagonals drawn 
in the previous step. If they are not close, go back over the 
earlier steps and check for their accuracy. 

Step �
We can now use all those line segments passing through the 
square’s center to guide the octagonal geometry of the laby-
rinth and the location of all the turns in the path that we will 
be constructing. First, construct the inner regular octagon in 

the central region and allow enough room for the 11 other suc-
cessively larger concentric regular octagons (as constructed in 
Step 6). A simple way to construct the regular octagons is to 
measure along one of the line segments that will become the 
major diagonals of these octagons. The length of half of one 
of these major diagonals AC is 7√[1 + (√2 - 1)2]¢ ≈ 7.576745¢ 
≈ 7¢ 6 15/16. We need to divide this length into space for the 
central small octagon and the 11 other octagons. For ease of 
construction, we use a path width (the distance between two 
successive octagons, illustrated in Step 6, as measured along 
AC) that is a whole number of inches plus possibly a half inch 
if needed. Also, we wish to keep the size of the inner octagon 
compared to the outer boundary of the labyrinth in similar 
proportion to the corresponding elements of the labyrinth at 
Amiens Cathedral. A solution that allows a reasonably sized 
central octagon and path width is: 7¢ 6 15/16 = 1¢ 7 7/16 + 
11 ´ 6 1/2. Path widths of 6 or 7 make the central octagon too big or too small, respectively. (You may 
find it helpful to look at the diagram for Step 6 to see the path width repeated 11 times, with widths of
6 1/2 as measured along AC, that will be formed by the 12 
octagons that are about to be constructed.) Therefore, mea-
sure out from the square’s center along AC 1¢ 7 7/16 and 
do similarly on the other 7 major half-diagonals for the octa-
gons. (In other words, the length of the major half-diagonal 
of the first octagon is 1¢ 7 7/16.) These end-points can then 
be connected by line segments to form the first octagon and 
its vertices. Note the path width along AC is 6 1/2 = 6.5 
(call it w1 as illustrated in Step 8).

Step �
From the first octagon, measure out along all 8 of the major 
half-diagonals (e.g. AC) of the octagons the first 11 multiples 
of 6.5 (an arithmetic sequence) to get the position of the suc-

C
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cessive path widths: 6.5, 13, 19.5, …, 65, 71.5. With care, the last length of 71.5 should land on or 
very close to the square’s perimeter. Now connect these points with line segments to form the next 11 oc-
tagons to obtain a total of 12 concentric regular octagons. The basic framework for the labyrinth is now in 
place.

One could also measure the successive path widths from the square’s perimeter to the inner octagon. In 
this case, working inward or outward does not make a difference in accuracy.

Step �
Now, we need to put in the appropriate turns and openings 
in order to obtain the unicursal path that traverses the entire 
space of the labyrinth. In the diagram at right, the major 
diagonals of the octagon and square have been removed 
to simplify the explanatory picture. In the actual layout on 
canvas or other material, these lines in light pencil mark-
ings can be left or erased.

The path width w2 (illustrated in Step 8), measured not 
along the major half-diagonals of the outer octagon (e.g., 
AC in Step 5 and 6), as in the case of w1 = 6.5”, but along 
the axes perpendicular to the side of the octagons needs to 
be calculated: w2 = w1/√[1 + (√2 - 1)2] ≈ 6.005 ≈ 6. This 
unit, as a whole number of inches, is, of course, simple to 
use. Use the axial lines of the square and octagons to mark 
the openings and turns, with the path width w2 = 6, as il-
lustrated at right.

As a check on the above calculation of w2, simply measure along one of the axes the distance between 
two successive octagons. The medieval master masons working geometrically could have set their com-
passes to this distance and then transferred this width to the openings. The above formula for w2 and the 
explicit use of √2 would have been unknown to the medi-
eval masons.

The more involved western entranceway and side will 
be accomplished in two more steps.

Step �
Now, we will work on the north side of the western axis. 
The path width w2 = 6 is also the width of the opening 
of the labyrinth. Thus, a second line segment needs to be 
drawn 6 to the north of, and parallel to, the western axis. 
Then the 6 openings can be made as illustrated including 
the entranceway and final exit on the outer octagon.

To concentrate our attention on the final product, the 
outer square has been removed from the explanatory pic-
ture. If you are using canvas, the light pencil markings can 
be left, as mentioned earlier, to show others the mathemati-
cal process underlying the labyrinth structure.

East

West

East

West

w1
w2

w2
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Step �
Finally, we will work on the south side of the western axis. 
Another line segment needs to be drawn 6 to the south of, 
and parallel to, the western axis. Then the 6 openings can be 
made as illustrated, including the entranceway and exit from 
the small central octagon.

 
For a beige or off-white canvas labyrinth, once the design 

is laid out in pencil, the taping can commence with a better 
quality electrical tape. The completed canvas labyrinth can be 
folded or rolled for portability. Use again a double-sided carpet 
tape to hold the canvas taut in order for for people to walk on 
the labyrinth. People will need to remove their footwear to 
walk on the labyrinth in order to avoid stains to the canvas. 
Walking the labyrinth will provide a whole new geometric 
experience of the structure because the way in which the labyrinth is laid out is different from the way in 
which it is walked. For example, during the construction we did not put the turns in until near the end of the 
process, whereas a person walking the labyrinth encounters the turns throughout the walking process.

Insights of modern mathematics
Once you have constructed and walked the labyrinth, you may wish to stand back and learn more about 
its highly-ordered structure and more general mathematical features. The work by Leonhard Euler (1707–
1783) on the theory of unicursal curves provides significant insights into the structure of mazes and laby-
rinths [11]. More recently, the study of topology has developed powerful insights for the study of mazes 
and labyrinths [12].

Euler’s original motivation for examining unicursal curves arose from his celebrated solution and 
generalizations, first presented to the St. Petersburg Academy in 1736, on the question as to whether it 
was possible to take a walk from any starting point in the town of Königsberg and cross every bridge there 
once only and return to the starting point [13]. To understand some of Euler’s insights some terminology 
is needed. First, a node is defined as a “point to or from which lines are drawn” [11, p. 245] and a branch 
“is a line connecting two consecutive nodes” [11, p. 245]. The order of a node is the number of branches 
that meet at it. An odd node is a node at which an odd number of branches meet or, in other words, a node 
with an odd order. Similarly, an even node has an even number of branches or an even order. A route is the 
“branches taken in consecutive order and so that no branch is traversed twice” [11, p. 245]. If the whole of a 
figure can be traversed in one route, then the figure can be described unicursally. Furthermore, a figure can 
be described unicursally if and only if the number of odd nodes is zero or two. Now, in terms of mazes, a 
dead end or blind alley in a maze would be an odd node, or more specifically, a node with order 1. Notably, 
a maze with only odd nodes at the entrance and center, and hence no blind alleys, can be traversed or 
‘walked’ unicursally [11, p. 255]. A maze, in two or three dimensions, can be entered and exited by always 
following and keeping by the wall on the left-hand side, or similarly always keeping to the right-hand side 
[11, p. 258]. This route may not be the shortest route, but this procedure will insure that one is able to get 
out of the maze [11].

Further, for unicursal mazes leading to a center, “the path lies on a certain number of distinct 
levels” [14]. Level 0 is on the outside of the labyrinth, level 1 is the first layer (the first path width in 
from the outside), level 2 is the second layer, and so forth to the highest level number at the center. 

East

West
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Note, for example in the Amiens labyrinth [Figure 5], one starts, of course, at the outside, level 
0, and then proceeds 5 path widths in to level 5, then level 6, then level 11, and so forth forming 
the level sequence 0, 5, 6, 11, …. Based on the order in which the distinct levels are encountered 
on the journey to the center, the level sequence, these mazes or labyrinths can be classified into 
distinct topological types and built up from elementary “submazes” [12, p. 65]. Topology is a field 
within mathematics that deals with the properties of geometric objects that remain the same under 
continuous deformation, and are independent of size and shape [15]. Thus, as we will note in 
Exercise Two, labyrinths with contrasting circular and octagonal shapes, may nevertheless have 
their turns in the same order, and hence be topologically equivalent. In other words, two labyrinths 
are topologically equivalent if one labyrinth can be transformed into the other labyrinth by a level-
preserving deformation [12, p. 65]. Indeed, the strong constraints on the overall organization and 
size of unicursal mazes leading to a center, or labyrinths, result in relatively few topologically 
distinct patterns [12, pp. 65, 73]. In this manner, through the application of topology, the likely 
patterns of ancient Roman mosaic labyrinths have been reconstructed from the strong clues left in 
their surviving fragments [16].

Some class exercises
Try creating some ways to compare the structures of different labyrinths.

Exercise One. The labyrinth we constructed, based on the one at Amiens Cathedral [Figure 5], has 11 
circuits, in the sense that the labyrinth walker makes, in sum total, 11 circuits around the centre before 
entering the central area. A person walking the Amiens labyrinth, of course, does not keep revolving in one 
continuous clockwise or counter clock-wise motion about the center. However, if one adds up all the seg-
mented movements, between turns, on the journey to the center, the equivalent of 11 circuits are made. The 
simplest way to, in effect, see these 11 circuits in total is to observe the 11 ‘annular-like’ spaces between 
the 12 concentric octagons illustrated in Figure 3 (which is similar to the illustration in Step 6, but without 
the diagonals). The labyrinth walker on the journey to the center (or from the center out) walks the entirety 
of all 11 of these ‘annular-like’ spaces or circuits.

Other numbers of circuits are possible and do, in fact, occur in other labyrinths. Do the labyrinths of 
Chartres and Reims [Figure 4] Cathedrals have 11 circuits? Try finding a picture or drawing of the Chartres 
labyrinth in an architectural history book or on the web.

Try drawing on letter-size paper a labyrinth with 4 or 5 circuits, so you become the designer of a simple 
labyrinth.

Exercise Two. Are the labyrinths of Amiens, Chartres and Reims Cathedrals topologically equivalent? 
That is, apart from differences in circular or octagonal form, do they have their turns in the same order? 
Note that the former labyrinth of Reims Cathedral [Figure 4] has intriguing octagonal ‘pods’ in four cor-
ners. Nevertheless, from the viewpoint of topology, can those roundabout paths be ‘compressed back’ into 
sides similar to those we constructed on our Amiens model?

Also, note that the three labyrinths of Amiens, Chartres and Reims Cathedrals have a similar structure 
based on two axes at right angles to each other. On the left-hand side of the Reims model, we note, proceeding 
from the left, that the outermost circuit is not blocked, but the next two circuits are blocked with turns, 
followed by one open, two blocked, two open, two blocked, and finally one open. Does this pattern hold on 
the other sections of this labyrinth or the corresponding sections of the other two labyrinths?
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Figure �. Pattern of the former pavement labyrinth at Reims Cathedral.

1110987654321

Figure �. The equivalent of the 11 circuits of the Amiens labyrinth. Topologically, the numbers 1 to 11 also cor-
respond to the levels of the labyrinth with level 0 the exterior of the labyrinth and level 12 the interior of the 
central small octagon.
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Exercise Three. Compare the order and types of turns and path segments of the Amiens labyrinth we con-
structed [Figure 5]. Note that on entering the labyrinth and exiting the center, one first proceeds along a 
path segment with a length of 5 path widths before turning left! (On entering the labyrinth this length of 5 
path widths is equivalent to passing along the levels 1 to 5 as illustrated in Figure 3. Similarly, on exiting 
the center the length of 5 path widths is equivalent to passing along the 5 levels of 11, 10, 9, 8 and 7.) For 
both of these cases of traveling in and out of the labyrinth, one next proceeds a quarter circuit, turns right 
and proceeds another quarter turn! Is there a continuing symmetry of movement here? Can you find a point 
in the labyrinth path where the half routes on either side of that point mirror or repeat each other? Is there a 
symmetry between the quadrants (in Figure 5, the lower left, lower right, upper right, and upper left quad-
rants)? The answers to these questions lead us to a deeper level in understanding the “secret of design” [17] 
or wonderful order underlying the Amiens labyrinth. 

Figure �. Pattern of the pavement labyrinth at Amiens Cathedral.

Exercise Four. Try drawing an 11-circuit labyrinth with its turns in a different order than those found at 
Amiens, Chartres and Reims Cathedrals. You may wish to use an enlarged photocopy of Figure 6 with 
some ‘white out’ to make the openings, and a pencil to create the turns and small line segments as needed. 
The 4 small protruding line segments on the exterior of the outermost octagon are guides for the labyrinth’s 
perpendicular cardinal axes. This exercise can make you the designer of the unique pattern of an elaborate 
labyrinth! You may find that some patterns are more symmetric, interesting and ingenious.

Figure �. A basic concentric octagonal pattern for 
starting the design of an 11-circuit labyrinth.
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Exercise Five. During our construction of the labyrinth, we noted that the length of half of the major di-
agonals of the outer octagon (e.g., AC in Step 5) measured from the square’s center is 7√[1 + (√2 - 1)2]¢ 
≈ 7.576745¢ ≈ 7¢ 6 15/16. Using the Pythagorean Theorem, verify this expression and calculation. Can 
trigonometry also be employed to calculate the length of AC?

Exercise Six. In regard to the illustration for Step 8, we indicated in Step 7 that the path width w2, mea-
sured not along AC (as in the case of w1), but along the axes perpendicular to the side of the octagons, is w2 
= w1/√[1 + (√2 - 1)2] ≈ 6.005 ≈ 6 where w1 = 6.5. Verify this expression and calculation. Hint: note that 
the expression √[1 + (√2 - 1)2] also appears in Exercise Five.

The appearance of 6 and 6.5 relates closely to the modern carpenter’s use of the ratio 12:13 (equivalent 
to 6:6.5) to construct an octagon rafter, a type of sloping wooden beam used in building some roofs [18]. 
What Pythagorean triplet includes 12 and 13? Explore how this Pythagorean triplet closely approximates 
the geometry involved in constructing an octagon.

Exercise Seven. Show that w2’s closeness to 6 arises from the fact that 407/288 is a very close rational 
approximation of the irrational √2.

Furthermore, during the construction of the labyrinth (Step 1), we checked the square’s two diagonals 
in feet at 14√2 ≈ 19.7989… ≈ 19¢ 9 1/2, close to 20¢. This calculation implies that 20/14 = 10/7 is a fairly 
close rational approximation of √2. Also, when we formed the outer octagon’s vertices on the sides of the 
14¢ by 14¢ square (Step 2), we noted that the octagon’s vertices were close to 4¢ and 10¢ away from the two 
vertices of the square on the same side. Show that these observations arise from the fact that 14/10 = 7/5 is 
also a fairly close rational approximation of √2.

Theon of Smyra, c. 130 A.D., derived recursive formulae for generating rational approximations of √2 
[19]. Find out about his procedure, and see if 7/5, 10/7, 14/10, 20/14, and 407/288 are generated by his 
method. In modern terms, Theon’s method gives the same approximations, say x/y where x and y are natural 
numbers, generated by the continued fraction technique employed to solve the Pell equation in the form 
x2 + 1 = 2y2.

Conclusion
The design, construction and analysis of mazes and labyrinths involve wide-ranging areas in mathematics: 
Euclidean geometry and its constructions, arithmetic, trigonometry, the theory of unicursal curves, and to-
pology. Most of this mathematics was, of course, unknown to the medieval master masons. However, their 
adeptness at practical geometry and mathematics was sufficient for the masterly design and construction 
of pavement labyrinths and the great church buildings that housed them. In determining a way for a wind-
ing path to fill the two-dimensional space encompassed by a labyrinth, these creative master masons were 
forerunners of modern topologists [20].

The cathedral and church pavement labyrinths had profound meanings associated with the human 
journey of overcoming fear and ignorance on the path of salvation [21]. The medieval master masons 
helped fulfill this purpose by the skilful application of geometry. Our own labyrinth work can likewise 
extend our knowledge of geometry, provide first-hand experience of the same mathematical issues faced by 
medieval craftspersons, and show how meaningful and applicable mathematics is in the history of art and 
cultures.
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 Dem Bones Ain’t Dead:
Napier’s Bones in the Classroom

Joanne Peeples
El Paso Community College

The year is about 1610; the place is Merchiston Castle near Edinburgh, Scotland; and the Baron of the 
castle, John Napier, is sitting at his desk working on his latest invention — logarithms. The computation of 
all of the tables of logarithms involved required many calculations, which had to be correct. Napier, ever 
the inventor, realized that his need to be able to calculate correctly, as well as the needs of many others at 
this time, made instruments that would mechanically compute of special interest. So … Napier picked up 
his bones (or rods as they were sometimes called) and started calculating. 

Figure �. Private collection of Joanne Peeples

It is not known when John Napier had his idea for “rod reckoning”, a mechanical means to multiply, 
divide, square root and cube root numbers.  He had started a manuscript about algebra and arithmetic, called 
De arte logistica, but put this work aside when he started working on logarithms (Napier’s incomplete 
De arte logistica was not published until 1839). John Napier published Mirifici logarithmorum canonis 
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descripto in 1614, with an English translation published in 1616.  His next work was Rabdology, which was 
published in 1617.  It is thought that the word Rabdology was a combination of Greek words meaning rod 
reckoning.

Napier’s “bones” were not meant to replace paper and pencil, but to reduce the amount of time spent 
calculating and diminish errors in the calculations of products, quotients, square roots and cube roots.  It is 
interesting to note that in Rabdology, Napier introduced the comma to separate the whole part of a number 
from the fractional part.  Simon Stevin had used small circles in his 1585 work, but the comma was much 
easier to use.  It took almost 100 more years before the comma/decimal point was in general use.  

  There is also controversy as to where Napier’s ideas for his “rod reckoning” came from.  Some 
people say that it was derived from a method the Arabs probably invented in about the thirteenth century 
and was brought to Europe during the Middle Ages.  It was known as multiplication per gelosia, and was 
really multiplication on a grid [2, page 567].  This form of multiplication is illustrated below.  To multiply 
32 time 74 proceed as follows (this method assumes one knows single digit multiplication).

Make a two by two grid, putting one number on top, and the other on the right side (see Figure 2).
Insert the corresponding products in each square of the grid, with the tens digit above the diagonal and 

the units digit below as in Figure 3. 
Add the diagonals, and read the answer starting at the top of the left side going down and across the 

bottom (see Figure 4).
The answer is 2,368.

Figure �. Initial grid Figure �. Grid with products Figure �. Adding the diagonals

According to Robin E. Rider [4, page xii] in his introduction to Richardson’s translation of Rabdology, 
Napier used the multiplication table, and just inserted some diagonal lines. Looking at the gelosia grid, 
in hindsight the diagonals seem like a logical next step. Figure 5 is what such a table would look like 
(knowledge of single digit multiplication is not assumed) 

As a person who used lots of numbers, and liked to solve problems, it would seem likely that John Napier 
“saw” the patterns, and in conceiving his rods used pieces of both the multiplication table (the columns of 
the table) and the multiplication per gelosia method (the diagonals on each entry in each column).  John 
Napier included two other mechanical devices in his book, Rabdology. The first was the “promptuarium” 
which could be considered a precursor to the modern calculator (but will only multiply) and the other 
device looks like a checkerboard which performed calculations in binary (One wonders if Napier foresaw 
the computer).  

Napier’s rods were used well into the eighteenth century, with many variations.  Often they were made 
of ivory, and from a distance looked like bones — hence, they are often called Napier’s bones.  There were 
bones whose cross-section was a square, there were bones that were round, with an entire multiplication 
table inscribed on each bone, and there were flat — paper bones (which were very popular since they could 
be easily included in a book).  
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Figure �. Multiplication table, with diagonal lines

Supposedly, in a speech Robert Hook made on May 7, 1673, to the Royal Society of London [4, page 
xvi], he concluded that pen and paper was preferable to any 
mechanical device for computation.  Even back then, hand 
held calculators such as Napier’s bones were controversial.

Following the order John Napier chose in Rabdologia, 
first I will describe how to make a set of bones, and then how 
to use them.  

Making bones
The columns you will see on the various kinds of bones below 
are just the columns found on the multiplication table, shown 
earlier in this paper.  For each entry of the table there is a di-
agonal line, from lower left to upper right, with the units digit 
below the diagonal and the tens digit above the diagonal. 

The Napier’s bones shown in the picture on the right 
were made by my student, Christopher Hoggard. He thought 
“bones” should be made of bone, and had the tools in his 
workshop to cut the rods from a large piece of real bone from 
an extinct Sea Elephant. The piece of bone he was working 
with was about 150 years old.  Hoggard filled in the porous 
spots on the bones and had them inscribed using a laser. The 
result was a work of art.

Figure �. From the private collection of 
Joanne Peeples
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Another student, Susana Fernandez, used John Napier’s instructions found in Rabdologia to construct a 
set of bones from wood (see Figure 1). She found some square dowels at a local hardware store, about 3/8 
inch on each side, cut them into 3½ inch lengths, and using a fine tipped woodburning tool she inscribed the 
necessary numbers. Susana found that a harder wood (not pine) worked best. 

Following Napier’s instructions, the bones were inscribed in such a way as to be able to express all 
numbers less than 11,111 with one set of 10 bones. On each side of one bone, four different single digit 
multiplication tables were constructed, an example of the seventh bone is shown below (see Figure 7). I 
have “unfolded” the bone so you can see all four faces at one time, the 1, 4, 8, and 5 go on the ends of the 
rod, so you can easily see which bone to choose.  Notice that the last two faces are upside down, also that 1 

and 8 are nines-complements while 4 and 5 are also nines-complements. 
Each column in the diagram to the left (Figure 7) is a column of 

multiples of the number on the top — in other words just a column from the 
multiplication table. 

The table below (Figure 8) shows which numbers to put on the bones. 

Bones Face I Face II Face III Face IV
   #1     0     1     9     8
   #2     0     2     9     7
   #3     0     3     9     6
   #4     0     4     9     5
   #5     1     2     8     7
   #6     1     3     8     6
   #7     1     4     8     5
   #8     2     3     7     6
   #9     2     4     7     5
   #10     3     4     6     5

Figure �. Faces of each bone Figure �. A sample of one bone. 

Remember when making bones to flip the bone (end-to-end) before putting the numbers on Faces III 
and IV.

A much easier way to make a set of bones that can be used in the classroom is to make the bones out of 
tongue depressors.  I have used these bones in 4th to 6th grade classes and with my liberal arts/preservice 
teacher classes. Figure 9 shows a set of my tongue depressor bones.

To make a set of these bones you will be marking on both sides of the tongue depressor, so your lines 
must be very accurate in order that everything will line up properly when using the bones to multiply or 
divide.  I have made one line 1 1/16 inch down from the top and another 1 1/16 inch up from the bottom 
of the tongue depressor.  The other eight lines are spaced 1/2 inch apart.  The diagonal lines go from the 
lower left to the upper right in each of the nine rectangles.  As you can see, one side of the tongue depressor 
seems to be “upside down” compared with the other side, and the “header” numbers (in this case 2 and 
7) are nines-complements.  Again, you can see that the numbers listed below the 7 and the 2 are just their 
multiples. You will need to make at least 10 bones, paired as in Figure 10.

Perhaps the simplest way to make a set of bones is to simply make a paper template like the one shown 
in Figure 5, make copies on a heavier paper, and cut the template copies into strips. The far-left column can
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Figure �. Tongue depressor bones from the private collection of Joanne Peeples
 

Side A Side B
0 9
1 8
2 7
3 6
4 5
5 4
6 3
7 2
8 1
9 0

Figure �0. From the private collection of Joanne Peeples
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be put on a flat surface to help count the number of rows you need to go down. These are not two-sided 
bones, but strips could be glued together (or glued onto tongue depressors) if you want to make them two- 
sided. 

How to Multiply and Divide Using Bones:

Multiplying by a single digit number:
To multiply 47,526 by 7, first find the bones labeled 4, 7, 5, 2, and 6, and lay them side by side to make the 
number 47526.  Then count down to row 7:

Figure ��. From the private collection of Joanne Peeples

By adding the numbers in the parallelograms (the first and last numbers are in triangles), you can “read 
off” the answer.  

The ones-digit is (in the triangle to the right) 2.
The tens-digit is (in the first parallelogram) is 4 + 4 = 8.
The one hundreds-digit (in the second parallelogram) is 5 + 1 = 6.
The one thousands-digit (in the third parallelogram) is 9 + 3 = 12, so write down the 2 and carry the 1. 
The ten thousand digit (in the fourth parallelogram) is 8 + 4 + the 1 that was carried = 13, so write down 
the 3 and carry the 1. 
The last digit (in the triangle on the left) is 2, add the 1 that is carried and you have 3.  
Your number is: 332,682.
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Multiplying by a number with more than one digit: 
To multiply 615 by 365 you will need some paper. First set up 615 on your bones. Then on your paper 
write 365 with a line under it. Then multiply 615 by 5 using the same method as above, then multiply by 6, 
and finally by 3, writing your results as follows in Figure 12:

 365
3 0 7 5

3 6 9 0
1 8 4 5
- - - - - -

Adding we get 2 2  4 4 7 5

Figure ��. Multiplication

Your answer is 615 ´ 365 = 224,475.

Multiplying — a second method:
This method uses nines-complements.  To multiply 615 by 365 using nines-complements, set up 615 on 
your bones.  Then “flip” (turn them over, end over end) your bones, and you should have 384.  You will 
then want to multiply 384 (the nines-complement of 615) by the number 365.  First, multiply 384 by 5, 
then by 6 and finally by 3, writing your results as follows in Figure 13.

365
 1  9  2  0

 2  3  0  4
 1  1  5  2

Write 365 in here  3  6  5
-- -- -- -- -- --

Adding we get  1  4  0  5  2  5
Figure ��. Multiplying using nines-complements

Now subtract 140,525 from 365,000 (adding enough zeros to 365 to make as many digits as in your 
sum) as in Figure 14.      

3 6 5 0 0 0
                           - 1 4 0 5 2 5

- - - - - -
Subtracting we get 2 2 4 4 7 5

Figure ��. Second step in multiplication using nines-complements

Your answer is 615 × 365 = 224,475, the same as was found by the first method of multiplication. 

Division:
To divide 589,475 by 365 complete the following steps:
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Step A. Write 589,475 on your paper and set up 365 on your bones.  Among all the multiples of 365 that 
are less than, but closest to 589 is 1 (1 ´ 365 = 365, 2 ´ 365 = 730 which is too big).  So 365 should be 
written under the 589 and subtracted from 589.  The difference, 224, is to be written above the 589.  And 
finally the number 1 is written as part of the quotient (see Figure 15).  
Step B. On the sixth row of your bones you will find 2190, which is 6 times 365, and is closest but less 
than 2244 (the last 4 in 2244 was taken from 589475, as we do in normal long division — and I have itali-
cized it in the diagram below).  So write 2190 at the bottom, and the difference between 2244 and 2190 at 
the top — as indicated in Figure 16. 
Step C. Repeat step B, this time looking for the largest multiple of 365 that is less than 547. See Figure 17.
Step D. Repeat step B again, this time looking for the largest multiple of 365 that is less than (or equal to) 
1825.  See Figure 18. 

Step 2 2 2 4
5 8 9 4 7 5 ( 1 Step 3

Step 1 3 6 5
Figure ��. First step for division

Step 5 5 4
2 2 4 4
5 8 9 4 7 5 ( 1 6 Step 6
3 6 5

Step 4 2 1 9 0
Figure ��. Second step for division

Step 8 1 8 2
5 4 7

2 2 4
5 8 9 4 7 5 ( 1 6 1 Step 9
3 6 5
2 1 9 0

Step 7 3 6 5

Figure ��. Third step for division

Step 11 0
1 8 2 5

5 4
2 2 4
5 8 9 4 7 5 ( 1 6 1 5 Step 12
3 6 5
2 1 9 0

3 6 5
Step 10 1 8 2 5

Figure ��. Division is complete
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Your quotient is 1615.  
After some practice, division becomes quite easy as long as you keep your columns nice and straight.  

Also, your subtraction skills will improve.  

Where can these bones be used?
One place where I have found them effective is in 4th–6th grade classrooms.  Both the teachers and the 
students have been enthusiastic about learning to use the bones.  Two quotes from students:

“I really enjoyed learning about how to use the Napier’s Bones. I study them all night. P.S. I want to 
go to college to train as a teacher.”

“. . . I learned a lot of things, like Napiers Bones. Napiers Bones was cool because I was learning math 
and history at the same time. I could multiply on sticks. It sounds weird but fun.”

Napier’s bones were used in the elementary classroom as late as the 1960s [1] in England, to help teach 
multiplication. 

Another place to use the bones is in the lowest level of developmental math classes, often taught at 
community colleges.  When adults have trouble multiplying and dividing, a good learning tool is to expose 
them to a different way of doing things.  They can even check their answers on a calculator — and they 
often find it amazing that they get the same answer. 

The place I like using them the best would be in a liberal arts or preservice teacher class.  The students 
make their own set and  learn to multiply and divide using “their bones”.

I’ve had students make bones for other number bases, such as base 5 bones, and do calculations with 
them. There are references [3] that indicate Jonas Morre (1627–1679), of England, and Samuel Reyher 

Figure ��. Students in a math-education class at El Paso Community College (Private collection of Joanne Peeples)
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(1635–1714), of Germany, may have used base 60 bones when making astronomical calculations, since 
degrees, minutes and seconds can be thought of as a base 60 system. Depending on the class, the question 
could be posed, “Why does the “nines-complement” multiplication work?” Also, the students could be 
taught to take square roots and cube roots (for this I suggest looking at Napier’s Rabdologia, I have found 
the instructions there less confusing than the instructions I have found searching the web).

Conclusion
Students of all ages enjoy making and practicing multiplication on their bones.  For the elementary student, 
it adds a kinesthetic element to mathematics, which is frequently absent.  For the developmental student in 
the community college setting (some of whom still have trouble multiplying), the bones provide a different 
way of “looking at” multiplication.  

In the Liberal Arts math classes at my college, we look at different number systems.  After teaching the 
Babylonian number system, the Mayan number system, and we start looking at our number system more 
closely, I find that using the base 10 bones causes the students to think more carefully about how to compute 
with our numbers.  Also, before using base 5 bones, the students had all sorts of problems multiplying in 
base 5 — using the bones, almost all the students are able to get the problems correct. I think the hands-
on experience of making and calculating with concrete objects adds another dimension to the students’ 
understanding.

In the Preservice teacher class I use the bones in multiple ways.  Since these students are going to 
be grade 8 or lower teachers, they now have another “tool” in their bag of tools to use in the classroom 
– another way to show their students multiplication.  In this class we also learn to divide using the bones.  In 
learning division, the students see just how similar it is to the long division they are used to doing, but the 

Figure �0. Students taking an exam at El Paso Community College (Private collection of Joanne Peeples)



Dem Bones Ain’t Dead: Napier’s Bones in the Classroom ��

numbers are placed in different spots on the page.  It provides a non-standard way to do a standard problem, 
which I find good for their thinking skills.  Also, when they multiply using the nines-complement method 
they have to change their method of thinking.  If the mathematics requirement for this Preservice teacher 
course was higher at my college, I would have them look at “why” the nines-complement method works. 

I am still exploring more ways to use the bones in my classes. I have always used bones in my liberal 
arts and education classes, but because of the positive reaction from students a set of bones is now included 
in our basic math textbook. 
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The Towers of Hanoi

Amy Shell-Gellasch
Pacific Lutheran University

Introduction
The classic Towers of Hanoi puzzle (Figure 1) is known to many of us, either from our school days or 
as educators. The puzzle works as follows: given some number of discs (washers) of varying diameters 
stacked in a pyramid on one of three posts, move the stack one disc at a time to one of the other posts in 
as few moves as possible.  The catch is that no disc can rest on top of a disc of smaller diameter. This is 
a wonderful problem for school age students and many people first encounter it in elementary or middle 
school. Though the puzzle can be presented as a thought exercise (without the physical model), having 
the physical puzzle enhances discovery, and as such is an essential aide in any course that discusses dy-
namical systems. Outside of this venue the puzzle can be used in courses from elementary school through 
college to teach reasoning, problem solving and the development of mathematical formulas. It can be 
used to discuss recursion and induction as well as graph theory with students at the secondary and college 
level.

The Towers of Hanoi puzzle
Given three pegs and any number of discs of increasing radius stacked in a pyramid shape on the first peg, 
move the stack to the third peg.  Only one disc may be moved at a time and no disc of larger radius may be 
placed on top of a disc of smaller radius.  What is the smallest number of moves to move the stack?  

Figure �. Towers of Hanoi, Constructed by Bill Acheson.
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Generalization: given n discs, find the minimum number of moves to move the stack given the above 
restrictions.

Solution
In the trivial case of one disc, one move is needed to move the disc.

In the simplest (non-trivial) case of two discs, move the top (smaller) disc temporarily to peg two in the 
middle, move the second (larger) disc to the final peg (peg number 3), then the first disc is placed on top of 
the second disc, thus completing the move. So to move a 2 disc pyramid, three moves were required.

In the next case, consider a 3-disc tower on peg number one (on the left). For simplicity, we will label 
the discs 1, 2, 3 by increasing size (thus disc 1 is the top disc). To move the stack to peg number 3, do as 
follows: 

Move disc 1 to peg 3.
Move disc 2 to peg 2.
Move disc 1 on top of disc 2.
Move disc 3 to peg 3.
Move disc 1 to peg 1
Move disc 2 to peg 3.
Move disc 1 to peg 3.
The optimal number of moves to move three discs is seven. As you see, to complete this move, we first 

moved the top two discs (a smaller stack) to the middle peg as in the previous case, then moved the bottom 
disc to the final peg, and then moved the smaller stack to the final peg.  Thus this is a recursive process.  

So, to move a 2-disc stack requires three moves and to move a 3-disc stack requires 2´3+1 or seven 
moves.  To move a 4-disc stack requires fifteen moves.  The table below can be filled in by students to help 
them see the recursive relationship.

n # moves formula
1 1 1
2 3 3
3 7 2´3+1
4 15 2´7+1
5

In general, to move n discs, move the top n – 1 discs to the middle peg, move the bottom disc to the 
final peg, then move the top n – 1 discs now on the middle peg to the final peg.  If we let a(n) represent the 
number of moves to move n discs, the recursive formula is 

a(n) = 2a(n – 1)+1.
Generalization to a non-recursive or analytic solution can be introduced at this point. Induction can be 

used to verify the student’s hypothesis. The analytic solution to our recursive formula is a(n) = 2n – 1.

History
In the larger scope of the history of mathematics and its devices, the Tower of Hanoi has a relatively short 
history, though the non-mathematical basis for the puzzle is much older.  An “ancient relic”, as David 
Poole describes it, exists in a Buddhist temple near Hanoi, Vietnam. [3]  

It is doubtful that this obscure artifact elicited the interest in the puzzle that was prevalent in the 
nineteenth century and led to the first construction of the physical puzzle in 1883.  The source of this interest 
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is most likely the mythical story of the Tower of Brahma.  In this tale, a group of Brahmin monks have 
three diamond needles and 64 golden discs. The story foretells that the world will end when the monks have 
moved the pyramid using the above rules at the rate of one move per second. (Ask your students if they will 
see that day.1)  Thus, this tale is also referred to as the “end of the world” problem.  

Recreational mathematics surged in popularity in the 1800s, and the Tower of Brahma story was 
popularized in the writings of Frenchman H. de Parville. [3] The first (known) physical puzzle, now 
commonly known as the Tower of Hanoi, was constructed in 1883 by French number theorist François-
Édouard-Anatole Lucas. [1] The first published solution appeared the following year by M. Lucas in La 
Nature under the pseudonym M. Claus. [4] Since that time, the Tower of Hanoi has been a favorite of 
recreational mathematicians the world over. Ian Stewart cleverly explores the connection between the 
Towers of Hanoi puzzle, graph theory and Sierpinski’s Triangle in [4].

Construction
Construction of this model is fairly simple. The simplest solution would be to go to an educational store, 
the ones that have all kinds of scientific and mental games and devices, and purchase one.  If you are more 
interested in making one from scratch, all the materials should be available at your local home improve-
ment store.  First decide the dimensions of your model. (The nicely finished one shown above measures 
30´10´10 cm or 12´4´4 in, while the more utilitarian one below for classroom use is larger.) You will 
need a piece of one- or two-inch thick board for the base, three dowels for the posts, and discs of increasing 
radius.  Six or seven discs will suffice for classroom use.  If wooden discs are not available, buy half-inch 
plywood and use a jigsaw to cut your discs. Drill holes in the center of each disc large enough for the dow-
els to slide easily through.  Drill three holes on the base (spaced so the largest two discs do not interfere 
with one another) large enough for the dowels to fit into snugly.  Use a little wood or Elmer’s glue to fix the 
dowels in place.  Finally sand all edges to avoid splinters. 

The result will look something like Figure 2.

Figure �. Simple classroom model

Since this rough and ready version may only require a drill and glue (if pre-cut discs can be bought), 
groups of students may be interested in building their own.  Do however make sure that an adult is aware of 
the project to avoid any issues involving power tools. For a nicer version, round off all edges and stain and 

1  This is on the order of 1.8´1019 years.
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varnish to your liking.  The model shown at the beginning of this article was constructed by Bill Acheson2 
and proudly sits on my desk.  For a really quick and inexpensive version that students can make in class, 
use cardboard for the discs, a shoe box lid for the base, and pencils for the pegs. This version has the benefit 
of being able to be easily dismantled.

In the classroom
This model can be used at almost any level.  At the simplest level, school age students can use the model 
to experiment with finding patterns.  You may even want to devise other sets of rules for moving discs be-
sides the ones associated with the traditional Tower of Hanoi problem.  For example, you can suspend the 
rule of no larger disc on top of a smaller disc and ask how many moves are needed to move the pile.  (The 
answer is 2n, invert the tower onto peg 2 and then invert it again onto peg 3.)  This is a good initial problem 
that then leads into the full problem with the size restriction. Providing a blank table of number of discs 
versus number of moves as shown earlier will help facilitate pattern discovery and writing the rule alge-
braically.  You may also want to have a discussion of the growth of powers; how big is 2n?  The Legend of 
Sessa, in which a mathematician is paid by placing one grain of wheat on the first square of a chess board, 
two on the second, four on the third, etc., is a  nice story to use to get them thinking about size. [2] The full 
Tower of Hanoi problem can be given to students in middle or high school classes.  Using this exercise is 
a wonderful way to introduce recursion, and ultimately build up to the notation of recursive formulas.  At 
this level, students can then experiment with their own rules and see if their version leads to a recursive 
formula also. 

At the college level, the Tower of Hanoi can be used to introduce induction in almost any course. It 
can be used to study recursion and all its formalities in a discrete or continuous dynamical systems course.  
In the freshman level discrete dynamical systems course in which I used this model, it was presented on 
the first day of class to introduce recursion and recursive formulas to set the groundwork for much of the 
semester.  A set of six to eight towers of Hanoi were passed out to the class.3 After the rules of the puzzle 
were explained, students worked in small groups to discover a mathematical description for the number 
of moves needed to move a pile of n discs. As I walked around, I encouraged them and asked directed 
questions to keep them on track. Most groups will quickly try the problem with first two or three discs and 
then work up from there. If a group does not notice that line of attack, suggest it.  After approximately ten 
minutes, most groups will have a formulation of the answer.  Group discussion can bring out the rule in 
general terms. Then a Socratic method can be employed to introduce recursive notation (usually the a(n) 
and a(n-1) notation). From that point other situations can be explored (with or without the model) to 
generate other recursive formulas.  One of the goals of studying recursion is the notion and accompanying 
notation of long term behavior and eventually the study of numerical and analytic solutions of differential 
equations.  

Much more can be explored using the Towers.  In a computer science course, it can be used to discuss 
the differences between iterative and recursive algorithms. For the applications of the Tower to graph theory 
(Hamiltonian paths), linear algebra, number theory, group theory and Pascal’s triangle (in the form of odd 
binomial coefficients) see Poole [3].  The relationship between the puzzle, graph theory and Sierpinski’s 
Triangle is explored in [4]. For a discussion on the tower and its relationship to formal language theory (as 
morphisms, their fixed points, and as square free strings) see Allouche, et. al. [1].4

2  See the article on string models in this volume by Acheson and Shell-Gellasch for more of Bill’s handiwork.
3  This was while I was teaching at the United States Military Academy at West Point, New York.  The Department of Mathemati-
cal Sciences has about two dozen of the simply constructed models (as described above) for classroom use.
4  References 1 and 3 are available on JSTOR.
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Conclusion
The Tower of Hanoi is an intriguing problem for students of all levels and abilities. It can be used in the 
classroom from elementary school to college as well as a range of topics from algorithms to graph theory. 
It is a wonderful motivator, providing some history while engaging problem solving skills and provides a 
tactile connection with mathematics.
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Rectangular Protractors and
the Mathematics Classroom

Amy Ackerberg-Hastings
University of Maryland University College

Introduction
It may not occur to contemporary students that architects, surveyors, and drafters once did their work by 
hand, without the aid of computers. The nineteenth-century drawing instruments used to prepare engineer-
ing drawings may seem unusual in their form and materials to a twenty-first century audience. Meanwhile, 
although they likely used protractors to measure and draw angles in middle school and learned a general 
proof for bisecting the angle in high school, even mathematics majors may never realize that someone had 
to divide the circle precisely in order to manufacture instruments that measure angles. The rectangular pro-
tractor was a fixture of the engineering toolbox in the nineteenth century (Figure 1). Replicating this device 
is a convenient way of introducing abstract processes for drawing angles of a certain number of degrees to 
students in preservice teaching courses and perhaps also at the secondary level. This chapter provides the 
historical context for rectangular protractors and instructions for making them.

Figure �. Ivory rectangular protractor sold by William Y. McAllister, c. 1836–1853. Negative number 72-9870. 
Catalogue number 310743. Courtesy of the Smithsonian’s National Museum of American History.

Description and history
A rectangular protractor is simply a device for laying off and measuring angles in which the angle marks 
are displayed around the three sides of a rectangle instead of along a semicircular arc. English mathemati-
cal practitioners invented the protractor at the end of the sixteenth century to aid navigators and surveyors 
who needed to plot sea courses or to make technical drawings of land and buildings. [1] Although the first 
protractors were circular in shape, instrument makers throughout Europe began to provide other formats 
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over the next several decades. One displayed the angle marks along the semicircular (180-degree) arc used 
to teach angle measurement in American elementary and middle schools today. Another typical seven-
teenth-century style looked like what modern readers might think of as a ruler. (See Figure 2.) Early brass 
versions of these rectangular protractors were often nearly as wide as they were long, following a design 
that appeared in the second edition of William Leybourne’s The Compleat Surveyor (1657). [18] In the 
eighteenth century, English makers also made narrower rectangular protractors from silver or from ivory, 
establishing the style depicted in Figure 1. The degree marks on all of these instruments would have been 
engraved by hand against a master pattern. [8, pp. 188–204]

Figure �. English surveyor’s rectangular protractor, made of brass, c. 1660, based on the design 
in the second edition of The Compleat Surveyor by William Leybourne (1657). Inventory no. 
40226. By permission of the Museum for History of Science, Oxford.

The rectangular protractor reached its height of popularity in the middle of the nineteenth century. 
Makers of drawing instruments then routinely sold rectangular protractors made of ivory or boxwood that 
were usually six inches in length and almost two inches wide. They were able to produce protractors 
inexpensively and in relatively large quantities because the degree divisions were now marked by machine. 
The rectangular protractor was marketed to drafters and mechanics as a versatile, convenient tool that 
could fit in a pocket. In addition to selling these instruments separately, makers often included rectangular 
protractors in boxed sets of drawing instruments. A young man in the process of mastering the art of 
mechanical drawing might purchase or be given such a set for use throughout his working life. He would 
use the instruments to develop skills at drafting through self-study or through apprenticeship in a machine 
shop. Alternatively, and especially if he was raised in an upper socioeconomic class, the owner of a set of 
drawing tools might study architecture and surveying more formally in a military academy.

During the nineteenth century, most makers of rectangular protractors lived in England. Although 
American practitioners and instructors often added rectangular protractors to their toolkits as well, they had 
to purchase English-made instruments imported by American dealers. For instance, in 1867, the Philadelphia 
optical firm operated by William Y. McAllister retailed “London made” ivory rectangular protractors of six 
inches for $1.50 and of twelve inches for $12.00. The six-inch protractors were marked with an additional 
thirteen scales, while the twelve-inch versions carried twenty-two extra scales. [17, pp. 24–25] 

Indeed, throughout the nineteenth century, makers normally placed numerous scales on the interior of 
the rectangular protractor in order to make the instrument seem yet more useful to prospective customers. 
These scales provided little practical help in preparing engineering drawings since they were difficult to 
read accurately when they were not along the edge of an instrument. Nonetheless, it was not uncommon for 
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most or all of the following scales to appear on rectangular protractors:
1) Rulers in inches and/or centimeters.
2) Scales for logarithmic calculation (cosines, sines, tangents, semi-tangents, lengths of chords of arcs 

from 0° to 90° in a circle of unit radius).
3) Architect’s scales (dividing the inch into 10–60 equal parts, 1/8- to 1-inch to the foot). These scales 

enabled architectural drawings to be read directly in feet.
4) Scales for surveying plans (chain scales, the diagonal scale). Surveyors carried heavy metal chains 

with 100 links to locate property bounds. A chain scale was used to prepare scaled drawings of these 
measurements. A diagonal scale was used to find subdivisions within the various units of measure. 
[13]

5) Scales for navigational calculation (rhumbs, meridian line, latitude, longitude, hours, tides, 
masthead).

6) Military scales (proportions).
In the twentieth century, Americans were finally able to buy rectangular protractors produced domestically 
by the New York instrument manufacturer, Keuffel & Esser (K & E). For example, in its 1909 catalog, K & 
E listed a six-inch ivory rectangular protractor with eleven extra scales for $1.60 and rectangular protractors 
that were twelve inches long and contained twenty-five extra scales for $11.50. [4, p. 176] By World War 
II, Americans could also purchase transparent plastic rectangular protractors that were manufactured by 
American companies such as K & E or Felsenthal & Sons of Chicago. These instruments were used for 
positioning artillery or for aeronautics. 

The rectangular protractors described above are historical artifacts today. Examples are regularly sold by 
rare instrument dealers or on Internet auction sites. Expect to pay $20.00-75.00, depending on the condition 
of the protractor. While these protractors were rendered obsolete for mechanical and surveying applications 
by computer-aided drafting, vinyl record enthusiasts still use a version of the rectangular protractor to align 
their turntables. Additionally, some sailors and pilots continue to employ square protractors made from 
plastic or paper as they navigate the sea or air. Examples of these may be found at Web sites catering to 
these activities, such as Flightstore: The Flight and Model Store. [10] Finally, the Fisher Scientific Company 
still sold a relatively inexpensive, clear, plastic rectangular protractor in sets of twelve as of early 2007. [9, 
item number S40651]

Making a rectangular protractor
An instructor who wants to emphasize angle division can plan a workshop on constructing rectangular 
protractors. Few materials are required: tagboard, compasses, straightedge, drawing pencils, and scissors 
for each student. Depending on the academic maturity of the students and the instructor’s objectives, rulers 
and professionally manufactured, semicircular protractors may also be needed.

The basic procedure for making a rectangular protractor is the same, regardless of the amount of time 
allotted or the sophistication of the circle-dividing techniques employed. First, ask students to draw a 
semicircular arc of three-inch radius with a compass on tagboard. Second, they should divide the arc to the 
instructor’s desired level of accuracy. Third, direct them to superimpose a rectangle with a length of six 
inches and width of two inches upon the arc. (See Figure 3.) If necessary, students can extend the angles 
they have drawn to the edges of the rectangle. Finally, they should cut out their rectangular protractor and 
experiment with using it to measure and lay off angles.

With elementary or middle school students, an instructor may wish simply to enrich the daily routine of 
class with an illustrated presentation on changes in engineering and surveying practice and a few minutes 
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Figure �. How a divided semicircular arc with the form of a rectangular protractor superimposed might look. The 
students would mark angle values along the inner edge of the rectangle and then cut out the rectangle. Image created 
by Jennifer Nugent.

spent drawing angles on a rectangle with the aid of a commercially-made semicircular protractor. The 
pupils then could compare measurements made with their rectangular protractors against the readings on 
their semicircular instruments. A high school teacher could use this project to provide practice in repeated-
ly bisecting angles. The resulting rectangular protractor would be graduated into the following increments 
of degrees: 45/64, 1 13/32, 2 13/16, 5 5/8, 11 1/4, 22 1/2, 45, 90. As discussed below, high school geometry 
or trigonometry classes could also make rectangular protractors in part to motivate an exploration of angle 
trisection.

The construction of a rectangular protractor may be taken to greater depths by those professors and 
teachers who are dismayed that the topic of angle division is omitted from many mathematics textbooks in 
current use. (For middle or high school texts that employ discovery-type activities yet lack information on 
how specific angles might be drawn without a protractor, see, for example, [7] [12] [21] [22]. In contrast, 
at least one “new math” textbook taught fifth-graders to create a protractor graduated into eighths; [20, pp. 
702–721].) Preservice teachers, mathematics majors, or high school students might be challenged to try to 
make a rectangular protractor on their own at first. As they come to the realization that laying out angles is 
a non-trivial exercise, the instructor might suggest that thirty-, forty-five, and sixty-degree angles can be 
drawn with a compass or by constructing right triangles. In addition, students could use trigonometry to 
construct triangles with one- and ten-degree angles, translating these angles to the arc to fill in intervals of 
ten degrees and/or of one degree. 

Alternative, detailed discussions of techniques for graduating an angle appear in J. L. Heilbron’s 
Geometry Civilized, [11, pp. 90–97], and among the high school geometry frequently asked questions on 
“Ask Dr. Math.” [16] The reader may also consult older textbooks in practical geometry or the excerpt from 
Thomas Hill’s A Second Book of Geometry (1863) reprinted in “Protractors in the Classroom: An Historical 
Perspective.” [1]

Indeed, the process of making a rectangular protractor demonstrates that dividing the circle is a significant 
problem in the history of mathematics. It dates back to the straightedge and compass constructions of 
Euclid’s geometry and the impossibility of trisecting the angle with ancient Greek tools alone. [3; 16] 
Despite its difficulty, however, mathematicians and scientists viewed angular measurement as the key to 
the theory and practice of astronomy and navigation until the twentieth century. Therefore, scholars and 
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practitioners have historically searched for ways to improve the precision of their measurements. They 
devised methods for dividing the circle analogous to the techniques described in the previous paragraph 
and invented mechanical devices—screws, verniers, and small microscopes or magnifiers—for reading 
instruments to higher levels of accuracy. They applied these precision modifications to simple instruments 
(including specialty protractors) as well as to complex devices (such as astrolabes, sextants, theodolites, and 
astronomical circles). For instance, a protractor without a vernier (a sliding scale for indicating parts of the 
divisions on a graduated instrument) might allow measurements within one-half degree (30 minutes). With 
a vernier, the user might be able to take a reading to five minutes of accuracy. The history of improvements 
in precision shifted between application and theory, as craftsmen and scientists pushed each other to new 
observational achievements. Their mutual give and take ran its course only with the advent of optical tools 
and electronic equipment for astronomy and of digital computers for navigation. [2; 5]

Conclusion
As mathematical instruments, rectangular protractors were inherently limited. Although makers marked 
them with numerous scales so that they appeared versatile, these scales had little practical value since most 
of them were in the interior of the protractor rather than along its edge. As with other shapes of protractors, 
therefore, these instruments were chiefly confined to transferring angular measurements to paper and to 
laying off angles for architectural and engineering drawings. [8, pp. 8-26] Another drawback to rectangular 
protractors made of ivory or boxwood was that these materials would shrink with age, rendering incorrect 
the angular divisions. When a precise angle measurement was needed, then, practitioners generally chose 
semicircular brass protractors, which gave more precise readings and which were stable over the long 
term. Still, since rectangular protractors were inexpensive and pocket-sized, they were adopted somewhat 
successfully outside the workshop as educational tools for teaching about angles and the various scales. 
Rectangular protractors thus fit within an international pedagogical trend in the nineteenth century toward 
an “informal geometry” based on experiment and intuition. [6; 23] Even there, though, rectangular pro-
tractors form only a small part of the history of geometry education. (For a brief but comprehensive ac-
count of the history of American mathematics education, see the online exhibit, “Slates, Slide Rules, and 
Software.” [15])

Yet, despite their relatively minor historical importance, rectangular protractors are worth incorporating 
into college or school mathematics instruction for a variety of reasons. These instruments may stimulate 
students’ interest in the geometry of angle division. Making their own rectangular protractors can help those 
mastering mathematics and mathematics education to evaluate the challenges involved in dividing the circle. 
This activity—and thinking about the limitations on the accuracy of rectangular protractors—additionally 
guides potential teachers as well as their students toward the 2000 NCTM standards of “establishing the 
validity of geometrical conjectures using deduction, proving theorems, critiquing arguments made by others; 
using trigonometric relationships to determine lengths and angular measures” and “analyzing precision, 
accuracy, and approximate error in measurement situations.” [19, pp. 309, 321] Additionally, the form of 
rectangular protractors is unexpected by most contemporary American students, so a presentation on the 
instruments can catch their attention. In turn, this could lead to research into the different “standard” shapes 
for protractors found around the world. For instance, the counterparts to American high schoolers in the 
Netherlands use protractors in the shape of right triangles. Finally, students can benefit from exposure to 
some of the practical concerns represented by the various scales found on rectangular protractors, such as 
the effort nineteenth-century drafters put into reducing and enlarging mechanical drawings. Angle division 
is a vital subject in geometry and trigonometry. Building a lesson around the construction of a rectangular 
protractor is one way the mathematics teacher can emphasize this topic without a burdensome amount of 
advance preparation.
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Was Pythagoras Chinese?

David E. Zitarelli
Temple University

Introduction
This article presents two self-contained proofs of the Pythagorean Theorem that are strictly geometric, 
involving neither measurements nor numbers. The first might have been discovered by Pythagoras in the 
sixth century BC. The second is due to Liu Hui from about 300 AD. The two proofs show how mathema-
ticians in two ancient civilizations—one in the West (ancient Greece) and the other in the East (ancient 
China)—deduced a result about right triangles from strictly geometric arguments. We also briefly contrast 
the geometric approaches with an arithmetic method employed by mathematicians from a third great an-
cient civilization—the Babylonians. The question posed in the title of this article is borrowed freely from a 
book by Frank J. Swetz and T. I. Kao [7]. Our purpose here is to show how the radically different civiliza-
tions in China and Greece regarded right triangles in a remarkably similar way.

The material in this article is appropriate for students taking geometry for the first time in high 
school (or perhaps earlier); we provide suggestions for using cut-outs to help visualize the process. The 
only notion that is assumed is the concept of congruence, yet even here it is used in the intuitive sense of 
placing one figure precisely on top of another. The greatest benefit for beginning students might be an un-
derstanding of the nature of mathematical proof, because the historical approach adopted here illustrates a 
type of intuitive argument (based on obvious properties of figures) that preceded formal chains of reasoning 
that characterize deduction. To better appreciate the two geometric proofs, we describe a tactile approach 
using congruent triangles (formed by cutting two pieces of a rectangular sheet of paper along a diagonal) 
and various squares.

Figure 1 shows the familiar 3-4-5 right triangle. The Pythagorean Theorem asserts that the square 
on 5 is equal to the square on 3 plus the square on 4. Sometimes today we think of squaring as an arithmetic 
operation, for instance, when writing the Pythagorean Theorem as the square 
of 5 is equal to the square of 3 plus the square of 4. The distinction between 
the italicized words on and of is important. The former reflects a fundamen-
tally geometric idea expressing a relationship among squares constructed 
on the sides of a right triangle. The latter is an arithmetic expression that 
harkens back 4000 years to Babylon, whose mathematically adroit scien-
tists uncovered numerous arithmetic properties of right triangles. The most 
important one determined those triples of integers that could represent the 
lengths of the legs of right triangles. However, we are not concerned with 
such arithmetical relationships here.

3

4 5

Figure �
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Right triangles in Ancient Greece
Jacob Bronowski (1908–1974) was a scientist of encyclopedic learning who found both the arts and the 
sciences interesting and accessible. He also had an innate ability to explain complex principles to a general 
audience. So in 1969, when the BBC sought a scientific counterpart to their highly successful series on 
Western art called Civilisation, they enlisted Bronowski as host and writer. The result was a 13-part series 
called The Ascent of Man that presented the history of science within a cultural history of mankind. The 
series was an overwhelming success when it appeared on PBS stations in the U.S. in 1973. Ascent turned 
out to be Bronowski’s last project; it was completed shortly before his death in New York from a heart at-
tack at age 66. (An informative web site with a short biography of Bronowski, containing extracts from his 
writings and personal reminiscences from those who knew him, is www.drbronowski.com/.)

The book Ascent of Man [1] was published when the show was televised. Chapter 5—correspondingly 
Episode 5 in the TV series—is devoted to the basic philosophy and lifestyle of the Pythagoreans. Titled 
“The Music of the Spheres,” it emphasizes the Pythagorean credo that mathematical relationships form the 
essence of all phenomena, and that such relationships alone should be used to express seemingly unrelated 
events. This particular episode describes the manner in which the Pythagoreans reduced both music and 
the motions of planets to simple relationships among numbers. It was not until the time of Galileo in the 
early seventeenth century that scientists again began to look for the essence of things in number. Today this 
philosophy applies to almost all physical sciences and many social sciences as well. Yet, as we will see, 
the Pythagoreans could also demonstrate results in a totally geometric manner. The practice of justifying 
statements on geometric reasoning alone continued through the end of the seventeenth century, when Isaac 
Newton employed strictly geometric proofs of all results in his historic discovery of calculus.

This section examines a possible proof of the Pythagorean Theorem. By “proof” we mean a convincing 
demonstration of the correctness of a result. The proof here is a reconstruction due to Jacob Bronowski, who 
based it on the geology of the region in southern Italy where the Pythagoreans settled. The method of proof 
lies somewhere between the experimental approach of the ancient Egyptians (from about 1650 BC) and the 
purely deductive scheme adopted by Euclid in ancient Greece (about 300 BC). We highly recommend that 
the reader view “The Music of the Spheres” to see how natural the proof of the Pythagorean Theorem might 
have appeared in Croton, the Italian seaport ultimately inhabited by the merry band of philosophers called 
the Pythagoreans. Nature presents us with many shapes, like the tiles that dot the Mediterranean coastline. 
Such tiles often appear in the shape of triangles. (See Figure 67 in [1].)

We describe how Pythagoras’s line of reasoning might have been based on tiles to justify the result now 
named after him. Begin with the right triangle shown in Figure 2. For classroom demonstrations we suggest 
that the teacher bisect two 8½´11 pieces of paper to form four triangles. We recommend that students 
bisect 3´5 cards.

Figure �

Take a second triangle (a congruent copy of the one in Figure 2), rotate it 90° clockwise, and place it as 
shown in Figure 3. An important part of Figure 3 is the dotted line segment on the longer side of the second 
(bottom) triangle. This segment is the difference between the longer side and the shorter side of the triangle. 
Equivalently, a line segment that is composed of the shorter side plus the dotted line segment is congruent 
to the longer side.
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Figure �

Next, take a third (congruent) triangle and rotate it 180° clockwise from the initial position. Finally, 
take a fourth triangle and rotate it 270° clockwise from the initial position. Place the four triangles as shown 
in Figure 4; we number them in their order of construction. If you were to take the initial triangle and rotate 
it 360° clockwise it would end up where it began. That is the crucial property of a 90°-rotation: after four 
repetitions, any figure, not just a triangle, will end up exactly where it began.

 

1

2
3

4

Figure �

The diagram in Figure 4 is a square (we will call it the outer square) composed of four congruent 
triangles (think of them as four identical tiles) and the inner square. Notice that each side of the outer square 
is the hypotenuse of the right triangle, so its area is equal to the area of a square on the hypotenuse of the 
right triangle. At this point it is advisable to construct a replica of the inner square; otherwise it might get 
lost. Each side of this square is the difference between the longer and shorter legs of the triangle; it can be 
constructed using measurements, if necessary.

The outer square is composed of the four triangles plus the inner square. We aim to rearrange these 
five tiles—the inner square tile and the four triangular tiles—so they form two square tiles. Physically it is 
rather easy to slide a tile from one location to another. Begin by sliding tile 1 under tile 3 to form a rectangle; 
then slide tile 4 under tile 2 to form another rectangle. This results in the L-shaped figure (called a gnomon) 
shown in Figure 5, which has the same area as the outer square in Figure 4 since it is composed of the same 
tiles.

1
2

3

4

Figure �
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The final step is to draw the vertical dotted line shown in Figure 6 to help visualize how the L-shaped 
figure can be partitioned into two squares. Look at the figure situated to the right of the dotted line. Each 
vertical side is the shorter side of the right triangle. Each horizontal side is the difference between the 
longer side of the right triangle and the side of the inner square, so each one is the shorter side of the 
triangle. Also, all angles at the four vertices are right, so the figure is a square on the shorter side of the right 
triangle. Similarly the figure to the left of the dotted line is a square on the longer side of the right triangle. 
Consequently, the diagram in Figure 6 has been partitioned into two squares, so its area is the sum of the 
area of the square on the shorter side plus the area of the square on the longer side. Since Figure 6 was 
formed from Figure 4 by moving tiles whose areas remain the same, the areas of the diagrams in Figure 4 
and Figure 6 are the same. Therefore the area of the square on the hypotenuse of the original triangle (Figure 
4) is equal to the sum of the area of the square on the shorter side plus the area of the square on the longer 
side (Figure 6).

Figure �

This completes the proof of the Pythagorean Theorem—that’s all there is to it. Because there is no 
extant documentation from the sixth century BC when Pythagoras lived, we have no idea how his followers 
proved his eponymous result. The proof given here was suggested by Jacob Bronowski 30 years ago.

Bronowski’s tactile reconstruction of Pythagoras’s proof using tiles does not involve any calculations. 
No arithmetic was performed—the method is entirely geometric. This approach shows how initially the 
Pythagorean Theorem dealt with geometric squares and not with arithmetic operations. Next we examine a 
similar approach that was adopted in an entirely different part of the world—China.

Right triangles in Ancient China
Euclid’s famous work on Greek geometry, the Elements, was composed about 300 BC, some 200 years 
after the death of Pythagoras. By contrast, and based on written records, Chinese mathematics is not as 
old as its Greek counterpart. By the time of the Han dynasty (208 BC – 8 AD), however, there were sev-
eral Chinese works that reflected a well-developed subject area. One of the major books from this period, 
Jiuzhang suanshu, has been described as the “classic of classics.” The title can be translated into English 
as Nine Chapters on the Art of Mathematics, which we shorten to Nine Chapters. Just as the Elements 
reflected developments in mathematics since the time of Pythagoras, Nine Chapters is a compilation of 
works written before it. Also like the Elements, subsequent commentaries on Nine Chapters provided a 
major outlet for further advances in the field.

Here we examine an impressive, convincing, colorful proof of the Pythagorean Theorem taken from a 
commentary on Nine Chapters by the Chinese mathematician Liu Hui about 300 AD. We will see that Liu 
Hui’s proof is very similar to Bronowski’s reconstruction of the Pythagorean proof. The close connection 
spawned the title of this article. We begin with the same right triangle as Figure 2 from the Pythagorean 
approach. Here the first step is to construct an inner square on the shorter side in the manner shown in 
Figure 7. The Chinese colored the interior of this square red; we use dark gray.

Next, construct an exterior square on the longer side of the original right triangle as shown in Figure 8. 
The Chinese colored the interior of this square blue; we use light gray.
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Now construct a congruent copy of the original right triangle. Situate it with the same orientation so 
that its longer side overlaps the lower-left corner of the light gray square by a triangle congruent to the 
unshaded triangle in Figure 8. This means that triangles A and B in Figure 9 are congruent, which enables us 
to transfer the light gray color from A to B. Chinese mathematicians referred to the process of transferring 
colors as “out-in mutual patching.”

B

A

Figure �

Next, make a copy C of the original right triangle, rotate it by 90° clockwise, and place it into the 
position shown in Figure 10. Then remove the light gray color from 
another copy D of the triangle onto triangle C; the transfer of this color is 
also shown in Figure 10.

So far no dark gray color has been transferred. Can you anticipate the 
final step involving such a transfer? Look at triangles E and F in Figure 
11. They are congruent right triangles with one leg equal to the shorter 
side of the original right triangle, and the other leg equal to the difference 
between the shorter side and a leg of the congruent triangles A and B. 
Therefore the final step is to transfer the dark gray color from triangle E 
to triangle F.

The shaded region in Figure 11 (consisting of both light gray and 
dark gray regions) forms a square on the hypotenuse of the original right 
triangle. The light gray part of Figure 11 initially formed a square on the 
longer side of the triangle, while the dark gray part formed a square on the 
shorter side. Because the area of the region that is shaded equals the area 
of the light gray region plus the area of the dark gray region, it follows 
that the area of the square on the hypotenuse is equal to the sum of the 
areas of the squares on the shorter side and the longer side.

This completes the colorful Chinese proof of the Pythagorean 
Theorem. It is important to point out that Liu Hui’s proof, like Pythagoras’s, 
did not use calculations; both are entirely geometric, with no arithmetic 
computations performed.
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Was Pythagoras Chinese?

It is especially difficult to answer questions about Chinese history during the time that Jiuzhang suanshu 
was written because in 213 BC the emperor Shih Huang-ti ordered all books to be burned. (See [3] and [5] 
for excellent accounts of Chinese mathematics.) The history of the West makes the question of priority 
of results and independence of proofs troublesome for the Greeks too. (The book by Heath [4] remains 
an excellent source for this history.) However, the proofs of the Pythagorean Theorem by Pythagoras (as 
reconstructed) and by Liu Hui are typical of the types of justification that convinced others of the correct-
ness of geometrical statements about 2500 years ago. The nature of the Greek and Chinese proofs is almost 
identical. (The textbook [8] provides a similar development.) This raises three questions:

1. Is it possible that one civilization borrowed from the other?

2. Might Pythagoras have preceded Marco Polo in his travels to the Orient?

3. Might an unknown Chinese businessman, schooled in mathematics, have traveled to the Mediterranean 
area and come in contact with Pythagoreans?

Before asking another question, we hasten to add that there is not a shred of evidence to suggest 
answers to these three questions. Lacking historical evidence, we can only conclude that Greek and Chinese 
mathematicians proceeded independently. Now we pose a question for anyone familiar with Euclid’s proof 
of the Pythagorean Theorem (Book 1, Proposition 47).

4. Which proof is more convincing—the one by Euclid or those due to Pythagoras and Liu Hui?

We expect most people familiar with Euclid’s proof to answer Question 4 with “those due to Pythagoras 
and Liu Hui” because they are immediately convincing. This suggests that school districts might improve 
geometric instruction if a first approach is along historical lines, perhaps enhanced by an excursion into the 
three-dimensional analog. (For further details, please see “When is a Square Square and a Cube Cubical” 
by Amy Shell-Gellasch in this volume.) However, an historical approach must contain a vital caveat for 
anyone desiring to return to the glory days of these ancient civilizations: depending entirely on figures and 
drawing conclusions from experience can lead to incorrect results. Deduction arose as a response to this 
shortcoming, and it has served as the mathematical standard since the time of Euclid. (Section 3-6 in [2] 
discusses how the method of deduction arose, with ties to the ancient Egyptian culture.) Even deduction took 
a drastic hit by the early 1930s when two logicians, Emil Post and Kurt Gödel, proved independently that 
in any system like the one needed to demonstrate the Pythagorean Theorem, there will be some statements 
that can be neither proved nor disproved.

We end this presentation with a question for beginning students.

5. Which proof do you find more convincing—the Chinese or the Greek?

Directions for the instructor

The author has found success with students repeating the Greek proof of the Pythagorean Theorem. 
However, replicating the Chinese method has been more elusive, and generally results in a demonstration 
using transparencies. Nonetheless, in this final section we provide instructions for students to perform both 
proofs.

 For the Greek approach, each student will need four congruent right triangles, and a square whose 
side is the difference between the longer side and the shorter side of the triangle. We instruct each student to 
cut two 3´5 cards in half to form the four triangles, and then to construct the inner square from a third 3´5 
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card. The resulting “tiles” are small enough to be manipulated on the student’s desk top, yet big enough to 
be convincing.

Initially, all students should place the four triangles and square as shown in Figure 4. It is important for 
students to see that each side of the outer square is the hypotenuse of the original triangle. Ask, “How can 
these five tiles be rearranged to form two squares?” The object is for the students to slide the tiles to the 
positions shown in Figure 5, and to realize how two squares result. This realization can be confirmed by 
constructing squares of appropriate size and placing them on top of the gnomon in Figure 6.

Having students reconstruct the Chinese method is not as easy. We think it is best to use graph paper 
and color appropriate regions, an approach that resonates with the Chinese method. However, we have con-
structed a method using squares and triangles that can be cut from a sheet of paper with inches as the basic 
unit. First cut a 4´4 square (denoted S4) and use a red pencil to color it. Next, cut a 3´3 square (denoted 
S3) and use a regular lead pencil to shade it. Then cut six 3-4-5 right triangles, labeled T0, T1, T2, T3, T4, 
and T5, with T3 colored red. The proof follows from these five steps.

1. Place S3 atop T0 and S4 to the left of T0 (Figure A).

2. Place T1 at the top left corner of S4 and T2 directly below it (Figure B).

3. Place the red T3 under S3 as shown in Figure C. Then transfer the red from triangle A to triangle B 
by coloring B.

4. Place T4 atop S3 and to the right of T0. Color the triangular part of T4 that covers S3 with the lead 
pencil (Figure D).

5. Move T4 into the position in Figure E so its colored region fills the gap, and then place T5 where T4 
had been to complete the transfer of color.
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Beyond Pythagoras and Liu Hui
Euclid’s book, generally referred to as the Elements, consists of thirteen chapters that were then called 
“books.” Major results were called “propositions.” Book I consists of 48 propositions, and the penultimate 
one is the Pythagorean Theorem, labeled merely Proposition I-47. It reads:

In right-angled triangles the square on the side subtending the right angle is equal to the squares on 
the sides containing the right angle.

Notice that Euclid uses the expression “square on the side” instead of “square of the side.” This subtle 
difference reinforces the geometric nature of the Pythagorean Theorem, as opposed to the arithmetic 
character suggested by the alternate wording. Yet Euclid went beyond Pythagoras. Proposition 31 in Book 
VI reads:

In right-angled triangles the figure on the side subtending the right angle is equal to the similar and 
similarly described figures on the sides containing the right angle.

This result is an impressive generalization of the Pythagorean Theorem. It says, for instance, that the 
area of an equilateral triangle placed on the hypotenuse of a right triangle is equal to the sum of the areas 
of equilateral triangles placed on the two legs. That extension would take care of three-sided figures on the 
legs. The Pythagorean Theorem itself deals with four-sided figures. 

Proposition VI-31 goes beyond quadrilaterals, and includes regular pentagons placed on the three sides 
of a right triangle, regular hexagons, etc. In short, Euclid’s generalization gives assurance that the area of 
a regular polygon on the hypotenuse is equal to the sum of the areas of regular polygons on the legs. And 
one need not restrict attention to polygons—Proposition VI-31 includes such figures as semicircles as 
well. However, an examination of additional extensions would take us too far afield. For more details, the 
interested reader is referred to a recent, charming paper [6].
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Geometric String Models of 
Descriptive Geometry

 Amy Shell-Gellasch Bill Acheson
 Pacific Lutheran University United States Army

formerly of the United States Military Academy

Introduction
Many art galleries exhibit sculptures constructed of taut strings or wires strung on wood or metal frames. 
The genesis of much of this form of art is the static string models originally devised and constructed by Gas-
pard Monge in the late eighteenth century, and the subsequent articulated models of his student Theodore 
Olivier in the nineteenth century. These models were constructed as three-dimensional aids in the teaching 
of descriptive geometry in the nineteenth century.

Simple models that exhibit surfaces such as hyperboloids and warped planes can be constructed for 
classroom use by the instructor or teams of students. These models can then be used to explore families of 
surfaces as well as aspects of nineteenth century mathematics and education.

History
With the advent of computer aided design, several subjects have disappeared from school and college cur-
ricula. Those related to this chapter are drafting, scientific drawing (as well as drawing in its own right) and 
descriptive geometry. Computers bring new and wondrous worlds to the classroom and allow us to explore 
ideas at deeper levels than before. However, there is something to be said for getting your hands dirty, so to 
speak, and experiencing the physical side of mathematics and science. 

Throughout the nineteenth century and into the twentieth, students at the United States Military 
Academy at West Point, New York, were required to study all of the above mentioned subjects.  A visit to 
the West Point Museum or Special Collections at the Cadet Library reveals amazingly precise and beautiful 
student drawings, landscapes as well as scientific renderings, by former West Point students such as Ulysses 
S. Grant. During most of West Point’s history1, engineering was the focus of the curriculum.  To this end, 
descriptive geometry was a required course for students after they had taken their two-year core mathemat-
ics sequence of algebra, geometry and calculus.

Developed by Gaspard Monge (1746–1818) in the last decades of the eighteenth century,2 descriptive 
geometry is the forerunner of modern-day engineering drawing.  One of the concepts developed by Monge 
was that of ruled surfaces.  A ruled surface is one that can be described by the movement of a straight line, or 
ruling. For example, a cylinder can be described as the surface generated when a line (the generator) traces 

1  Founded in 1802, The US Military Academy was the first engineering school in the nation.
2  For an in-depth discussion of Monge, Olivier and the Olivier models, see The Olivier String Models at West Point by Amy Shell-Gellasch, [1].
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out a circle while remaining perpendicular to the plane of the circle.  A set of such lines drawn to depict the 
surface is called a set of rulings for the surface. A cylinder that is twisted becomes a hyperboloid, also a 
ruled surface. If a ruled surface, such as a cylinder, can be unrolled to become a flat sheet, then it is called 
developable.  If it can not be unrolled onto a flat plane, it is called a warped surface, such as the hyperboloid 
in Figure 1.

In order to allow his students to visualize such three-dimensional surfaces, Monge constructed two 
models by weaving strings onto fixed armatures. Monge’s student Theodore Olivier (1793–1853) carried 
on his mentor’s work by writing texts in descriptive geometry that were widely used in universities of the 
time, both in France and in the United States. Olivier also constructed fifty string models of his own.  He 
had two sets of his models constructed by a Paris firm. One set now resides at the Conservatoire National 
Musée des Arts et Métiers in Paris, and a little more than half of the second set is now at Union College in 
Schenectady, New York. The Paris firm that constructed the original models in the 1840s then constructed 
copies of these models after Olivier’s 1853 death.  The U.S. Military Academy ordered 26 models in 1857, 
of which the Department of Mathematical Sciences still has 24.

In contrast to Monge’s static models, Olivier’s are articulated; the armatures are hinged so that each 
surface can be manipulated to show a whole family of ruled surfaces.  For example, Figure 2 shows a fairly 
elaborate string model that uses three different colors of strings to display a cylinder surrounding both a 
circular and elliptical hyperboloid.  The top brass disc can be tilted to show various inclinations of the sur-
face. In order to keep the string (rulings) taut, lead weights are suspended from each string and hidden from 
view inside the base.

A simpler model can be constructed to show only the circular hyperboloid (see Figure 3).  On this mod-
ern model, the top disc can be twisted in order to depict all hyperboloids from a cylinder to a hyperboloid 
with a very narrow waist. Detailed steps for constructing this model can be found in the appendix.3 

In the classroom
Though few if any schools teach descriptive geometry, the history of the subject can be included in many 
classes besides a history of mathematics course. In addition, constructing a working string model can be 
3  For more images of the Olivier models, please visit either the Union College [2] or United States Military Academy Department of Mathematical 
Sciences [3] websites.

Figure �. Hyperboloid with two rulings highlighted. [4]
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benefi cial, either in concert with the history of descriptive geometry, or on its own. Classes in which this 
can be incorporated may include calculus, differential equations, geometry, computer design courses, engi-
neering, mechanical arts and, of course, history. For example, in the calculus sequence we often refer to a 
family of curves or lines. By manipulating a string model, a family of curves can easily be shown, the cyl-
inder/hyperboloid above being a simple one. In a differential equations course, a string model can be used 
to depict tangents, derivatives and partial derivatives. Since all the Olivier models are of ruled surfaces, this 
is a topic you may want to add into your geometry or topology courses.4 The original intention of the mod-
els was to help engineering students visualize the intersections of 
various surfaces; any course that deals with geometric surfaces 
would be a likely candidate for a unit based on the construction 
of a string model.

Since the construction of sturdy, aesthetically appealing 
string models is not a short in-class project, we recommend that 
the instructor (or a good friend of the instructor who likes to build 
things) take the time to construct a nice model that can then be 
used in the classroom year after year.  If you have a group of stu-
dents who are motivated to take the time to build one themselves, 
encourage them in any way you can. If the hyperboloid is too 
complex for your course needs, a simpler model could be used. 
One possibility would be two intersecting cylinders (see Figure 
4). This could be a static model for use in calculus courses to 
show intersection, tangents and volume.  

The warped plane is another simple string model (see Figure 
5). In this model, a plane can be twisted to form a warped plane. 
When the top arm is parallel and in the same plane as the station-
4  Many college libraries still have descriptive geometry texts, especially from the 19th century, that can be used.

Figure �. Hyperboloid string model constructed by 
Bill Acheson, for the Department of Mathematical
Sciences, United States Military Academy, 2002.

Figure �.  Cylinder and Hyperboloids. 
First generation Olivier model, c. 1860. Department of 

Mathematical Sciences, United States Military Academy.

Figure �. Olivier Model of two intersecting 
cylinders. United States Military Academy 
Department of Mathematical Sciences.
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ary middle arm and the base, the strings form a plane. Rotating the top armature perpendicular to the plane 
of the strings results in a warped plane.  

For a rough and ready (disposable) string model to be made in class, the following is suggested. For the 
hyperboloid, make two 12 discs out of cardboard and punch 10 to 12 holes around the edge. Now thread 
the same number of pieces of string, each approximately one and a half feet long, from the top disc to the 
bottom disc, knotting each top and bottom to hold them in place. One person can hold the top disc while 
another holds the bottom. By rotating one of the discs, the family of hyperboloids can be shown. Four discs 
and two to four people depending on the size of the discs and the length of string could form the model of 
two intersecting cylinders.

For the warped plane shown above, two pieces of rectangular cardboard with about twelve 1-inch slits 
cut perpendicularly along the edge (to look like combs), or even two large plastic hair combs found at the 
drug store, can be used. Take a long piece of string and weave it up and down from one comb to the other. 
Again, by having one person holding the top comb and another holding the bottom comb and twisting, the 
warped plane is depicted.

Conclusion
The string models of descriptive geometry originally made by Monge and perfected by Olivier are beauti-
ful, intriguing, and inspiring mathematical objects.  They are part of our mathematical heritage that can be 
readily shared with students, either directly through the manipulation of models constructed for the class-
room, through the actual construction of one by the students, or virtually through the web5.  Though the 
construction and use of string models in class requires a fair amount of time and planning, the time spent 
is well worth the effort. The “lost art” of descriptive geometry is the foundation of our modern engineering 
drawing, and as such, has a place in both engineering and mathematics education.

5  A wonderful and interactive virtual tour of string models can be found at [2].

Figure �. Olivier Model of a warped plane. 
United States Military Academy Department of Mathematical Sciences.
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Appendix
Bill Acheson

This project is a fairly simple reproduction of an Olivier String Model that I fi rst saw while an instructor of 
mathematics at the United States Military Academy. The basic design can be used for a variety of examples 
of planar geometry and more or less time can be spent polishing the fi nished product. I encourage you to 
experiment and pursue your own modifi cations. The basic supplies for this project, excluding tools, should 
cost less than $20.

Naturally, many things in a woodshop can bite. While power tools speed things up and usually make 
cleaner cuts, they also bite a lot harder when things go wrong. Always know where your fi ngers are rela-
tive to a blade or bit, be absolutely sure to clamp your work down if you use the circle cutter, and wear eye 
protection. If you are unfamiliar with the equipment, get some help.

Material List
2¢´2¢ sheet of ¼ hardboard (Masonite)
5 lineal feet of ½ square molding
1 lineal foot of ¼ square 

molding
Wood glue
4 ea. #8 1 screws
1 ea #8 5/8 screw
1 ea #8 fi nish washer
Small spool of high quality, 

brightly colored thread
1 sewing needle
60 lead weights — (I used #5 

split shot used for fi shing)
Masking tape

Tool List (painful minimum)
Handsaw
Electric drill
1/16 drill bit + miscellaneous 

larger bits 
Compass or dividers
Block plane Figure �.
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Square
Scissors
Sharp pencil
Ruler
Screwdriver

Additional Tools for an easier life
Drill press and circle cutter
Table saw
Small clamps 

The model consists of the three basic 
components seen in Figure 2:  the base, 
the discs, and the upright supports.  

The base
To build the base, I first cut two 4 wide by 24 long pieces from my sheet of ¼ hardboard.  If you are using 
a handsaw, cut a hair wide of your line and then plane the cut off smooth to the line.  From these 4 wide 
panels, I cut 2 smaller panels 5 ½ long and 2 panels at 5 long.  They will form the sides of your base.  The 
longer 5 ½ panels used as front and back of the base overlap the 5 side panels.  Keep the remaining 4 wide 
stock to cut your discs from later.

I use internal glue blocks cut from the ½ square stock to reinforce the otherwise very weak butt joints 
in the case.  The length of the glue blocks is not critical as long as when glued up the ends do not extend past 
the edge of the panel.  As seen in Figure 3, I glued the sides of the base in two stages.  First, glue the reinforc-
ing blocks flush with the edges of the 5 wide panels and clamp them using some convenient textbooks as 
weights.  Pay attention to getting 
the long edges of the glue blocks 
and panel flush, as doing so will 
make life a lot easier in the next 
step when you attach the sides 
and work to get things square.

Once the glue dries, you will 
glue the front and back to the 
sides.  Masking tape works well 
as a clamp while the glue is dry-
ing.  Check for square.  Though it 
takes some extra time to do this 
in two steps, imagine trying to 
hold 8 parts together and square 
while the glue is drying!

For the top of your base, cut a 
piece from your remaining hard-
board to meet the finished dimen-

Discs

Upright
supports

Base

Figure �.

Align edges

4

5

Figure 3.



Geometric String Models of Descriptive Geometry ��

sions of your base, which should be very close to 5 ½ square.  While the top can overhang front to back, 
any overhang on the sides will interfere with the uprights.  I consider the front and back to be the 5 ½ wide 
pieces so I won’t have to look at the butt joint when the project is fi nished.  Before setting the base aside for 
a minute, use intersecting diagonals to mark the center of the top for drilling later as seen in Figure 4.  

The discs
The dimensions of the base limit the maximum diameter of the discs as does your ability to cut the discs.  If 
at all possible, I highly recommend you cut your discs using a circle cutter on a drill press.  Doing so will be 
far faster and neater than the alternative of using a compass to scribe a circle on the hardboard, using a cop-
ing saw to cut close to the line by hand, and sanding to the line.  While theoretically possible to do neatly, 
I’d rather spend my time doing non-
linear optimization in my head.  Under 
no circumstances should you try to use 
a circle cutter in a hand drill; you will 
hurt yourself.  I chose my disc diam-
eter to be 3 ¾, though +/- ¼ is not 
unreasonable. Whatever diameter you 
choose for your discs, realize that the 
opening in the top of the base must be 
slightly larger for the strings to hang 
down neatly. Figure 5 shows the set-
up I used on my drill press to cut the 
two discs that hold the strings in place.  
Make sure you clamp things down; 
otherwise you risk getting hurt from 
the spinning circle cutter or having the 
work piece ripped from your hands. I 
am guilty of knowing from experience 
and have a pink scar on my left middle 

Figure �.

Figure �.
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fi nger as testimonial. Another detail is to set the drill 
press to its lowest RPM setting since the cutter is by 
design unbalanced and not meant for high RPMs.  
Don’t have a drill press? Try the local high school 
shop or perhaps your school system has a mainte-
nance shop. Use a sacrifi ce block of wood under-
neath your hardboard so that you don’t destroy the 
cutting blade against the cast iron drill press table.  
After you’ve cut out your discs, lightly bevel the 
edges to remove any burr.   

Figure 6 shows the circle cutter being readjusted 
to cut the hole in the top of the base through which 
all the strings hang down by their weights. Note that 
I’ve set the diameter slightly larger than the discs 
and that I’ve reversed the cutter tip to the outside 
as compared to the usual arrangement in Figure 5.  
This helps cut a clean circle from the inside for the 
top.

Using the same drill press set-up, cut the circle 
in the top of the base using the center located by 
intersecting diagonals. Attach the top to the base, 
making sure the glue blocks don’t interfere with the 
opening in the top. Again, I use a two-step process 
for gluing and use masking tape for clamps to hold 
the glue blocks in place as seen in Figure 7. Before 
attaching the top, I ease the outside edges to elimi-
nate any rough or sharp spots with my hand plane 
or sandpaper.  

While the glue holding your top in place is 
drying, you can work on the most tedious part of 
the whole project. Ultimately to make the project 
meaningful, you have to get a whole bunch of holes 
evenly spaced just inside the perimeter of the discs 
to hold your strings in place. To achieve an even 
spacing I chose to drill the discs to accommodate 
60 strings, or 15 per quarter. Technically that works 
out to a hole every 6 degrees. Unless you have ac-
cess to a highly accurate compass, that doesn’t do 
you much good. On a block of scrap, from a center I 
traced the diameter of the discs in the fi rst quadrant.  
Using my dividers and an initial guess I marked off 
segments and adjusted the setting on my dividers 
until I could divide the quadrant up into 15 sections.  
Figure 8 illustrates the set up. Only the setting on 
the dividers is important. While perhaps a little brut-
ish, there is enough natural error in the next step to 
make any quest for extreme accuracy at this stage to 

Figure �.

Figure �.

Figure �.
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be useless. (Of course, few strings spaced further apart can be used, though the final product will not look 
as sleek as the original Olivier models.)

Figure 9 shows the jig I used to drill all the holes in both my discs at the same time.  On the same block 
of wood as in Figure 8, I used a spare wood screw to act as a pivot for the discs which I taped together to 
ensure a mirror image of each other.  Drill both discs at the same time!  Otherwise you risk having 60 holes 
in one disc and 61 holes in the other! (I also know this from painful experience.)  I used a piece of disc 
cutting scrap glued to the block to act as a gauge.  From the center I drew an arbitrary radial line across the 
gauge.  Using the spacing painstakingly adjusted on the dividers, I drew a second radial line.

Figure 10 shows the jig in use. Again a drill press makes life much easier, though you could drill your 
holes using a hand drill. I used a 1/16 drill bit for my holes and clamped the jig to my drill press so that 
it would drill a hole about an 1/8 inside the edge and be on a radial line drawn from the center to one of 
my marks on the jig. The first hole can be drilled anywhere. Subsequent holes are drilled by rotating the 
previous hole to align with an imaginary radial line drawn from the center to the second mark on the jig.  
Two pieces of advice:  First, don’t force the drill. Be patient and expect to have to withdraw the bit from the 
hole to empty the cuttings at least once, otherwise you will blow out the back of the discs. Second, given 
the inherent inaccuracy of the jig, space the last two or three holes by eye to eliminate the possibility of a 
noticeably larger or smaller gap between the first and last holes.

The upright supports
My upright supports are screwed into the sides of the case and stand 14 above the top of the base.  Cut two 
18 long pieces from your ½ square molding, making sure they are straight and true.  Mark center lines on 
the sides of your base, align an upright over the lines, drill a pilot hole through your upright and into the 

Figure �.
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base about ½ from the bottom.  Gently screw the upright to the base.  Make final adjustments to square the 
upright to the base and add a second screw.  Repeat for the second upright.  Figure 11 illustrates the align-
ment and screw positions.  

The next step is to add the cross 
beams that support the discs.  For the up-
per cross beam, I cut a piece of ½ stock 
to length, located the center and drilled a 
pilot hole as shown in Figure 12.  I chose 
to cut half laps in the ends of my cross 
beam, but you could just as easily use a 
butt joint.  Figure 12 also shows the fin-
ish washer used to space the upper disc 
away from its cross beam.  Gently screw 
the upper disc to the cross beam ensuring 
the rough side of the disc is down.  Figure 
13 shows the cross beam being glued into 
position using a temporary masking tape 
clamp.

The lower cross beam is a bit more 
of a challenge to balance strength with a 
structure that won’t greatly interfere with 

Rotate the disc so the hole
you just cut lines up with
the second mark on your
jig and drill another hole.

Bit is aligned along a radial
line from the center to one
of the marks on the jig.

Figure �0.

Mark center lines

Figure ��.



Geometric String Models of Descriptive Geometry ��

the hanging strings.  Figure 14 shows a cross beam glued up from pieces of ¼ molding stock.  The ¼ stock 
is thin enough that the strings will hang down past it gracefully, while the added pieces provide strength and 
surface area to support the disc.  If you expect the model to be handled regularly, or by children, I recom-
mend you go for the strength of a cross beam made from ½ square stock instead and accept some disruption 
of the hanging strings.  

Figure ��.

Before attaching the lower disc to its cross beam, use a few weighted threads to position the disc so that 
the threads hang evenly inside the hole in the top of the base as seen in Figure 15. I use lead fi shing weights 
to tension the thread. Rather than using a screw, I glued the lower disc to the built up cross beam. As before, 
make sure the rough side of the disc is down. Figure 16 shows the small blocks of ½ stock I glued to the 
uprights to support the lower cross beam. For more strength you can glue small pieces of ¼ stock to the 
shoulders of the joint as indicated.  

Once all the glue dries, all that remains is to thread your model.  If you want to paint or decorate your 
model, do it before you thread.  To facilitate the threading process I recommend a sewing needle, sharp scis-
sors, and a nail pounded into a piece of scrap wood to hold your spool of thread. I would thread my needle, 
feed it up through a hole in the lower disc, to a hole in the upper disc and back down through an adjacent set 
of holes.  Figure 17 shows trimming the thread to length and adding the weights.  I usually had to tie a knot 
in the thread to keep the weight from falling off.  Stagger the weights as they hang down inside the base to 
limit their interference with their neighbor.  When the upper cross beam blocks your needle, just twist the 
disc a bit to either side.  If you fi nd you have an odd number of holes, tie a thread off using two adjacent top 
holes and thread it back down the remaining hole.  

Figure ��. Figure ��.
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To help keep the hanging thread from tangling 
inside the base during transport, cut two rectangu-
lar pieces of cardboard and tape into cylinders the 
same height and diameter of the base, one slightly 
narrower than the other. From beneath, slide the 
larger cylinder outside the ring of weights and the 
other inside to keep the weights from swinging 
too much.  

Naturally you can vary the form of your con-
ic by twisting the upper disc, though realize it is 
only held by friction and tightening up the retain-
ing screw once the model is threaded is a chal-
lenge! Congratulations, you are done! Enjoy your 
own reproduction of a 19th century Olivier String 
Model (Figure 18).

Figure ��.

Figure ��.

Reinforce with scrap ¼" stock.

Figure ��.
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Figure ��.
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Introduction
Humankind designs and constructs tools, furniture, vehicles, buildings and other structures with deliberate 
precision.  And while it is relatively easy to draw objects using only lines and circles, these shapes are insuf-
ficient to represent the constructs of our world.  Although it is possible to represent some simple curvatures 
in two dimensions with a linear projection of an arc or a circle to an ellipse, a parabola, or a hyperbola, these 
too are insufficient in their lack of complexity.  Within these limitations, gross representation of curved 
lines is not sufficient for engineering purposes.  In the words of Professor Thomas French, the writer of the 
authoritative Engineering Drawing series of textbooks in the early 20th Century:

The engineering draftsman has a greater task [than the artist]. Limited to outline alone, he may not 
simply suggest his meaning but must give exact and positive information regarding every detail of 
the machine or structure existing in his imagination. Thus drawing to him is more than pictorial rep-
resentation; it is a complete graphical language, by whose aid he may describe minutely every op-
eration necessary and may keep a complete record of the work for duplication or repairs. [9, p. 1]
This need to depict and design complex curvatures with accuracy begat the use of the French Curve in 

the 19th and 20th Centuries.

Applications
The demand for technical drawing actually surged with the Industrial Revolution in the middle of the 19th 
Century.  Prior to this era, the construction of custom-made houses, tools, or other machinery did not re-
quire such precision in two-dimensional representation. The Industrial Revolution brought about two trends 
that required improved precision in drafting:  mass-production and the use of interchangeable parts. This 
need further increased in the early 20th Century as national industrial bases surged to meet the weapons and 
materiel (referring to military logistics) production requirements of World War I. [3, p. 167]

There are both specific and general drafting design requirements with complex curvatures that neces-
sitate the use of a French Curve. In the general case, the French Curve is useful for drawing any curved line 
that is not the arc of a circle. Different types of French Curves are helpful in drawing ellipses, parabolas, and 
hyperbolas. [13, p. 15]  As early as 1887, a Massachusetts Institute of Technology textbook prescribed their 
use for such curves when “a series of points” on the curve were already known. [7, p. 47] Specific applica-
tions of the French Curve included their use for designing the curves on ships, [13, p. 14; 10, p. 4] designing 
the curvature of railroad tracks, [13, p. 15; 10, p. 4] and the construction of steam curves on temperature-
entropy diagrams for steam at constant volume, pressure, or percentage in the gas phase. [9, p. 15] 
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The French Curve
“What exactly is a French Curve?”  In the most general sense, a French Curve is a solid, flat template that 
manifests variable curvatures on its external edges and internal edges for the purpose of drawing a smooth, 
curve through a series of fixed points.  The definition is necessarily broad because the available shapes and 
materials found among French Curves are diverse.  It is difficult to go to a drafting store and buy a single 
French Curve.  They are usually available in sets of three or eight curves of the more commonly used 
shapes.  The actual number of shapes of French Curves, however, is limitless.  Although some manufactur-
ers sell up to 22 standard shapes, they can produce large orders of custom-made shapes as well. [11]

10 inches

Figure �. Some common French Curves

The more common designs for French Curves consist of a variety of continuously linked curvatures 
of a single category of geometric shape.  The four most commonly used shapes are ellipses, hyperbolas, 
parabolas, and spirals. [6] Two of the more common spirals found in French Curve construction are the 
logarithmic spiral [9, p. 10] and the Spiral of Archimedes. [13, p. 44] In his 1911 text [9, p. 15], Thomas 
French prescribed the following spiral curve as useful for engineering diagrams and steam curves:
 r = Asec(q) + k  (1)
This curve is shown in Figure 2, where A=5.5 and k=8 over the following domain:

2.2 £ q £ p

Figure �. Polar Plot of 1911 French text equation

Materials
The range of materials for French Curves over the last 150 years has varied as much as their shape.  As 
of 1857, they were made of “thin wood, of variable curvature” with no varnish; the wood was kept in its 
natural state but kept carefully wiped. [16, p. 11] The most commonly used woods were white wood, cherry 
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wood, [12, p. 15] white holly, [2, p. 10] and pear wood. [10, p. 4] However, the industrial revolution brought 
experimentation with different construction materials. By 1894, French Curves were often made with rub-
ber or celluloid. [2, p. 10] These materials had their disadvantages, and draftsmen either shunned them or 
adapted techniques to improve their functionality. The rubber was deemed poor for use as a French Curve 
because “it is difficult to make pencil marks on its surface.” [2, p. 10] Celluloid had the same problem, but 
draftsmen learned to overcome this by sandpapering the surface to roughen it. [2, p. 10] By the time Thom-
as French wrote Engineering Drawing, he deemed celluloid “the only material to be considered” for French 
Curves, though he acknowledged that home-made curves could easily be constructed out of “thin holly or 
bass wood, sheet lead, celluloid, or even cardboard or pressboard.” [9, pp. 14–15] As plastics technology 
continued to develop and improve, its inexpensive and durable nature ensured it as the future material for 
French Curves. Today, French Curves are usually constructed from transparent green, grey, clear, or amber 
plastic.

Nomenclature
Textbook authors throughout the late 19th century and early 20th century generally attribute the develop-
ment of French Curves to France, but none pinpoints their origin or their inventor. The French Curve has 
not always gone by that name, though. Even today, the French call it “le pistolet (á dessin)” [6] which, 
literally translated, means “the drawing pistol” or “the design pistol.” As early as 1857, they were known 
as “variable curves” or “universal sweeps.” [16, p. 10] Heavily influenced by French descriptive geometers 
like Monge, Dennis Hart Mahan referred to a French Curve as a pistol, pistolet, or a curved ruler in his 1870 
text. [12, p. 15] By the late 1800s, the first manuals began calling these tools “French Curves” or “irregular 
curves.” [1, p. 29; 7, p. 9; 5, p. 9] By the turn of the century, some manuals and textbooks had still not ac-
cepted a standardized terminology for the instrument. An 1898 Yale University text refers to them as “curve-
rulers,” [15, p. 29] while a 1905 U.S. Military Academy text refers to them as irregular curves. [10, p. 4] 

In the early 20th century, several people sought to write authoritative drafting manuals to encompass 
and collate current knowledge, standardize practices, and gain prestige for drafting as a technical field.  At 
least two of them had notable success.  Thomas Ewing French penned A Manual for Engineering Drawing 
in 1911. In this manual, he used the terms “curved rulers, irregular curves, or French Curves” [9, p. 14] 
interchangeably.  It is mere coincidence that a man named French wrote the book and used the term “French 
Curves”; Goerge André’s 1874 text used the term when Thomas Ewing French was only three years old.  
In 1918, Carl Lars Svensen penned Essentials of Drafting as a competing text. In his book, Svensen re-
fers to French Curves as “irregular curve[s]” and lists them among “the really necessary equipment” for 
drafting, but never references how to use them in 184 pages of printed material.[14, p. 1] Although French 
passed away in 1944, a revised and updated version of his work is still available in its 14th edition of 1993 
as Engineering Drawing and Graphic Technology. Meanwhile, Svensen’s original work did not last as 
long; the 20th and final printing of its 2nd edition occurred in 1947. However, a later collaborative effort 
of French and Svensen known as Mechanical Drawing is still available in its 11th edition of 1990. By the 
mid 20th century, the term “French Curve” had gained widespread acceptance as the term of choice in 
other manuals and textbooks as well.  Today, the terms “French Curve” and “irregular curve” are often used 
interchangeably.    

French Curves are not the only tools used for drawing non-circular lines, but they are one of the more 
versatile drafting tools from the 19th and 20th centuries. French Curves are a specific taxonomy within the 
broader category of “irregular curves.” Irregular curves also include splines, ships curves, railroad curves, 
and flexible curves. A spline is an adjustable curve made of flexible strips of metal, rubber, or wood.  Splines 
usually have a cross-section in the shape of the letter ‘H,’ so that three to four pound weights — known as 
‘ducks’ — can be clipped to the strips to hold them in the shape of a curve. The use of splines is restricted 
to long, sweeping curves such as those found in early 20th century aircraft and automotive design. [9, p. 
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10] Ships’ curves are another category of irregular curves. Specific to ship hull design only, these curves 
are available in sets of 45–120 curves in a professional set. [13, p. 14] Railroad curves are similar to ships 
curves, with a specific purpose and a limited range of use. The fifth category of irregular curves is flexible 
curves.  These curves usually consist of layers of thin metal strips, coated with rubber or soft plastic. The 
advantage of flexible curves is that the draftsman may bend them into a fixed position without the use of 
weights.  The disadvantage of flexible curves is that they are only so flexible; if a draftsman bends them too 
tightly, the metal inside will fatigue and break. 

The significance of French Curves
The logical teaching points behind the use of French Curves are simple.  Life is nonlinear, both in natural 
and man-made constructs.  It is not neat; it is not succinct; and it can rarely be described accurately with a 
simple equation. Our efforts to represent existing behavior are merely approximations. So are our designs 
for new materials and objects. When it comes to curvature, the implicit goal for approximations is increased 
accuracy.  While computer technology does a better job of nonlinear curve-fitting and regression, French 
Curves were an important tool to communicate complex curvature for over a century.  Moreover, computers 
have not yet completely replaced French Curves.  For drafting by hand, French Curves remain an inexpen-
sive method of curve-fitting that maintains precision. 

French Curves and the classroom
The primary use for French Curves in today’s classroom is to teach about regression, interpolation, and 
extrapolation in a more conceptual manner. Using technology, it has become easier than ever to conduct a 
nonlinear regression of data. With readily available commercial spreadsheet software, students can follow a 
rote procedure to fit exponential, logarithmic, or polynomial equations to a given set of data. Many also un-
derstand that a higher coefficient of determination indicates a better “goodness of fit” for the model to their 
data.  Based on this metric, they often will not hesitate to use their model for interpolation and extrapolation.  
Unfortunately, many students often do not differentiate between the coefficient of determination and the 
actual suitability of an equation for a model. While a sixth-order polynomial regression will perfectly fit any 
series of six data points, it is unlikely to be worthwhile as a model to predict behavior at any other point in 
time. If students conduct graphical regression using a French Curve before analytical regression with com-
puters, we can impart a greater understanding of the trade-offs between how well a model fits data and how 
well a model may predict unknown values. The students can also gain a greater appreciation for the level of 
uncertainty when extrapolating predictions from a model as opposed to interpolating intermediary values.

Another use for French Curves in the classroom is to inspire and motivate the general study of polar 
plots.  Spirals offer one manner to pique student curiosity: “What is a Logarithmic Spiral? What is the Spiral 
of Archimedes? What is the difference? And which is the closest approximation to a given curvature?”  
Based on the spiral-based French Curve shown in Figure 3, can you tell?

Figure �.  A spiral-based French Curve



The French Curve ��

A Logarithmic Spiral is a spiral that grows such that the angle between the radial line and the tangent 
line at any given point is constant.  This is also known as the “Equiangular Spiral” and takes the form:
  r = aebq (2)

where a and b are constants.

Figure �. Logarithmic Spiral where a = 3.75 and b = 0.1725

Meanwhile, a Spiral of Archimedes takes on the form r = aq, where a is a constant. Its shape is note-
worthy due to the equal distance between concentric rings along any radial line.

Figure 5. Spiral of Archimedes where a = 2

Within the topic of polar plots, French Curves can also 
motivate the study of conic sections. The three most com-
monly sold French Curves are based on conjoining sub-
sections of various parabolic, hyperbolic, and elliptical 
curvatures. Further examples of these French Curves are 
shown in Figure 6.

While the shapes alone may be useful to inspire conic 
section studies, it is also useful to conjoin this academic 
endeavor with polar plotting. Students can work with the 
following equation [4]:

 r p
e

=
+ ( )1 cos θ

 (3) Figure �. French Curves constructed with
elliptical, hyperbolic, and parabolic sections
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where p and e are constants, and e represents the eccentricity of the function (not Euler’s constant). Of 
note, when e = 0, a circle results. Values between 0 and 1 for e produce ellipses; a value of e = 1 creates a 
parabola; and a hyperbola results from values of e that exceed 1. [4] While Equation 3 can be expressed in 
many equivalent forms, this example is a simple representation.

One more use for the French Curve is as an icon of history and technological development.  Almost 
any physical construction has improved with the tools for design and construction. Aircraft are an excellent 
example. Students can identify an airplane from each decade of the 20th Century that demonstrates cutting 
edge technology. From the biplanes of World War I through the stealth aircraft of the 1990s, the lines of 
each design have become smoother and more deliberate. Within these examples, students can extrapolate 
the tools used to design the aircraft. The early 20th Century airplanes relied on NACA wing sections and 
relatively straight lines for body design.  As French curve use declined in favor of early computer design, 
some lines became straighter. The F-117A Nighthawk (stealth fighter) has very few rounded edges because 
the computer technology wasn’t sufficiently mature when it was designed in the 1970s. Within the next 
decade, advances in computers allowed the development of the smooth bodied B-2 Spirit (stealth bomber), 
which manifests almost no sharp edges. Other examples in the evolution of design are also available for 
study, and it can be fun for students to try to identify the tools used to create them.

A final way that French Curves have already been used in the modern mathematics classroom is anec-
dotal and humorous, but does demonstrate an interesting evaluation of student’s conceptual understanding 
of calculus. From his book, “Surely you’re joking, Mr. Feynman”: Adventures of a Curious Character, 
physicist Dr. Richard Feynman relates the following story from his days as a teaching assistant.

I often liked to play tricks on people when I was at MIT.  One time, in mechanical drawing class, 
some joker picked up a French curve (a piece of plastic for drawing smooth curves — a curly, 
funny-looking thing) and said, “I wonder if the curves on this thing have a special formula?”

I thought for a moment and said, “Sure they do. The curves are very special curves. Lemme 
show ya,” and I picked up my French curve and began to turn it slowly. “The French curve is made 
so that at the lowest point on each curve, no matter how you turn it, the tangent is horizontal.”

All the guys in the class were holding their French curve up at different angles, holding their 
pencil up to it at the lowest point and laying it along, and discovering that, sure enough, the tan-
gent is horizontal.  They were all excited by this “discovery”— even though they had already gone 
through a certain amount of calculus and had already “learned” that the derivative (tangent) of the 
minimum (lowest point) of any curve is zero (horizontal). They didn’t put two and two together.  
They didn’t even know what they “knew.” [8, pp. 36–37] 

Conclusion
To average students, a set of French Curves seems like an anachronism. Bring some into your classroom 
and prove them wrong! French Curves are useful for generating an interest in history, demonstrating math-
ematical concepts in the classroom, and inculcating a greater, practical understanding of mathematical 
principles as well.



The French Curve ��

References

1. André, George G.  The Draughtsman’s Handbook of Plan and Map Drawing. New York:  E. and F. N. Spon, 1874, 
pg. 29.

2. Anthony, G. C. Elements of Mechanical Drawing: The Use of Instruments; Theory of Projections and its Appli-
cation to Practice; and Numerous Problems Involving both Theory and Practice. Boston: D.C. Heath and Co., 
Publishers, 1904, pg 10.

3. Booker, Peter Jeffrey.  A History of Engineering Drawing.  London:  Chatto and Windus, 1963, pg 167.

4. Calvert, J. B. Parabola [online article].  Denver, CO:  University of Denver, May 3, 2002.  Accessed October 16, 
2003. Available from http://www.du.edu/~jcalvert/math/parabola.htm; Internet.

5. Cross, Anson K.  Mechanical Drawing:  A Manual for Teachers and Students. Boston: Ginn and Company, 1896, 
pg. 9.

6. Daube, Klaus. Drawing and Illustrating in the Pre-digital Time [online article]. Zurich:  Docu+Design Daube, June 
5, 2003. Accessed October 8, 2003. Available from http://www. daube.ch/docu/glossary/drawingtools; Internet.

7. Faunce, Linus. Mechanical Drawing, 13th Edition. Boston:  Linus Faunce, 1887, pp. 9, 47.

8. Feynman, Richard Phillips. “Surely you’re joking, Mr. Feynman”: Adventures of a Curious Character. New 
York:  W.W. Norton, 1985, pp. 36–37.

9. French, Thomas E. A Manual for Engineering Drawing, 1st through 6th Editions.  New York:  McGraw-Hill Book 
Company Inc., 1911, 1918, 1924, 1929, 1935, 1941, pp. 1–15.

10. Hagadorn, Charles B. Drawing Instruments and Papers.  West Point, NY:  Department of Drawing, USMA, 1905, 
pg. 4.

11. Huang, Alice. Discussion by telephone on June 6, 2003. Hua Ching Manufacturing Company, Republic of 
China.

12. Mahan, Dennis Hart. Industrial Drawing. New York: J. Wiley, 1870, pg. 15.

13. Svensen, Carl Lars. Drafting for Engineers. New York: D. Van Nostrand Company, Inc., 1935, pp. 14–15, 44.

14. Svensen, Carl Lars. Essentials of Drafting, 1st Edition. New York: D. Van Nostrand Company, Inc., 1918, pg. 1.

15. Tracy, J. C.  Introductory Course in Mechanical Drawing. New York: Harper Brothers Publishers, 1898, pg. 29.

16. Worthen, W.E., ed. Appleton’s Cyclopaedia of Drawing. New York: D. Appleton and Company, 1857, pp. 
10–11.





��

 Area Without Integration:
Make Your Own Planimeter 

 Robert L. Foote Ed Sandifer 
 Wabash College Western Connecticut State University 

Introduction
Clay tablets from Mesopotamia and papyri from Egypt provide evidence that work with area has been part 
of mathematics since its early history.  These Ancients knew how to find areas of squares, circles, triangles, 
trapezoids, and a number of other shapes for which we no longer have names.  

Like many other physical quantities, we usually measure area indirectly.  That is, we measure some-
thing else, such as lengths, a radius, or angles. Then we do some calculations to find area based on appropri-
ate formulas. The object determines the formula we use and the measurements we make.

There are a number of methods to measure volumes. Some of them are indirect, as for areas, involving 
linear and angular measurements and the use of formulas. Interestingly, some of them are more direct. One 
example is the measurement of liquid when cooking, using calibrated measuring cups. Similarly, the vol-
ume of a non-porous solid can be measured by submerging it in water to see how much water it displaces 
(it helps if the solid doesn’t float).

Many instruments are cleverly designed devices that convert a value we want to measure into some 
scale that we can read directly.  For example, thermometers (the bulb type, not the digital ones) convert the 
volume of the liquid (this used to be mercury, but now it is usually tinted alcohol) in the bulb into a length.  
When the liquid expands or contracts with the temperature, the calibrations along the tube let us read the 
temperature that corresponds to volume.

Our goal is to learn how to make and use a simple device called a planimeter that measures area more 
directly without having to measure lengths or angles or to make any calculations. A second goal is to under-
stand the mathematics behind how planimeters work.

Small Project #1.  Find out how various instruments convert quantities into measurements that we 
can read directly. There are thousands of different instruments, but you might start with some of 
the following:
• Barometer — measures air pressure
• Anemometer — measures wind speed
• Speedometer
• Protractor
• Pitot tube — measures speed of an airplane through the air
• Volt meter
• Bathroom scales
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• pH meter
• Gasoline pump
• Tire pressure gauge
• Odometer

There are “digital’’ models of many instruments available. Usually, the digital models work 
the same as the analog models, but they have a “digitizer’’ built in to convert the analog reading 
into a digital value. This gives the illusion of accuracy and makes it harder to figure out what the 
instrument is actually doing, so we recommend doing this project with analog instruments rather 
than digital ones.

This project can be a minor homework assignment by having students give a one- or two–line 
description of how each instrument works. You can build extra credit into the assignment by having 
students collect as many different instruments as they can find.  It can be a more substantial project 
if students make posters or web pages showing how the instruments work.

Map readers or map distance measurers
Before we understand area, we should make sure we understand length.  We can measure straight lengths 
directly with a ruler.   We can use a tape measure to measure around corners and across certain curved sur-
faces.  We can measure more twisted curves indirectly with a string by running the string along the curve 
and then measuring the string.  We could mark the string in order to use it to make direct measurements.

All of these techniques become more difficult if the length to be measured is longer than the device used 
to measure it. Nobody would want to measure a distance of a mile (or kilometer) or more with a string or a 
meter stick. Instead, there is a device called a surveyor’s wheel, a wheel of known circumference, usually 
either a meter or three feet, with a counter attached. The counter measures the distance we roll the wheel 
by counting the number of times the wheel turns. This is also how the odometer on an automobile and a 
“cyclometer’’ for a bicycle work.

Cyclometers and odometers work well for measuring long curves. For measuring short distances, such 
as a path on a map, there is a device called a map reader or a map measurer. It works similarly to a survey-
or’s wheel. Figure 1 shows a photograph taken from an eBay auction [4]. Its description follows.

Here is an old instrument used in World War 2 for mea-
suring distances on maps. This precision instrument 
was manufactured by the Hamilton Watch Company 
which is one of the oldest and finest watch companies 
ever. This instrument was manufactured by the Allied 
Products Division of Hamilton Watch Co. between the 
years of 1941 and 1957 for the military, then for indus-
trial use afterwards. This one is the “331’’ model, and 
is used for distance measurement on maps by using the 
small roller wheel on a map from point A to point B. 
This instrument is approximately 5 inches from tip to 
tip. The gauge is graduated in inches and centimeters.

These devices are based on a simple idea.  You roll the little wheel (on the right side of the picture) 
along the route on the map. The device mechanically keeps track of how much the wheel turns.  This is 
recorded on a scale, which can then be read. This will be a fundamental idea in understanding how a pla-
nimeter works.

Figure �. Map Distance Measurer.
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When using a map reader, it is important to keep the little wheel aligned with the path being measured.  
Otherwise, the wheel slides sideways a bit and does not measure the full length of the path. 

Herein lies a theorem.  If the wheel does not stay aligned with the path, then what does it measure?  
It measures just the component of the path that is parallel to the alignment of the wheel.  Here is a more 
precise statement.

Theorem 1 (Map Reader Theorem)  If a map reader rolls along a curve aligned at a constant angle q to 
the direction of the curve, then the distance measured by the map reader equals the length of the curve times 
cosq. In symbols, d = Lcosq, where d is the distance measured by the map reader (the amount the wheel 
rolls) and L is the length of the curve.

It is easy to imagine moving the map reader at a nearly fixed angle to the direction of the curve, due to 
the way you hold it. It takes practice to get accurate results. Say, for example, that you measure a path that 
is 20 inches long, and you consistently hold the map reader 7° off from the direction of the curve. Instead 
of reading d = 20 in, it would read d = 20 ´ cos7°  20 ´ .9925 = 19.85 in.

Of course the angle between the direction of the wheel and the direction of the curve will not generally 
be constant. In this case it takes calculus to give a precise description of how much the wheel turns—it is 
d = ò cosq ds, where q can now be a variable angle between the directions of the wheel and the curve, and 
ds represents the length of an infinitesimal piece of the curve. (This just means that the formula d = Lcosq 
is applied to very short parts of the curve and then the results are added up.) Fortunately you do not need 
calculus to understand the basic idea: if the wheel is not aligned with the curve, the amount the wheel rolls 
is something less than the length of the curve. The amount that the measurement is off depends on how bad 
the alignment is.

Here is an example where the angle between the directions of the wheel and path is not constant in 
which it is pretty clear how far the wheel rolls.  In Figure 2, the wheel of a map reader follows the pictured 
curved path, however, the user keeps the wheel aligned straight “north’’ on the map instead of aligning it 
with the path.  In this situation, the map reader will always record the distance it is north of the starting 
point, ignoring the east and west parts of the motion. This is true even if part of the curve has a southerly 
component, since on this part of the curve the wheel will roll backwards and the distance is subtracted. If 
we have a coordinate system with the initial point as the origin, then the distance measured by the wheel is 
the y-coordinate of the final point. Turning the wheel 90° to the right would make the map reader measure 
the x-coordinate or how far east it has moved from the initial point.  

One is tempted to say that the map reader measures “positive’’ distance when it rolls forward and 
“negative’’ distance when it rolls backwards, but this can be confusing since distance is inherently positive. 

Path of wheel

Distance measured

Figure �. Map reader wheel measuring a y-coordinate.
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Nevertheless, this is a useful notion, which we will call “signed’’ or “directed” distance. Thus the map read-
er measures signed distance, which is the distance it rolls forwards minus the distance it rolls backwards. 

Small Project #2.  Make a map reader out of TinkerToys®. The wheel of the map reader can be one 
of the 2’’ spools that lets a stick pass through the center without gripping it. In order to count how 
many times the measuring wheel turns, it helps if you make one or more marks on the circumfer-
ence. The marks might be every 30° or 45° around the circumference so you can easily see the 
number of rotations (including fractions) the wheel rolls. The signed distance is then the number of 
rotations times the circumference.

Use the map reader to measure a variety of distances, lengths of paths on maps, and x- and 
y-coordinates of points. To begin with, note that the measuring wheel is approximately 2’’ in di-
ameter, and so about 6.28’’ in circumference.  Start by measuring some line segments of known 
length. If you get results that are consistently too large or too small, you need to use better value for 
the circumference. You can get this by rolling the wheel on a piece of paper, marking consecutive 
places where a point on the circumference contacts the paper, and measuring the distance between 
these with a ruler.

Lengths and points with coordinates on the order of six to eighteen inches are a good size for 
this project. This project, especially measuring coordinates along curved paths, should give stu-
dents a good sense of how the main moving part of a planimeter works. It should take only about 
20 minutes.

Measuring area: planimeters
How do you find the area of an irregular region for which there is no formula, such as the area of a lake on 
a map? You use a planimeter—a mechanical instrument that measures areas. The user traces the boundary 
of a region with the “tracer point’’ of the planimeter. Upon returning to the starting point, the area of the 
region can be read from a dial on the planimeter.  We will consider two types of planimeters in this section, 
polar and linear, and a third type in the last section, the Prytz planimeter. Here are some significant dates in 
the history of planimeters: 

• ca. 1814–1853. Bavarian engineer J. M. Hermann and Italian professor Tito Gonnella independently 
developed the first planimeters in 1814 and 1824, respectively, but their work was not widely known 
until much later. (For an animation of a Hermann-style planimeter, see [13].) In 1826 the Swiss en-
gineer Johannes Oppikofer also designed a planimeter. It is unclear whether Oppikofer knew of the 
earlier inventors’ work. Oppikofer’s design was the first to be widely known as well as the first to be 
manufactured and marketed, and thus is considered by Henrici to be the “starting-point’’ for those 
that followed. These early planimeters were mechanically complicated, bulky, awkward to use, and 
it was difficult to get consistently accurate results with them. Other inventors made attempts to ad-
dress these problems, but were only partially successful [8].

• 1854. Swiss mathematician and inventor Jacob Amsler developed the polar planimeter and a few 
years later the linear planimeter. They were mechanically simple, small, portable, easy to use, and 
accurate. They were so clearly superior to existing planimeters that the older planimeters were 
quickly made obsolete. Since then a few modifications have been made either to improve accuracy 
or for specific applications [8]. Nearly all modern planimeters use Amsler’s basic design, and even 
those that do not use his design still work on the same mathematical principle. We will see how to 
make and use a polar planimeter shortly.

• 1875. Danish mathematician and cavalry officer Holger Prytz developed the hatchet planimeter as 
an economical alternative to Amsler’s planimeters. This had many of the advantages of Amsler’s 
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planimeter (in fact it was mechanically simpler), but it was less accurate [8, 10, 5]. We will see how 
to make and use a hatchet planimeter in the last section.

• ca. 1980–present. Digital planimeters. These have digital readouts and built-in calculators, but are 
mechanically the same as Amsler’s planimeters and not noticeably more accurate. They are still 
manufactured and sold (see some of the links on [6]).

Amsler’s Polar and Linear Planimeters
In 1854, Jakob Amsler invented the polar planimeter, a brilliant and simple device for measuring the area of 
a region. At the time he was still a student at the University of Koenigsberg. He made a career for himself 
manufacturing tens of thousands of them, and inventing and manufacturing related instruments. 

  
 Figure 3. Polar planimeter [9]. Figure 4. Linear planimeter [9].

Schematic drawings of polar and linear planimeters are shown in Figures 3 and 4. The main part of each 
is a movable rod, called the tracer arm, with a tracer point at one end (labeled T ). A wheel is attached to the 
rod with its axis parallel to the rod. The wheel is equipped with a scale typically calibrated in square inches 
or square centimeters. It is similar to a map reader wheel in that it can roll both forwards and backwards, 
and we will call it the measuring wheel. In a linear planimeter, the end of the tracer arm opposite the tracer 
point is restricted to follow a linear track, along which it can slide freely. In contrast, in a polar planimeter, 
the tracer rod is hinged to a second rod, the pole arm, forming an elbow. The end of the pole arm opposite 
the hinge, called the pole, is fixed so that the pole arm can pivot around it. Consequently the elbow follows 
the arc of a circle as it moves.

To operate a planimeter, the user selects a starting point on the boundary of the region to  be measured, 
places the tracer point there, and sets the counter on the wheel to zero. The user then moves the tracer point 
once around the boundary of the region, as shown in Figure 5. The tracer point is typically a stylus or a 
point marked on a magnifying glass to facilitate the tracing. In a polar planimeter, as the tracer point moves, 
the elbow at the hinge will flex and the angle between 
the pole arm and the tracer arm will change. In a linear 
planimeter, the end of the tracer arm in the track will slide 
along the track. In both planimeters the wheel rests gently 
on the paper, partially rolling and partially sliding, de-
pending on how the tracer point is moved. If the pointer 
is moved parallel to the tracer arm, the wheel slides and 
does not roll at all. If the pointer is moved perpendicular 
to the tracer arm, the wheel rolls and does not slide at all. 
Motion of the pointer in any other direction causes the 
wheel to both roll and slide. When the tracer point returns 
to the starting point, the user can read the area from the 
scale on the wheel. Figure �. How a planimeter is used.



�� Hands on History

Like a map reader wheel, the measuring wheel measures a directed distance, namely, the component 
of its motion that is perpendicular to the tracer arm. The mathematics of how this directed distance can be 
interpreted as the area of the region traversed by the tracer point is both simple and elegant, and is the basis 
of how a planimeter works.

Polar and linear planimeters are mechanically simple: polar planimeters need only three moving parts; 
linear planimeters need only two. Since their invention they have been inexpensive enough that many en-
gineers, architects, surveyors and others could afford to own one. In the electronic age planimeters are less 
commonly used since the area of a digitized region can be found with an appropriate computer program, but 
many antique planimeters are still reliable and in service. Modern electronic planimeters are typically ex-
pensive, however the electronics are illusory. They are mechanically about the same as their non-electronic 
ancestors—Amsler would easily recognize them. Furthermore, they are not noticeably more accurate, since 
their accuracy lies in the skill of the operator, not in the electronics.

Making a polar planimeter
You can easily make a polar planimeter with TinkerToys®. The parts pictured in Figure 6 are from a 2002 
Collector’s Edition Motorcycle set. It has enough pieces to make three model planimeters.  

One polar planimeter uses the following parts (see Figure 6):

4  Spool A 2 diameter spools that hold sticks tight at the center of the circle 
4  Spool C 2 diameter spools that let sticks pass through the center 
2  Long sticks 10.5 long
2  Short sticks 3 long
3  Connectors 2 plastic pieces that connect to spools at the ends and allow sticks
 to pass through the middle. Some sets do not contain this part. 

Assemble it as shown in Figure 7. The figure shows enough parts for two planimeters. One set is as-
sembled with the second set placed around it so you can see where each part is used. You can think of the 
assembly as an arm, with the elbow in the center, the shoulder at the left, and the wrist at the right.

Figure �. TinkerToys® needed to make a polar planimeter.
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The shoulder (which will be the 
pole) is made of A-Spools connected 
by a short stick through a C-Spool.  
The elbow is like the shoulder, but 
with two C-spools.  Join the shoulder 
to the upper C-Spool in the elbow with 
a long stick (pole arm). The forearm 
(tracer arm) is a long stick connected 
to the lower C-Spool on the elbow.  
At the center of the forearm, put a C-
Spool (measuring wheel), using con-
nectors to keep it as near to the center 
of the forearm as you can manage, but 
so that it can still roll smoothly. (If you 
did Small Project #2 and made marks 
along the circumference of the wheel, 
you can use the same wheel for the 
planimeter. See Small Project #2 for 
other suggestions.) Align the connec-
tors horizontally so they do not inter-

fere with the rolling. Put the third connector at the wrist, oriented diagonally to the table.  This connector is 
the tracer point. It should be as vertical as possible without reducing the contact of the roller with the surface 
it rests on. If you like, you can trim the pointer. It should be short enough so it can be oriented vertically, 
and long enough so it just about touches the surface of the table.

When using the planimeter as described above, you may need to hold the pole to keep it from moving, 
but be sure to allow the pole arm to pivot around it. After moving the tracer point once around the boundary 
of the region, as in Figure 8, make a note of the directed distance the measuring wheel rolls. The directed 
distance is the number of rotations, including fractions, times the circumference. (If you are concerned 

about the sign of the directed distance, 
that is, whether it is positive or nega-
tive, it depends on which direction you 
take to be the forward direction of the 
wheel and which direction you move 
the tracer point around the boundary of 
the region. If the net directed distance 
is negative, you should switch one of 
these, but not both.) 

The following theorem states the 
amazing fact that makes this a useful 
device. Here and later it is convenient 
to abbreviate “the directed distance the 
measuring wheel rolls’’ as “the roll of 
the (measuring) wheel.’’

Theorem 2 (Planimeter Theorem) 
The area of a region measured by a 
polar or linear planimeter equals the 

Figure �. Making a polar planimeter.

Figure �. Measuring the area of a square.
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length of the tracer arm times the roll of the measuring wheel. In symbols, Ar = Ld, where Ar is the area of 
the region, L is the length of the tracer arm, and d is the roll of the wheel.

The subscript ‘r’ is to remind us that Ar is the area of the region being measured (there will be other 
areas in a moment). Since it will be easier to note the number of rotations made by the measuring wheel, a 
more useful formula may be Ar = LnC, where C is the circumference of the measuring wheel and n is the 
number of rotations it makes, including fractions.

The proof of the Planimeter Theorem is taken up in the next subsection. 

Small Project #3.  Use your TinkerToy® planimeter to measure several regions of known area, rang-
ing from 10 to 200 square inches. To do this, you need values for C and L, the circumference of 
the wheel and the length of the tracer arm, respectively. For C, see the comments in Small Project 
#1. For L, you can start with 10.5, the length of the long sticks. If you get results that are larger 
or smaller than the true area by a consistent percentage, you need to use better values for L and C. 
The length L of the tracer arm should be the distance on the table between the tracer point and the 
center of the elbow joint. After calibrating your planimeter, use it to measure some regions of un-
known areas. To check your results, compare them to those obtained by others. If you measure the 
area of a lake, state, or country on a map, convert your result (in square inches) to square miles by 
multiplying by the square of the length scale on the map. For example, if the scale on the map is 15 
miles to an inch, you should multiply by 152 = 225, that is, one square inch on the map represents 
225 square miles. A lake measuring five square inches on such a map has an area of 5 ´ 225 = 1125 
square miles. To check your results, you may be able to find the area in an atlas or almanac.

On a commercial planimeter, the measuring wheel has a scale attached to it, as seen in Figure 9. You 
do not need to use the formula. Instead, the formula is incorporated into the device, and you read the area 
directly from the scale. Planimeters are set to measure either in square inches or square centimeters. On 
some, the length of the tracer arm is adjustable, which allows you to make measurements in either system 
of units. You can even set it to measure in square miles when using a map with a particular scale. 

A linear planimeter is used in exactly the same way. The mechanical difference between the two types 
is that the “elbow’’ (the end of the tracer arm opposite the tracer point) of a linear planimeter moves along 
a straight line, whereas in a polar planimeter it moves along a circle.

Figure �. Commercial planimeter and the scale on its measuring wheel.

How Planimeters Work: Proof of the Planimeter Theorem
This seems too simple to work, or, if it works, it seems like it must give only an approximation.  However, 
a planimeter gives exact results, if it is exactly manufactured and used correctly.  The proof is based on two 
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simple theorems (Theorems 5 and 6 below) about the area swept out by a line segment moving in a plane, 
which are significant results in their own right.

Theorem 3 (Moving Segment Theorem [2, p. 
295; 3, p. 451])  The area A swept by a straight line 
segment of length L as it moves from P1Q1 to P2Q2 
(Figure 10) is given by A = Ld, where d is the com-
ponent of the distance the midpoint of the segment 
moves perpendicular to the segment. 

It is important to note that d can be (and often is) less than the distance the midpoint moves. To see this, 
consider the familiar formula for the area of a parallelogram, A = bh, where b is the length of the base and 
h is the height. If a moving segment of length b moves from one base to the other, it sweeps out the paral-
lelogram. The actual distance moved by the midpoint is the length of the other sides of the parallelogram, 
but the component of its distance perpendicular to the base is the height h. Thus we have L = b and d = h, 
and so the formula for area given by the theorem agrees with that for the area of the parallelogram.

  
 Figure ��. Ribbon Theorem. Figure ��. Annulus.

Some readers may be familiar with another special case of Theorem 3, sometimes called the “Ribbon 
Theorem,’’ illustrated in Figure 11.

Theorem 4 (Ribbon Theorem)  The area of a curved region of constant width equals the width of the re-
gion times the length of its median curve (the curve described by the midpoints of its widths).

A special case of this theorem is the well-known formula for the area of an annulus. Let L be the difference 
between the radii of the circles (shown as a line segment in Figure 12), let C be the circumference of the 
median circle (dotted line). Then the area of the annulus is A = LC. A bit of elementary algebra and geom-
etry shows that this is equivalent to the “obvious’’ formula, A = pR2 – pr2, where R and r are the larger and 
smaller radii, respectively.

You have probably already noticed that the formulas in Theorems 2 and 3 are essentially the same, but 
their interpretations are different. To begin making the connection, note that the d in Theorem 3, awkwardly 
described as the component of the distance the midpoint moves perpendicular to the segment, is exactly 
the signed distance recorded by a measuring wheel mounted at the midpoint of the tracer arm with its axis 
parallel to the segment, just as the wheel is attached to the tracer arm of the planimeter. (In the next section 
we see what happens if the wheel is not mounted at the midpoint.) We note that for Theorem 3 to be true, 
areas that are swept more than once must count as many times as they are swept. Furthermore, if part of the 
segment backtracks, that portion of the area must be counted negatively. Like distance, area is not negative, 
but we can consider a new notion of signed area relative to the moving segment. The segment has a forward 
direction (the direction in which the signed distance measured by the wheel is positive). Signed area swept 
in that direction is positive. Signed area and signed distance in the opposite direction are negative. Thus 
Theorem 3 is really about signed area. It can be restated more simply as follows.

P2

P1

Q2

Q1
Figure �0. Moving segment sweeping out an area.
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Theorem 5 (Moving Segment Theorem, restated)  Suppose a line segment of length L is equipped with a 
measuring wheel at its midpoint with its axis parallel to the segment. If the segment moves from one position 
in a plane to another, the signed area swept out by the segment is given by A = Ld, where d is the signed 
distance recorded by the wheel during the motion. 

So now the d in Theorem 2 is the same as the d in Theorem 3. What about the areas? Note that the 
overall area covered by the tracer arm is typically much larger than the area being measured. However, the 
signed areas are the same. This follows from the following Area Difference Theorem.

Theorem 6 (Area Difference Theorem)   If the endpoints of a moving line segment each move around 
closed curves, both in the same direction, then the signed area swept by the segment is equal to the differ-
ence between the two areas traversed by the endpoints. In symbols, the signed area is A = Ar – A

l

, where Ar 
and A

l

 are, respectively, the areas of the regions traversed by the right and left endpoints (Figure 13, lower 
right). 

Ar

A

Figure ��. Intuitive proof of the Area Difference Theorem [6].

(Now the subscript ‘r’ stands for ‘right’! Not to worry—we will always take the region measured by a pla-
nimeter to be the one on the right.) Intuitively, here is why this is true. The total signed area swept by the 
segment is equal to the area swept in the positive direction (Figure 13, upper left) minus the area swept in 
the negative direction (Figure 13, upper right). The positive area has two parts, namely Ar, which is encir-
cled by the right endpoint, and that between the two regions (Figure 13, lower left). Likewise, the negative 
signed area has two parts, A

l

, encircled by the left endpoint, and that between the two regions. When we 
add to get the total signed area swept by the segment, the parts in common cancel, leaving the signed area 
swept by the segment as the area encircled by one end minus the area encircled by the other end, that is, 
Ar – A

l

. For an animation of this, see Robert Foote’s website [6]. Bruce Atwood [1] gives a rigorous proof 
using Green’s Theorem. 

Combining Theorems 5 and 6, we have Ar – A
l

 = A = Ld. If the moving segment is the tracer arm of a 
planimeter, then Ar is the area enclosed by the tracer point of the planimeter, that is, the area of the region 
being measured, and A

l

 is the area enclosed by the “elbow.’’ But, as noted earlier, the linkage of a polar pla-
nimeter is designed so that the elbow never leaves the arc of a circle, hence, properly used, it will encircle 
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no area, that is, A
l

 = 0. Hence, the area enclosed by the tracer point equals the signed area swept by the 
tracer arm. The situation for the linear planimeter is similar—the end of the tracer arm that moves along the 
linear track encloses no area, so again A

l

 = 0. In both cases we have that Ar = Ld. This completes the proof 
of Theorem 2, the Planimeter Theorem.

It Does Not Matter Where the Wheel Is
Up to this point it has been assumed that the wheel of the planimeter is located at the midpoint of the tracing 
arm. You may have noticed, however, that on most commercial planimeters, the wheel is generally not at 
the midpoint. In this section we will see that the wheel can, in fact, be located at any point along the tracing 
arm. 

From the Moving Segment Theorem we have the formula

 A = Ld,  (1)

where A is the signed area swept out by a motion of the tracer arm, d is the corresponding  roll of the wheel 
at the midpoint, and L is the length of the tracer arm. Relocating the wheel changes this formula, but not the 
formula in the Planimeter Theorem. Again, the formulas are the same, but they have different interpreta-
tions. The formula in the Moving Segment Theorem is true regardless of the segment’s position, whereas 
the formula in the Planimeter Theorem is valid only after the region has been measured. We need to deter-
mine how locating the wheel at another point changes formula (1). 

Small motions of the tracer arm come in two independent types. The general small motion is a combina-
tion of these. The first type is translational, when the planimeter’s initial and final positions are parallel to 
each other. In this case the signed area swept out is given by (1), since this is just the formula for the area of 
a parallelogram, as noted in the previous section. This is valid no matter where the wheel is located along 
the tracer arm.

The second type of motion is when the tracer arm rotates about the wheel, that is, the wheel does not 
roll, and the planimeter’s initial and final positions make some angle q to each other (see Figure 14). Two 
circular sectors are formed. It is important to note that they are swept out in opposite directions, and so 
one of them contributes positively to the signed area and the other contributes negatively. If the rotation is 
clockwise, the signed area of the left sector is positive and that of the right sector is negative—the opposite 
is true for a counterclockwise rotation. Note that if the wheel is mounted at the midpoint of the tracer arm, 
these two circular sectors are congruent, and so their signed areas cancel, which makes this special case 
easier.

 
L

θ
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 Figure 14. Rotation about the wheel [6]. Figure 15. Circular sector.

Suppose that the wheel is located along the tracer arm so that the length of the arm to the left of the 
wheel is L

l

 and the length of the arm to the right of the wheel is Lr. Then L
l

 and Lr are the radii of the two 
circular sectors. Recall that a circular sector of radius r and central angle q (see Figure 15) has area given by

A r A r= =
1
2 360

2 2θ
π

θor .
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Here and in what follows, the first formula is used if the angle q is measured in radians; the second formula 
is used if the angle q is measured in degrees.

Assume for the moment that the small rotation of the tracer arm about the wheel in Figure 14 is coun-
terclockwise. The signed area swept out is the difference between the areas of the circular arcs. Applying 
the previous formula we have

 A L L L L A L L Lr r r r= - = -( ) = - = -
1
2

1
2

1
2 360 360 360

2 2 2 2 2 2 2θ θ θ
π

θ
π

θ
π

  

or LL


2( )θ.  (2)

Note that even though the angle q is positive, the signed area A can be positive or negative, depending on 
whether Lr is bigger or smaller than L

l

. If we assume the standard convention that counterclockwise angles 
are positive and clockwise angles are negative, then this formula is also correct for clockwise rotations—if 
the rotation is changed from counterclockwise to clockwise, both q and A are multiplied by –1, and so 
equality is maintained in (2).

We have seen that (1) and (2) give the signed areas swept out by the two types of small motions of the 
tracer arm. The total signed area swept out is the sum of these:

 A Ld L L A Ld L Lr r= + -( ) = + -( )1
2 360

2 2 2 2
 

θ
π

θor .  (3)

In fact, this formula is valid for large motions as well.

Theorem 7 (Improved Moving Segment Theorem)  Suppose a line segment of length L is equipped with 
a measuring wheel with its axis parallel to the segment. If the segment moves from one position in a plane 
to another, the signed area swept out by the segment is given by formula (3). 

Two observations are in order. First, note that if the wheel is at the midpoint of the tracer arm, then L
l

 
= Lr and (3) reduces to the special case (1) of the previous section, as it should. Second, the two terms of 
the sum in (3) are complementary to each other in a mechanical way: Ld applies when the wheel rolls and 
the tracer arm does not rotate, whereas 1

2
2 2L Lr -( )



θ applies when the tracer arm rotates and the wheel does 
not roll.

Now suppose the planimeter is used to measure an area. The Area Difference Theorem applies and we 
have A = Ar – A

l

. As in the previous section, A
l

 is zero because the left endpoint of the arm does not go 
around any area, and so A equals Ar, the area of the region being measured. In addition, note that the tracer 
arm does not make a full rotation; its direction simply oscillates around its initial direction. It follows that 
the net change in angle, q, is zero. Plugging these into (3) we get

Ar = Ld.
This is the same result as in the Planimeter Theorem. Since it does not involve L

l

 and Lr, it follows that the 
wheel can be located anywhere along the tracer arm. The area of the region is the product of the length of 
the tracer arm and the amount the wheel rolls, and this is what is read on the wheel’s scale.

Commercial planimeters are invariably used by tracing the region clockwise, as opposed to counter-
clockwise. This makes the wheel roll in the opposite direction. If you have access to one, you will note that 
the scale on the wheel is calibrated so that it decreases in what we have used as the forward direction.

The Prytz Hatchet planimeter
We are now in a position to understand the operation of a very simple and curious type of planimeter, known 
as a hatchet planimeter. It has no moving parts! It is surprising that it measures anything at all, but with 
formula (3) in the Improved Moving Segment Theorem we will be able to show that it measures area, at 
least approximately, and that the error has a very nice geometric interpretation.
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Figure ��. Hatchet planimeter [11].

This type of planimeter was invented in about 1875 by Holger Prytz, a Danish cavalry officer and 
mathematician, as an economical and simple alternative to Amsler’s polar planimeter. It consists of a rod 
with its ends bent at right angles to its length. One end, labeled T in Figure 16, is sharpened to a point. 
The other end, labeled C, is sharpened to a chisel edge parallel to the length of the rod. The chisel edge is 
slightly rounded, making it look somewhat like a hatchet (hence the name). Prytz referred to it as a “stang 
planimeter,’’ “stang’’ being the Danish word for “rod.’’ 

The first author had a Prytz planimeter made from a used chemistry ring stand in the Wabash College 
maintenance shop. It is also easy to make one out of TinkerToys® or wooden dowels, as in Figure 17. Use 
two 1/4’’ dowels for the vertical pieces. Sharpen one to a point in a pencil sharpener. The chisel edge can 
be fashioned in the other dowel by carving it. Alternatively, cut a thin slot in the end and wedge into it a 
small piece of sheet metal or the tip of an old table knife. Even a sturdy piece of thin cardboard will work 
(cut a small circle from an old playing card). We have even seen one in which the chisel edge is a circular, 
rotating, pizza slicer with its handle extended by a dowel. The chisel edge does not need to be terribly sharp, 
but it does need to be rounded and stiff enough that it will track correctly. It is important to be able to hold 
and guide the device with a relaxed grip. It helps if the center of gravity is low. The vertical pieces should 
be no longer than necessary and the horizontal bar should be lightweight, say a 3/8’’ dowel or other piece 
of wood. A small weight (a coin, for instance) can be added just above the chisel edge to help it track better 
(see Figures 17 and 19).

Figure 16 illustrates how the device is used. The end sharpened to a point is the tracer point T. Before 
beginning to trace the boundary of the region to be measured, note the initial location Ci of the chisel edge. 

Figure 17. Homemade hatchet planimeter.
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Then trace the boundary of the region, taking care not to apply any torque to the rod. Using a relaxed grip 
is important here. The chisel edge will track better if it drags on a piece of paper as opposed to a smooth 
counter top. The chisel edge will describe a zig-zag path that is always tangent to the direction of the rod 
(see Figures 16 and 18). After traversing the boundary of the region, make a note of the final location Cf of 
the chisel edge. Measure the distance between Ci and Cf and call it D. Measure the length L of the rod, that 
is, the distance between the tracer point and the point where the chisel edge contacts the paper. Then the 
area Ar of the region is given, at least approximately, by their product,

 Ar  LD. (4)
What could be simpler? 

This may seem too good to be true, and in some sense it is. Of course, every measurement is an ap-
proximation, but the main source of error in the use of a standard polar planimeter is due to the errors made 
by the user (not following the curve accurately or not reading the scale correctly). On the other hand, the 
error in the approximation made by a hatchet planimeter is inherently part of the device. The error can be 
significant, even if the user has a steady hand and measures D and L accurately. With the background of 
the previous sections, we can understand this approximation and the nature of the error, which can lead to 
a more accurate use of the instrument.

Small Project #4. Make a hatchet planimeter. Use it and formula (4) to measure the areas of several 
regions, and compare your results with those you obtained with the polar planimeter. You may want 
to repeat this project after reading the rest of this section to understand how to minimize the error 
inherent in the hatchet planimeter.

The hatchet planimeter rod is the analog of the tracer arm in a polar or linear planimeter; it is the mov-
ing line segment that sweeps out signed area. As in the previous sections, take the tracer point to be the right 
end point. Then the chisel edge is the left end point. We would like to apply the Improved Moving Segment 
Theorem and the Area Difference Theorem, however there are two obstacles, the most obvious of which is 
that there is no wheel. The second is that the chisel edge does not traverse a closed curve, which is required 
by the Area Difference Theorem.

We overcome these obstacles with a “thought experiment.” Consider using the hatchet planimeter to 
measure the region shown in Figure 18. The initial and final positions of the rod are shown, as well as the 
path of the chisel. After the tracer point returns to its starting position, imagine holding the tracer point fixed 
and rotating the rod from its final position back to its initial position. The chisel edge follows a circular 
arc from Cf to Ci. The radius of the arc is L, the length of the rod, and its center is the base point B where 
the tracing starts and stops. Now the chisel edge has gone around a closed curve, and the Area Difference 
Theorem applies. Actually we need a modification of the Area Difference Theorem because the curve in-
tersects itself. 

Theorem 8 (Improved Area Difference Theorem)  If the endpoints of a moving line segment each move 
around closed curves, then the signed area swept by the segment is A = Ar – A

l

, where Ar and A
l 

are, respec-
tively, the signed areas of the regions traversed by the right and left endpoints. 

It is the same as before, but with a more sophisticated interpretation. The area of a region is taken to be 
signed (positive or negative) depending on the direction its boundary is traversed. The area is taken to be 
positive when the boundary is traversed counterclockwise; it is taken to be negative when the boundary is 
traversed clockwise. 

The tracer point has gone around its region counterclockwise, and so Ar is simply the area we are mea-
suring. The chisel edge, however, has gone around two regions that are roughly triangular (shaded in Figure 
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18). In particular it has gone around the upper one (with Ci as a vertex) clockwise and the lower one (with Cf 
as a vertex) counterclockwise. Let Acw and Accw be, respectively, the areas of the upper and lower triangular 
regions. Then A

l

, the signed area enclosed by the path of the chisel, is A
l

 = Accw – Acw. By the Improved 
Area Difference Theorem, the signed area swept out by the rod is

 A = Ar – A
l

 = Ar – (Accw – Acw).  (5)

In a more complicated example there could be many triangular regions, in which case Acw would be the 
total area of those traversed clockwise, and similarly Accw would be the total area of the those traversed 
counterclockwise.

Continuing our thought experiment, imagine that the chisel is replaced by a wheel with its axis parallel 
to the rod as usual. How much does the wheel roll? While the tracer point goes around the boundary of the 
region being measured and the wheel follows the zig-zag path, the wheel does not roll at all. This is be-
cause the direction of motion is parallel to the rod, and this is the direction in which the wheel only slides. 
On the other hand, when the planimeter rod is rotated from its final position back to its initial position, the 
amount it rolls is the length of the circular arc from Cf to Ci. As in the previous sections, denote the roll of 
the wheel by d. 

We can now apply formula (3) from the Improved Moving Segment Theorem. Just as in the previous 
section, since the planimeter (in the thought experiment) returns to its initial position and does not make a 
full rotation, the net change in angle, q, is zero. Plugging this and (5) into (3), we have

Ar – (Accw – Acw) = Ld.

Solving for the area we are interested in, we get

Ar = Ld + (Accw – Acw).

If we think of the product Ld as an approximation for Ar, then this formula shows that the error made by the 
approximation is the quantity in parentheses, that is,

 Ar  Ld    and    error = Accw – Acw. (6)

Note that d is approximately the distance D between Cf to Ci that we measured earlier in (4). The use of D 
instead of d (which is how (4) follows from (6)) changes the error, but not significantly. However this had 
a significant effect on the history of the instrument, as we will see in a moment.

The analysis leading to (6) shows that the amount of error made is a trade-off between the triangular re-
gions traversed clockwise by the chisel and those traversed counterclockwise. With some experimentation 
you can convince yourself that the starting position of the planimeter affects this trade-off. With practice 

Figure 18. Analysis of the zig-zag path of the chisel [6].
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you can judge which positions are better than others. In a more detailed analysis, Prytz showed that the er-
ror is substantially reduced, although not entirely eliminated, by starting the tracing point at the centroid, or 
center of mass, of the region, as is suggested in Figure 16 (the centroid is labeled Bc). Draw a line segment 
from the centroid to some point on the boundary. Start tracing at the centroid, following the line segment 
out to the boundary. After going around the boundary, follow the line segment back to the centroid. Of 
course determining the exact location of the centroid is harder than finding the area, but the idea is that an 
educated guess should reduce the error. Prytz also showed that the error is smaller if a longer planimeter is 
used. Prytz’ paper is quite technical, but its main points are summarized in [5].

The hatchet planimeter has an amusing history. For some unknown reason, Prytz wanted to remain 
anonymous, at least initially. He published the theory of how the instrument works (considerably more 
complicated than that presented here) under the pseudonym “Z’’ in 1886. Eventually others made design 
modifications and wanted to take credit for the device. In 1894–96 and again in 1906–07 there ensued a 
lively debate in the pages of the journal Engineering as to the identity of the inventor and the merits of the 
subsequent modifications [5, 10].

Most of the design changes involved measuring the circular arc distance d between the initial and final 
chisel locations instead of simply using the straight line distance D. The inventors were under the mis-
taken impression that this would correct the inherent error of the device. (It does not, as the analysis above 
shows.) One such modification, by an engineer named Goodman in 1896, is shown in Figure 19. Here a 
curved scale is incorporated into the planimeter rod. The radius of the curve is the same as the length L of 
the rod. By placing the curved scale alongside the initial and final chisel locations, one measures d directly. 
As with the scale on the wheel of a polar planimeter, Goodman incorporated the constant multiplier L so 
that the product Ld, the approximate area, is read from the scale. Note the weight over the chisel edge to 
help it track better. The design changes made the instrument more expensive and defeated its purpose, in 
Prytz’s opinion, as an economical alternative to a polar planimeter. In harsh criticism of the other inven-
tors’ designs, Prytz advised engineers [12] “rather than use the ‘improved stang planimeters,’ let a country 
blacksmith make them a copy of the original instrument.’’   

Figure ��. Goodman’s version of a hatchet planimeter [7].

Conclusion
This simple analysis of how these planimeters work is due to Henrici [8], who gives a very complete and 
interesting history of planimeters up through 1893. For more details and references on the history of hatchet 
planimeters, see [10] and [5]. Another good reference on planimeters and other mathematical devices, 
which may be easier to find, is the book by Murray [9]. A recent article [14] gives very nice proofs of how 
polar and linear planimeters work, suitable for students who have studied calculus.

Polar planimeters are readily available on eBay [4], and can typically be purchased for $50 to $100. 
Linear planimeters appear occasionally and are generally more expensive. Manufactured hatchet planim-
eters are quite rare and expensive. You might also find a planimeter hiding forgotten in a drawer or closet in 
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a local school or college science department, or in the attic of a retired scientist, architect, or engineer. There 
are other kinds of planimeters. For further information and pictures, see the first author’s web page [6]. 

Planimeters are still manufactured, and a web search will turn up a few companies that sell them. Many 
have electronics added, but mechanically they are really just polar and linear planimeters with calculators 
riding piggyback; Amsler would easily recognize them. The only difference is that the roll of the wheel 
is read electronically instead of from a scale, and the calculator allows the user to convert between differ-
ent units, say from square inches to square centimeters, or to square miles based on the scale of a map. 
Engineering, architecture, and natural resource students are still taught how to use them at many schools, 
and they are used by many professionals in these and other fields.

Areas are useful in numerous applications. Uses of planimeters range from finding areas of lakes on 
maps, to finding areas of tumors on x-rays and of leaves and flower petals. The Science Museum in London 
has a huge polar planimeter with arms that are over three feet long that was used in the leather industry to 
measure areas of hides.  

Small Project #5. Now that you know how planimeters work, here are some related things to 
explore. 
• Make a more accurate polar planimeter than the one you made out of TinkerToys®.
• Make a linear planimeter.
• Determine how the accuracy of a Prytz planimeter depends on its starting orientation. For a given 

starting point along the boundary of the region, some orientations will minimize the error made in 
(6).

• Do your science departments have a planimeter tucked away in a drawer? Does your local historical 
society have a planimeter in its collection?  Do they have it on display?  Do they know what it is and 
how to use it?

• Do a web search to find additional uses of planimeters. You might even find the web page in which 
some researcher in food science has used a planimeter to measure the area of a cookie!
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 Historical Mechanisms for
Drawing Curves

Daina Taimina
Cornell University

Introduction
If you have a collection of straight sticks that are pinned (hinged) to one another, then you can say you have 
a linkage like in the windshield wipers in your car or in some desk lamps. Linkages can also be robot arms. 
It is possible that our own arms caused people to start to think about the use of linkages. 

In this paper I will discuss how linkages and other historical mechanisms (that involve sliding in groove 
or rolling circles) can be used for drawing different curves and in engineering to design machine motion. 
This knowledge was very popular at the end of the 19th century, but much of it was forgotten during 
most of the 20th Century. Now there is, among mathematicians and engineers, renewed interest in these 
mechanisms and in kinematics — the geometry of pure motion. Study of these mechanisms can be used in 
classrooms as a way to show interconnections between mathematics and technology and provide a bridge 
to interesting history that can bring meaning into the classroom. For examples, Descartes considered only 
those curves that could be drawn with mechanical devices. Curves were constructed from geometrical ac-
tions, many of which were pictured as mechanical apparatuses.  After curves had been drawn, Descartes 
introduced coordinates and then analyzed the curve-drawing actions in order to arrive at an equation that 
represented the curve.  Equations did not create curves; curves gave rise to equations. [10] 

Some early mechanisms
We can find linkages in drawing curves in ancient Greece. Mechanical devices in ancient Greece for con-
structing different curves were invented mainly to solve three famous problems: doubling the cube, squar-
ing the circle and trisecting the angle. There can be found references that Meneachmus (~380–~320 B.C.) 
had a mechanical device to construct conics which he used to solve the problem of doubling the cube. One 
method to solve problems of trisecting an angle and squaring the circle was to use the quadratrix of Hippias 
(~460–~400 B.C) — this is the first example of a curve that is defined by means of motion and can not be 
constructed using only a straightedge and a compass. Proclus (418–485) also mentions Isidorus from Mile-
tus who had an instrument for drawing a parabola [13, p. 58]. We can not say that those mechanical devices 
consisted purely of linkages, but it is important to understand that Greek geometers were looking for and 
finding solutions to geometrical problems by mechanical means. These solutions mostly were needed for 
practical purposes, for example, building different structures. This was in spite of the fact that in theoretical 
Euclidean geometry there existed demands for pure geometrical constructions using only “divine instru-
ments” — compass and straightedge.
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Figure �.  13th century sawmill, sketched by Villard de Honnecourt 
(note the linkage in the lower left-hand corner). [24]

We can find use of linkages in some old drawings of machines like in Figure 1. But in the 16th century 
the largest account on Renaissance engineering was done by Agostino Ramelli (1531–c.1610) who in 1588 
in Paris published the volume “The diverse and artifactitious machines of captain Agostino Ramelli”.

Another source for the use of machines in the 16th century are the works of Georg Bauer, better known 
by the Latin version of his name Georgius Agricola (German, 1494–1555), who is considered a founder of 
geology as a discipline. Agricola’s geological writings reflect an immense amount of study and first-hand 
observation, not just of rocks and minerals, but of every aspect of mining technology and practice of the 
time. 

I have omitted all those things, which I have not myself seen, or have not read or heard of from 
persons upon whom I can rely. That which I have neither seen, nor carefully considered after read-
ing or hearing of, I have not written about. The same rule must be understood with regard to all my 
instruction, whether I enjoin things, which ought to be done, or describe things, which are usual, or 
condemn things, which are done. [1]

In the drawings that accompanied Agricola’s work we can see linkages that were widely used for converting 
the continuous rotation of a water wheel into a reciprocating motion applied to piston pumps. [1] 

In the past linkages could be of magnificent proportions. Linkages were used not only to transform 
motion but also were used for the transmission of power. Gigantic linkages, principally for mine pumping 
operations, connected water wheels at the riverbank to pumps high up on the hillside. One such installation 
(1713) in Germany was 3 km long. In Figure 2 we can see the use of a linkage in a 16th century sawmill 
(See the six connected diagonal bars at the top of the frame — this linkage is today often called “lazy 
tongs”.) Figure 2 is contained in a 16th century book Theatrum instrumentorum et Machinarum [5] (avail-
able on-line), which describes many earlier mechanisms. 

Early curve drawing
In the Renaissance, ancient methods of constructing different curves were not satisfactory. Renaissance 
engineers needed new mechanisms that would trace precise trajectories, so that they could be used, for 
example, to drive the cutters for making precision lenses, gears, and guides for mechanical motion. For 
example, Leonardo da Vinci (1452–1519) invented a mechanism that could be adapted on a lathe for cutting
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 Figure �.  Besson’s drawing of a sawmill [5] Figure �. Dűrer’s curve drawing devices [12]

parts with elliptic cross-sections. See [29], model D-10. He had ideas about several other mechanisms that 
would trace various mathematical curves. Mechanical devices for drawing curves were used also by Albre-
cht Dűrer (1471–1528). See Figure 3 for two pictures from Dűrer’s “Four books on proportions” in which 
he describes their uses.   

When Rene Descartes (1596–1650) published his Geometry (1637) he did not create a curve by plot-
ting points from an equation. He always fi rst gave geometrical methods for drawing each curve with some 
apparatus, and often these apparatus were linkages. See Figure 4. This tradition of seeing curves as the 
result of geometrical actions can be found also in works of Roberval (1602–1675), Pascal (1623–1662) 
and Leibniz (164–1716). Mechanical devices for drawing curves played a fundamental role in creating 
new symbolic languages (for example, calculus) and establishing their viability. The tangents, areas and arc 
lengths associated with many curves were known before any algebraic equations were written. [10]

In this paper we are mostly describing mechanisms that were of interest to engineers and are connected 
with the Kinematic Models for Design Digital Library (KMODDL) collection [29]. For an excellent col-
lection of mechanisms related to the history of mathematics, see [39], which discusses curve-drawing and 
other mathematical devices together with their history, models, animations, and bibliography. 

Figure 4. Descartes curve drawing apparati [11]
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Drawing ellipses
The most familiar mechanical construction of an ellipse is the “string” construction, which dates back 
to ancient Greece, if not even earlier. It is based on the two-focus definition of an ellipse. As Coolidge 
(1873–1958) in [7] states: 

The Greeks must have perceived that if the two ends of a piece of string be made fast, at two points 
whose distance apart is less than the length of the string, the locus of a point which pulls the string 
taut is an ellipse, whose foci are the given points. 

A further modification given by Coolidge is the following: 
We have three pins placed at the centre and foci of the curve. The ends are knotted together and held 
in one hand. From here the string passes around the centre pin on the left and right under two foci, 
and is drawn tight by a pencil point above. If the hand holding the two ends remain fixed, the pencil 
point will move along an arc of an ellipse. By changing the position of the fixed hand this may be 
altered at pleasure, except that the foci are fixed. But if a small loop be made around the pencil point 
so that it cannot slip along the string, and the hand holding the ends be pulled down, then the pencil 
point will trace an arc of hyperbola, for the difference in the lengths of the two path from the hand 
to the point is constant, and so is the difference of the distances to the two foci. (See Figure 5.)
The first who wrote about this construction of an ellipse by means of a string was Arab mathematician 

Abud ben Muhamad. His works date to the middle of the 9th century. See [7]. 

Figure �.  Using a string to draw an ellipse

Another device for constructing an ellipse can be based on a fact that if all chords of a circle having a certain 
direction are shrunk or stretched in a constant ratio, the resulting curve is an ellipse. A description of such 
an “ellipsograph” can be found in [13, p. 228]. 

Rolling circles produce straight lines and ellipses
In mechanics when obtaining an elliptic path for machine motion, La Hire’s (1614–1718) theorem is often 
used: 

La Hire’s Theorem. If a circle rolls, without slipping, so that it is constantly tangent internally to a fixed 
circle of twice its radius, the locus of a point on its circumference is a diameter of the fixed circle, while the 
locus of a point rigidly attached to it elsewhere is an ellipse. [23, p. 351] (See Figure 6.)

La Hire’s proof of this theorem was based on the theory of rolling curves or centrodes. But this result was 
proved before La Hire. See [35, p. 130] for a description and indication of proof by Proclus of this theorem. 
Note that this mechanism is not a linkage.

There is another theorem that has been rediscovered many times, but the priority seems to go to Nasir 
al-Din al-Tusi (1201–1274). Al-Tusi made the most significant refinments of Ptolemy’s model of the plan-
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etary system up to the development of the heliocentric model by Copernicus (1473–1543). Copernicus 
referred to a famous “Tusi-couple”, which resolves linear motion into the sum of two circular motions. 
The Tusi couple is obtained by rolling a small circle inside a circle of twice the radius. See Figures 6 and 
7. The result is a line segment equal to the radius of the largest circle. Mathematicians sometimes call this 
a 2-cusped hypocycloid, but engineers refer to such motion as special cases of planetary gears. See [8] and 
[31]. F. Reuleaux (1829–1905) also used this idea in constructing one of his mechanisms, see Figure 6.
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S

Figure 7.  Tusi-couple

In Figure 7, O is the center of the fixed outer circle and C is the center of the rolling inner circle. We start, 
in the left-hand figure, with the diameter SR of the inner circle coinciding with the radius OT of the outer 
circle. By hypothesis, OT = 2CR. The central angle ∠ PCR is twice the subtending angle ∠ PSR. Thus arc 
PR = arc QT, since the outer circle is twice the inner circle. Thus, when the inner circle rolls inside the outer 
circle, the point P will land on the point Q, as in the right hand figure where clearly the arc OS = arc PR. 
Since arc PR = arc QT, then R must lie on the line OT. Since ∠ SOR subtends a diameter, OS is perpendicu-
lar to OT. Thus S traces the vertical diameter and R traces the horizontal diameter of the outer circle. This 
last property leads to the trammel, which is described in the next section.

Figure �.  Tusi-couples [29, Reuleaux models S-02 and S-04] (photo Prof. F. C. Moon)
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Trammel for drawing ellipses
The most systematic and complete discussion of the treatment of the conics is found in the Elementa 
Curvarum Linearum, of Johan de Witt, which appeared as an appendix to van Schooten’s second Latin 
edition of Descartes’ Geometrie, 1659–1661. [15]. Johan de Witt (1625–1672) was a Dutch statesman with 
considerable skill as a mathematician. While studying law at the University of Leiden he became friends with 
Francis van Schooten the younger (1615–1660) and received from him an excellent training in Cartesian 
mathematics. Van Schooten was the main popularizer of Descartes’ Geometrie in Europe. According to van 
Schooten, de Witt’s treatise was written some ten years prior to the Geometrie’s publication.

De Witt describes two more constructions of an ellipse. One of them is the trammel construction, which 
was described by Proclus, but is also attributed to Archimedes (287–212 B.C.). The trammel is the simplest 
mechanism for drawing ellipses. It consists of two parts: the fi xed frame and the moving coupler rod. See 
Figure 8. Again this mechanism is not a linkage.

Figure �. Trammel (photo Prof. D. W. Henderson)

 This construction with pictures from Reuleaux kinematic model collection is described in F. Moon’s 
tutorial “How to draw an ellipse” [34]. See Figure 9. In Figure 9 (based on a mechanism used in the 
Renaissance for cutting precise elliptic lenses) parts of the trammel can be seen in the left-hand picture.

Figure �.  Trammel from Reuleaux’s kinematic model collection (photo Prof. D. W. Henderson)

Here is De Witt’s proof of why the trammel describes an ellipse.
Given two perpendicular lines AA¢ and BB¢ intersecting at O. In a trammel, segment CD moves 
in a way that C is always on AA¢ but D is always on BB¢. Then if a fi xed-point P is chosen on CD
(or an extension of this segment), point P describes an ellipse with axis AA¢ and BB¢. When C is at 
O, then P is in B, and when D is in O, P is in A, thus defi ning semi-minor and semi-major axis of 
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the ellipse. Let us draw PM^OA and DM^PM. Then PQ/PM = PC/PD (from similar triangles). 
But PC = OB = OB¢ and PD = OA = OA¢, so PQ2/ PM 2 = OB2/OA2.  But PM 2 = OA2 – OQ2 =
(OA – OQ)(OA + OQ) = AQ ⋅ A¢Q, and from here PQ2 = (OB2/OA2)(AQ ⋅ A¢Q), which is the equa-
tion of an ellipse if in modern notation we denote AA¢ and BB¢ as x- and y-axes: y2 = b2 (a2 – x2)/a2 
or x2/a2 + y2/b2 = 1. Leonardo da Vinci suggested using this trammel construction also in a case 
when AA¢ and BB¢ are not perpendicular. 

Drawing hyperbolas and parabolas with links and sliders
De Witt also suggested a mechanical construction of a hyperbola in terms of a rotating line and a sliding 
segment.
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Figure ��.  Mechanical construction of hyperbola

Let a line rotate about a fixed point P within the two fixed lines HOX and FOY, intersecting HOX at B. 
See Figure 11. When the rotating line is parallel to FOY, it intersects HOX at Q and, for each point B, A is 
chosen on HOX so that AB = OQ. At A, draw a line AM parallel to FOY. Let C be the intersection of AM 
with PB. We want to prove that the locus of the point C is a hyperbola. Triangles PQB and CAB are similar, 
thus CA/AB = PQ/QB = PQ/OA. Since OQ = AB, CA · OA = PQ · OQ = a constant; and thus the locus is a 
hyperbola. [14]

Figure �0.  DeWitt’s proof of the trammel
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In Figures 12, 13, 14 we can see some well-known linkages with sliders inside for mechanically con-
structing conics. [36]

Figure ��.  van Schooten mechanism for constructing ellipse

Figure ��.  van Schooten mechanism for constructing hyperbola

Figure ��.  van Schooten mechanism for constructing parabola

To see these mechanisms in action and why they work, see [9], [10]. David Dennis has written about these 
devices and about their uses in the classroom in [10] and other papers, so I am omitting discussion about 
them here.
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Linkages that draw conic sections
The Hart’s Crossed Parallelogram in Figure 15 is a four-bar linkage (with one bar AB attached to the plane) 
such that AC = BD and AB = CD, thus it forms an isosceles trapezoid. The symmetry is preserved as the 
linkage moves.

Figure ��.  Hart’s Crossed Parallelogram [41]

We select a given point P on the traversing bar and draw the line OP parallel to AD and BC. It is clear that 
OP remains parallel to these lines and O is thus a fixed point of the line AB, because AO = DP. Let AC = BD 
= 2b; AB = CD = 2a, where a>b. Let OP = r; OM = c, MT = z, where M is the midpoint of AB and ∠POB = 
q. Then from the Figure 15 (using the symmetry):

r = 2(c + z) cosq; 
BC = 2 (BT ) cosq = 2(a – z) cosq;
AD = 2(AT ) cosq = 2(a + z) cosq;

(BC)(AD) = 4(a2 – z2) cos2q = 4(a2 – b2).

Combining this result with the first equation to eliminate z, we have 

a2 cos2q – (r/2 – ccosq)2  = a2 – b2.

This is the polar equation (with origin O) of the path of P. The quantity c is determined, of course, as soon 
as the point P is selected. 

If we invert this curve, taking O as the center of inversion (so that the transformation is rs = 2k2 ), 
we obtain 

a2s2  cos2q – (k2  – cscosq) 2  = s2 (a2 – b2).

This inverted curve is a conic section, which may more easily be recognized by transferring to rectangular 
coordinates, using 

scosq = x;    ssinq  = y;    s = x2 + y2 .
Thus, we have 

(c2 – b2)x2 + (a2 – b2)y2 – 2ck2x + k4 = 0.

Now, since a > b, the coefficient of y2 is positive and the character of the conic is determined entirely by 
the coefficient of x2. Thus the curve is a parabola if c = b; an ellipse if c > b; and a hyperbola if c > b. In 
Figures 16–18 we have arbitrarily taken a = 2b. Thus, the point P¢ (the inverse of P under the inversion) 
traces the conic.

Figure 16 shows the linkage for a parabola with a = 2b = 2c. Thus, PD = AO = b. The point P is inverted 
to P¢ by means of Peaucellier cell where  (OE)2 – (PE)2 = 2k2. For a description of the Peaucellier cell 
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and its properties, see [21, Chapter 16] and [29, tutorial: “Mathematical Tutorial of the Peaucellier-Lipkin 
Linkage”].

Figure ��.  Linkage that draws an ellipse [41]

In Figure 17, the linkage is arranged for an ellipse, where 2a = 4b = 3c. For the sake of variety, P is 
inverted to P¢ by the Hart cell EFGH. For a description of the Hart cell and its inversive properties, see 
[28].

Figure 18.  Linkage that draws a hyperbola [41]

Figure 18 gives the arrangement for a hyperbola where a = 2b, c = 0. (P is midpoint of CD.) These 
linkages can be built using rigid plastic rods and appropriate connectors (like eyelets), but they can also be 
investigated with Geometer’s Sketchpad. Such investigations can give rise to independent research projects 
in which the students determine the singular points in these mechanisms and why they occur.

Figure ��.  Linkage that draws a parabola [41]
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Drawing higher order curves
Examining the theory of algebraic curves of the 
third degree, Isaac Newton (1643–1727) proposed 
a mechanism for the generation of circular unicur-
sive curves of third degree, using a four-link chain 
with two sliding pairs. In Figure 19, see realiza-
tion of this idea in 20th century as Boguslavskii’s 
conicograph; see [3, p.70] for further descriptions 
and proofs.

Alfred Bray Kempe (1849–1922) also formu-
lated a famous theorem, which asserts that any 
algebraic curve can be generated by an appropri-
ate linkage. Some people simplify this by saying 
that it is possible to design a linkage that will sign 
your name (as long as your signature is the union 
of algebraic curves). A proof by Artobolevskii of 
Kempe’s theorem can be found in [3, p.8–12]: He 
reduces the desired linkage to a series of math-
ematical operations fulfi lled by the individual linkages, which are joined together into the general chain of 
linkages. Those individual linkages are:

1. a linkage for conveying a point along the given straight line;
2. a linkage for projecting a given point on to a given line;
3. a linkage which cuts off equal segments on 

two axes;
4. a linkage for causing a straight line to pass 

through a given point and be parallel to a 
given line;

5. a linkage for obtaining proportional segments 
in two straight lines passing through a given 
point (multiplying linkage);

6. a linkage for addition of two given segments 
(summing linkage). 

See [26, p. 260–261] for another proof of Kempe’s 
Theorem. 

In 1877, A. B. Kempe published a small 
book: How to Draw a Straight Line: A Lecture on 
Linkages ([28], available on-line at [29]). In this 
book he describes his theorem and also mentions 
the work of J. Watt (1736–1819), J. J. Sylvester 
(1814–1897), Richard Roberts (1789–1864), P. L. 
Chebyshev (1821–1894), Harry Hart (1848–1920), 
William Kingdon Clifford (1845–1879), Jules 
Antoine Lissajous (1822–1880), Samuel Roberts 
(1827-1913), and Arthur Cayley (1821-1895). This 
leads to the next section. Figure 20.  Title page of Kempe’s book

Figure ��. Boguslavskii’s conicograph [3]
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Other directions in the theory of linkages
Linkages are closely related with kinematics or the geometry of motion. At first, it was the random growth 
of machines and mechanisms that put the pressure of necessity to the study of kinematics. Much later, 
algebraic speculations on the generation of curves were applied to physical problems. Two great figures ap-
peared in the 18th century, Leonard Euler (1707–1783) and James Watt (1736–1819). Although their lives 
overlap, there was no known contact between them. But both of them were involved with “geometry of mo-
tion”. Euler’s “Mechanica sive motus scientia analytice exposita” (1736–1742) is, to quote Lagrange, “the 
first great work in which analysis is applied to the science of movement.” The fundamental idea of kine-
matic analysis stems from Euler. Watt, instrument maker and engineer, was concerned with the synthesis of 
movement. Mechanism designers before Watt had confined their attention to the motions of links attached 
to the frame. It was Watt who, in 1784, focused on the motion of a point in the middle of a link in a four-
bar mechanism. The application of this novel thought allowed Watt to build a double-acting steam engine; 
which employed a linkage able to transmit force in two directions instead of only one. Euler’s theoretical 
results went unnoticed by engineers for another century, but engineers and mathematicians were devising 
linkages to compete with or supersede Watt’s mechanism. For more information see the online [17].

In 1775 Euler wrote: 

The investigation of the motion of a rigid body may be conveniently separated into two parts, the 
one geometrical, the other mechanical. In the first part, the transference of the body from a given 
position to any other position must be investigated without respect to the causes of motion, and 
must be represented by analytical formulae, which will define the position of each point of the 
body. This investigation will therefore be referable solely to geometry, or rather to stereotomy. [16, 
page viii]

It is clear that by the separation of this part of the question from the other that belongs properly to mechan-
ics, the determination of the motion from dynamical principles will be made much easier than if the two 
parts were undertaken conjointly.

Here we can see beginnings of the separation of the general problem of dynamics into kinematics and 
kinetics. Euler’s contemporaries I. Kant and D’Alambert (1717–1783) also were treating motion purely geo-
metrically. This is what L.N.M. Carnot (1753–1823) later called “geometric” motion. By the end of the 18th 
century G. Monge (1746–1818) proposed a course on elements of machines for the École Polytechnique. 

Linkages have many different functions. 
One of the classical problems in linkage design has been the generation of straight-line paths. Franz 

Reuleaux (1829–1905), who is often called the “father of modern machine design”, had many straight-line 
mechanisms in his kinematic model collection. Cornell University has a collection with about 220 different 
F. Reuleaux kinematic models and 39 of them are mechanisms that produce approximate or exact straight-
line motion. See the website [29].

In the 20th century, ideas growing from Kempe’s work [28] were further generalized by Denis Jordan, 
Michael Kapovich, Henry King, John Millson, Warren Smith, Marcel Steiner and others. The more recent 
combinatorial approach to linkages puts together ideas about rigidity, graph theory, and discrete geometry. 
One can generalize and consider a polygon (where the edges are hinged at the vertices), a tree, or other more 
general structures consisting of rods and plates (polygons spanned with a rigid membrane). The mathemati-
cal study of linkages was an active area of mathematics in the 18th and 19th centuries but then became 
dormant; however, recently it has been revived by new applications.

Linkages were used during World War II for control and computing. Antonin Svoboda (1907–1980) 
became involved with computers in 1937 when he started to work for the Czechoslovakian Ministry of 
National defense. He and Vand designed an antiaircraft gun control system using mechanisms. In 1941 he 
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became a staff member of the Radiation Laboratory working to develop analog computers connected with 
MARK 56 antiaircraft control. The analog computer had two sections. The linear part, which was called 
OMAR, was done by linear potentiometers of high precision. But the linear theory had to be modifi ed by 
nonlinear corrections. Svoboda was asked to produce a mechanical solution for the nonlinear part of the 
system. See Figure 20 for an example of a linkage computer such as Svoboda designed. Such linkage com-
puters could generate functions of one or two variables. See Svoboda’s book [37] for more details. 

Figure ��.  Linkage Computer [23]

For a survey of more recent results on linkages (including some results since 2000), see [6].

Conclusion
In the classroom, drawing of curves fi rst appears in elementary school when students learn how to draw a 
circle. Often there arises a natural question: Are there instruments that can draw other types of curves? In 
middle and high school, curves appear as graphs of the functions (for example, quadratic functions for pa-
rabolas and reciprocal functions for hyperbolas) and the use of calculators has displaced the actual drawing 
of these curves — students merely push buttons and the curve magically appears on the screen. Functions 
and graphing calculators are powerful tools for representing and exploring different curves; however, actual 
physical construction of a curve is the most valuable step for gaining an initial acquaintance of the curve 
and exploring its meanings. 

It is interesting and important for students, teachers, and mathematicians to explore historical mecha-
nisms that provide connections with the past and that allow the exploration of motions that are related to 
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these mechanisms and that connects the study of curves with mechanical motion design and its applications 
in engineering. Interactive online resources for the use of mechanisms in classrooms at different levels are 
being developed and offered by Cornell University’s Kinematics Models For Design Digital Library [29], 
which is built around a large historical collection of mechanisms and includes interactive videos, simula-
tions, tutorials, and on-line historical books. 
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 Learning from the Roman Land Surveyors:
A Mathematical Field Exercise

Hugh McCague
York University

Introduction
In the development and rise of civilizations and empires, land surveying has played a major role because 
it is crucial to the imposition and maintenance of system, order, and control of the landscape through the 
demarcation of properties, boundaries and roads. The key behind this system and order is always math-
ematics. We will focus on the Romans who had a highly developed system of land surveying as attested by 
their surveying manuals, and land divisions, town plans, architecture and engineering works still to be seen 
throughout the wide expanse of the earlier Roman Empire and Republic [1]. Indeed, some of these features 
in the landscape are still in use today. Additionally, we are fortunate to have extensive writings of Roman 
land surveyors, the Corpus Agrimensorum [2], describing many aspects of their work and methods. Some 
archaeological artifacts pertaining to surveying equipment have been found and analyzed. For example, the 
metal parts of a groma surveying instrument were unearthed in the workshop of the surveyor Verus at the 
ruins of Pompeii in southern Italy. Also, the tombstone of the surveyor Lucius Aebutius Faustus from Ivrea 
in northern Italy depicts a dismantled groma [3]. From these various sources a great deal is known about 
Roman land surveying and its central use of mathematics and geometry. With this considerable background 
to draw upon, we will try our hand at Roman land surveying and learn more about mathematics, geometry 
and history in the process.

What are a groma and a decempeda?
Two of the most important Roman surveying instruments were the groma [Figure 1] for sighting right 
angles and the decempeda, a measuring rod of 10 Roman feet. We will reconstruct simple working models 
of the groma and the decempeda measuring rod. The late O. A. W. Dilke, a classicist and scholar on Roman 
land surveying, developed a plan for constructing the groma and decempeda measuring rod which we will 
use and adapt here [4]. I took detailed measurements of the groma model at the Science Museum, London, 
which was based on the groma model in the National Museum, Naples. The latter model was based on the 
archaeological finds of Matteo Della Corte at Pompeii [5].

Based on historic texts [6] and archaeological evidence [7], two different reconstructions of this math-
ematical instrument, the groma, have been proposed [8]. The groma consisted of a pole or staff surmounted 
by an offset arm or bracket upon which an equal-armed cross-piece could rotate. The bottom end of the 
pole had a pointed shoe which was thrust into the ground, so that the pole was vertical and the cross-piece 
horizontal. Four plumb-lines were attached from the outer ends of the cross-piece. A straight line could be 
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surveyed by viewing two plumb-lines oppo-
site each other. Similarly, another straight line 
could be surveyed by viewing the other two 
plumb-lines opposite each other. These two 
straight lines thus formed were at right angles 
to each other. The bracket allows the plumb-
lines to be viewed unobstructed by the verti-
cal staff or pole. An alternative reconstruction 
of the groma is the same as the above, except 
there is no bracket. The cross-piece is set atop 
the pole with a connecting metal cylinder or 
wooden dowel. The pole would have to be 
tipped slightly off vertical to allow some unob-
structed sighting along the plumb-lines. This 
slight tipping of the pole off vertical would, of 
course, lead to errors, but those inaccuracies 
can be negligible [9].

Instructions for the groma and decempeda construction

The Staff of the Groma

The full length of the wooden staff with pointed 
metal shoe should be about 1.80 m or 5¢ 11. 
The staff can be about 3 cm or 1.25 in diameter. 
For the stability of the groma, the pointed shoe 
should be long enough to be able to penetrate the 
soil to a depth of about 15 cm or 6. I suggest 
you use a metal spike with a heavy wood mallet 
to prepare a hole in the soil for the staff’s shoe 
to enter. Soil, even when quite wet, is hard to 
penetrate with the staff unless a hole is already 
prepared.
(Image: Redrawn after O. A. W. Dilke, Surveying the 
Roman Way, University of Leeds, Leeds, 1980.)

The Bracket of the Groma

The bracket found at Pompeii had a metal sur-
round and would have had wood inside. Your 
bracket can be made entirely of wood. Make 
it about 27 cm or 11 in length. The lower cyl-
inder A can be about 13.5 cm or 5.5 in height 
and about 4.5cm or 2 in diameter. The upper 
cylinder B can be about 6 cm or 2.5 in height 
and about 3.5 cm or 1.5 in diameter. You can 
simplify the design, as long as it operates in the 
intended manner.
(Image: Redrawn after O. A. W. Dilke, Surveying the 
Roman Way, University of Leeds, Leeds, 1980.)

B

A

Figure �. Roman groma. (Image: Redrawn after O. A. W. Dilke, 
Surveying the Roman Way, University of Leeds, Leeds, 1980.)
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The base or cylinder A needs a drilled hole to 
allow the top projection of the staff to fit within. 
The top of cylinder B needs a smaller cylindrical 
or dowel protrusion in order to receive the cross 
described below.

An eye-screw can be placed at the center of the 
bottom of the cylinder B for the attachment of 
an extra plumb-line. Strictly, there does not ap-
pear to be historical or archeological evidence 
for this extra plumb-line, but its addition is quite 
practical, so one wonders if some Roman sur-
veyors did likewise.

There is some question about whether the 
Roman groma actually had a bracket. I suspect it 
did. You can use your groma with or without the 
bracket and see which arrangement seems more 
practical to you. To use the groma without the 
bracket, use a small wood dowel that fits well 
with the staff and cross at C, and place the staff 
slightly off vertical to allow the sighting along 
the plumb-lines.
(Photograph by H. McCague.)

C

The Cross of the Groma

The dimensions in centimeters based on the 
Pompeii groma finds are given in the figure op-
posite. Use 2 wooden arms joined together. The 
cross design can be simplified so that the cross 
maintains a constant width. A drilled hole is 
needed at the center to accept the bracket. The 
arms of the cross can be kept fixed at right an-
gles by metal angle-brackets.
(Image: Redrawn after O. A. W. Dilke, Surveying the 
Roman Way, University of Leeds, Leeds, 1980.)

A small hole needs to be drilled near the end of 
each arm to allow the passage of the string for 
the plumb-line. For the accuracy of the groma, 
take care that the 4 holes and the center of the 
cross form 4 accurate right angles.

You can cut narrow slits into the top of the cross 
near the small holes so that the fed strings can be 
wrapped around the end of the cross and secured 
(or ‘pinched’) in the tight fit of the cut slits. 
(Image: Redrawn after O. A. W. Dilke, Surveying the 
Roman Way, University of Leeds, Leeds, 1980.)

28.5cm

8cm

7cm

width 3cm
(or taper from
3.5cm at A to
2.5cm at B)

width 5.5cm
A

B

metal
angle-bracket
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Plumb-Lines of the Groma

Attach plumb bobs to the ends of string or narrow cords about 
1m or 1 yard in length. To economize, heavy nuts and bolts can 
be used instead of plumb bobs. I suggest that one pair of match-
ing plumb bobs (or bolts) be used diametrically opposite each 
other, and similarly, a different pair of matching plumb bobs (or 
nuts) be used opposite each other.
(Image: Redrawn after O. A. W. Dilke, Surveying the Roman Way, 
University of Leeds, Leeds, 1980.)

As mentioned in the description of the bracket, a hypothetical 
fi fth plumb-line could be hung from underneath the bracket to 
help insure the groma is properly centered over a wooden stake 
which is the survey station point. 
(Photograph by H. McCague.)

Wooden stakes and an offset stick

Wooden stakes with a square cross-section and ends cut to a 
stake are needed to mark the vertices (the survey stations) of the 
surveyed rectangles. The number of stakes needed will depend 
on how involved a survey project you undertake. However, 
I suggest you make at least 16 stakes for your fi rst Roman 
surveying exercise. For the accuracy of your survey work, draw 
the diagonals of the square with pencil on top of the stake. The 
intersection of the diagonals will indicate the center of the stake 
and a vertex (a survey station) of the rectangles and squares 
you will be surveying. If a fi fth central plumb-line is used, this 
plumb bob needs to be right over the center of the stake [Figure 
4]. A wooden mallet, mentioned in regard to the staff of the 
groma, is well suited for pounding the stakes into the soil.

In addition to the stakes, you may wish to make a wooden offset 
stick sized to provide exactly the same offset as the bracket near 
the top of the groma. One end of the offset stick can be cut with 
a semi-circular ‘arch’ to fi t snugly with the staff of the groma. 
The other end of the offset stick can be cut to a broad ‘point.’ 
Draw a central axis line on the top of the offset stick. Along 
with a fi fth central plumb-line described above, this device can 
be used to help place the groma accurately over the center of 
the wooden stake (survey station) below. Strictly, there does not 
appear to be historical or archeological evidence for an offset 
stick, but its addition is quite practical, so again one wonders if 
some Roman surveyors did likewise. 
(Photograph by H. McCague.)
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Two Measuring Rods

Make two measuring rods of 10 Roman feet. Use the 
common Roman foot unit of the pes Monetalis equal to 
approximately 29.57 cm, or about 11 5/8 (as opposed to 
the British Imperial foot, 30.48 cm, 12, used elsewhere 
in this article). Thus, the rods need to be about 295.7 cm 
or about 9¢ 8 7/16. I suggest two such rods, so that they 
can be placed end to end to facilitate the measuring out 
process.
(Image: Metal end redrawn after O. A. W. Dilke, Surveying the 
Roman Way, University of Leeds, Leeds, 1980. Photograph by 
H. McCague)

The metal ends as pictured here are based on an archaeo-
logical fi nd near Enns in northern Austria [10]. If pos-
sible, make your ends from metal as well and about 10cm 
or 4 long. A wooden dowel about 4 cm or 1.5 in diam-
eter should fi t inside. The hard metal ends protected the 
softer wooden ends from damage and shortening due to 
‘wear and tear’ over years of use in the fi eld.

However, if you wish to simplify, you could use the dow-
els without the metal ends, but still take care to measure 
and cut their length accurately. To ease their storage and 
transport to site, you may wish to have the rods in two 
halves with a metal sheath to hold them together when in 
use. However the rods are made, they need to be stiff for 
accurate usage.

Roman land measurements
Soon we can try our hand at surveying in the Roman 
fashion. First, however, we will need to learn some 
more about Roman surveying theory and practice. 
In practice, Roman surveying tools including the 
groma and decempeda were used to survey and lay 
out military camps, forts, towns, and large fi eld and 
road systems.

The actus of 120 Roman feet was the funda-
mental unit in Roman land surveying. As noted ear-
lier the most common Roman foot unit was the pes 
monetalis (at or very close to 29.57cm or 11 5/8”). 
The basic unit of area was the iugerum equal to a 
rectangle of 2 actus by 1 actus. 2 iugera equal 1 he-
redium (2 actus by 2 actus or 240 Roman feet by 240 
Roman feet) [Figure 2]. 100 heredia together make 
a centuria (20 actus by 20 actus or 2400 Roman feet 
by 2400 Roman feet) [11].

S

EW

NG1 G2

G4 G3

120 120

120

120

120

120

120 120

1 iugerum 1 iugerum

Figure �. The heredium area measure equals 2 iugera.
The 120 Roman feet marked equals an actus. (Redrawn 
after O. A. W. Dilke, Surveying the Roman Way, 
University of Leeds, Leeds, 1980.)



��0 Hands On History

In large colonies, many centuriae were surveyed together, somewhat like a chessboard except with 
boundary roads or tracks the Romans called limites [Figure 3]. The survey of a colony would begin with 
the two major limites road axes oriented and at right angles to each other: the decumanus maximus (DM) 
and the cardo (kardo) maximus (KM). DM and KM are E-W and N-S axes, respectively, though, in prac-
tice, some variations from those alignments occurred. A labeling system, somewhat resembling Cartesian 
co-ordinates [12], with Roman numerals then designated the location of the centuria. Note the following 
Roman terminology in Figure 3:

S.D. sinistra decumani  to the left of decumanus
D.D. dextra decumani  to the right of decumanus
C.K. citra kardinem  to the near side of kardo
V.K. ultra kardinem  beyond kardo [13].
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Figure 3. Centuriae. Centuration was the Roman method of land apportionment based on 
their linear and area standard measurement systems. (Redrawn after O. A. W. Dilke, Surveying 
the Roman Way, University of Leeds, Leeds, 1980.)

Using your groma and two decempedae
A description is given below for the use of the groma with the bracket based on a surveying exercise by O. 
A. W. Dilke [14]. The instructions can be used with the groma without the bracket, but the wooden stakes 
will need to be placed and replaced in the same holes used by the pointed shoe. Windy conditions can overly 
disturb the use of the plumb-lines. Also, avoid rainy conditions that can cause the wood of the groma to 
swell and even the bracket to get stuck and unable to swivel in the staff. The latter state of affairs may have 
been mitigated in the actual Roman groma through protective metal coverings as found at Pompeii. It is 
helpful to have two or more people for these Roman surveying exercises. A large football or soccer field is 
suitable for the survey site. An open park area or school ground that is fairly level with low grass can also 
be used. We will survey a heredium which equals 2 iugera [Figure 2].

Surveying exercise instructions

1. In a corner of a large field, set the assembled groma vertically over a stake (survey station) [Figure 4] 
to mark point or vertex G1 [Figure 2]. Use the plumb-lines to check the staff for vertical each time the 
groma is set up.

2. Temporarily, set a second stake along the line segment G1G2, say 30 steps away.
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Figure �. Laying out a survey design with a re-created Roman groma and measuring rod. Note that 
the fi fth central plumb-line is right over the center of the wooden stake. The stake marks a survey 
station point which is a vertex of a rectangle being surveyed. (Photograph by H. McCague.)

3. Rotate the cross so that one of the pairs of opposite plumb-lines align exactly with the distant stake 
along G1G2. Make sure that the groma and bracket are not moved.

4. Use the two decempedae to measure 240 Roman feet (pes monetalis) along G1G2 as sighted in Step 3 
above. One person can remain sighting at the groma while one or two persons alternate measuring with 
the two rods end to end on the line segment G1G2. Set a stake at G2.

5. Now sight along the other pair of plumb-lines, and similarly measure out 240 Roman feet (pes moneta-
lis) to establish G4 with a stake.

6. Move and center the groma over G2. Rotate the cross so that a pair of opposite plumb-lines align with 
G1. Again, make sure that the groma and bracket are not moved.

7. As before, using the alignment sighted by the other pair of plumb-lines measure out 240 Roman feet 
(pes monetalis) to establish G3 with a stake.

8. Move and center the groma over G3. Rotate the cross so that a pair of opposite plumb-lines align with 
G2. Make sure that the groma and bracket are not moved. Now check to see if the other pair of plumb-
lines align with G4. Also, check if G3G4 is 240 Roman feet (pes monetalis) as intended. Suffi cient 
inaccuracies require one to retrace, and redo earlier steps where necessary.

9. Similar to Step 8, one can move and center the groma over G4 and check the right angle. Again, suf-
fi cient inaccuracies require one to retrace, and redo earlier steps.

10. The diagonals of the large square heredium are then measured as a check on the right angles and side 
lengths. By applying the Pythagorean Theorem, both the diagonals need to be close to 240√2  339.4 
 340 Roman feet (pes monetalis). 34/24 or, more simply, 17/12 is a close rational approximation to 
the irrational √2. The Roman surveyors and builders understood this matter in geometric terms: 34:24 
can be taken as ‘equal’ to, or more correctly is a close approximation to, a square’s diagonal to its side 
[15].
If you have the opportunity to use some modern surveying equipment, or even a long and accurate tape 

measure, you can do a modern check of the accuracy. As noted already, you can apply the Pythagorean 
Theorem to check the length of the two measured diagonals of the surveyed square, and hence check if right 
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angles were achieved. As an additional check on your measurements and calculations, you can calculate 
the angles of the surveyed ‘square’ using trigonometry, more specifically the Cosine Law. Additionally, the 
surveyed angles, intended to be right angles, can be directly measured and checked by using a surveyor’s 
transit or theodolite. With care in construction and use of the groma, the surveyed angles can all be within 
1/2 of a degree (30 minutes), or even 1/6 of a degree (10 minutes), of 90 degrees.

Once you have obtained some practice at the above basic exercise, you may wish to try laying out a 
larger or more involved survey including more squares and even some limites or dividing tracks similar to 
Figure 3. If the field in use is not big enough, you can make the sides of the squares shorter, for example 60 
or 120 Roman feet (pes monetalis).

Further mathematical exploration of the groma and Roman land surveying
There are many more mathematical issues on the topic of Roman land surveying that you may enjoy 
learning about. Even though the groma was used to simply sight straight lines and right angles, it, along 
with other Roman surveying instruments and methods, nevertheless offers a wide range of geometric and 
trigonometric issues of historical and educational note [16]. Additionally, the collection of Roman land 
surveying manuals, the Corpus Agrimensorum, includes some geometric techniques and methods, without 
proofs, that show the use of the groma to sight straight lines not part of right angles. It also includes asso-
ciated applications of basic laws of triangles, parallelograms, and even 3-dimensional geometry [17]. For 
example, Hyginus Gromaticus, Establishment of Boundaries, 155.17-156.15, in effect, applies the laws of 
similar triangles and parallelograms to show how a line segment can be surveyed that is parallel to another 
line segment determined by two inaccessible points. M. Junius Nipsus, Measuring the Width of a River, 4-
28, uses congruent triangles to determine the width of a river by surveying the land on one side of the river 
[18]. The Roman surveyors commonly used two shadows cast from a vertical rod, called a gnomon, during 
the morning and at a certain corresponding time during the afternoon to determine the four cardinal direc-
tions [19]. You may wish to explore how this method works.  Intriguingly, the path of the tip or apex of the 
shadow over the course of the day is approximates very closely a conic section based on the latitude and 
sun’s declination [20]. In addition, exploring the small inaccuracies from a right angle caused by a slightly 
tilted groma without a bracket is a good exercise in 3-dimensional geometry and trigonometry [21].

The significance of the groma
The groma, standard measurement units and land surveying were critical to the expansion and maintenance 
of the large Roman Empire and Republic. The use of the groma did not apparently continue during the 
medieval period [22]. Of significant note in the history of mathematics, the Corpus Agrimensorum was for-
mative in the later developments of practical geometry during the Middle Ages, particularly through such 
eminent scholars as Gerbert and Hugh of St. Victor [23]. Also, today’s sophisticated surveying technology 
and practices have their early origins in the still remarkable achievements and applications of mathematics 
of the Romans and other ancients.

Further, for the Romans, the geometry applied in the design and use of the groma was deemed to have 
a heavenly origin and was patterned after the divine archetype of the templum of the sky, a celestial temple 
pattern. One of the writers of the Corpus Agrimensorum, copied during the Middle Ages, states that centu-
ration had heavenly origins, and the Roman author Varro mentions that it was adopted from Etruscan ritual 
[24]. The cross-piece of the groma and the surveyed cross (of right angles) on earth manifested the cross of 
the heavenly templum, said to have descended beforehand during augural ritual. At the founding of a new 
settlement, the Roman augur would inwardly see the templum descend from the sky and heavens to form 
and make sacred and habitable the selected site. This preparation was deemed necessary to commence the 
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surveying of the land [25]. In the ancient world, mathematics and technology were intimately mingled with 
philosophy, religion and the purpose of life, and Roman land surveying was no exception. In a similar spirit, 
this field exercise with the groma and decempeda is intended to increase our appreciation of the application 
of mathematics and its great pertinence to philosophy, history and culture.
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Equating the Sun: Geometry, Models, and 
Practical Computing in Greek Astronomy 

James Evans
University of Puget Sound

Introduction
Ancient Greek planetary theory was geometrical in spirit. Each planet was deemed to ride on a circle, or 
combination of circles. Greek planetary theory, conceived in this way, originated late in the third century 
B.C. with the work of Apollonios of Perga. At first, such theories offered only a broad explanation of 
planetary phenomena: each planet generally travels eastward around the zodiac, but occasionally reverses 
direction and travels in retrograde motion toward the west for a few weeks or months (depending on the 
planet), before reverting to its normal eastward motion. Apollonius’s geometrical models were under-girded 
by Aristotle’s philosophy of nature, which postulated the centrality of the Earth and the primacy of circular 
motion for celestial bodies. 

In the middle of the second century B.C., Hipparchos, who had been strongly influenced by his contact 
with quantitative Babylonian astronomy, insisted on the importance of having geometrical theories that also 
reproduce the phenomena in a quantitative sense. But Hipparchos was able to achieve this only for the Sun 
and the Moon. The Greek theory of the planets was brought into its final, very successful form by Ptolemy 
only in the second century A.D. Now it became possible to calculate positions for the planets (as well as 
the Sun and Moon) from geometrical models based on circular motion. Thus, by Ptolemy’s day, Greek 
planetary theory offered not merely a broad, explanatory view of how the universe works: it also provided 
a tool for practical, predictive calculation of planetary phenomena. Moreover, Ptolemy’s planetary theories 
are usually pretty accurate. Because the theories were in accord with prevailing ideas of Aristotelian phys-
ics (or philosophy of nature), the complete package is very imposing. This explains why it lasted for nearly 
a millennium and a half. Everything fit: astronomy, geometry, and ancient physics formed a unified whole. 
And it really worked! [1]

Modern readers are often uncomfortable with a theory that places the Earth (rather than the Sun) at rest 
in the center of things. But the choice of center is a free one, for it is merely the choice of a frame of refer-
ence, and we can always ask what the universe would look like from the Earth. The answer, of course, is 
that, viewed from the Earth, the universe looks more or less like Ptolemy’s description of it. A Sun-centered 
planetary theory is not automatically any more accurate than an Earth-centered one.  This is one reason why 
astronomers were able to work with perfect contentment using Earth-centered theories for the better part of 
two thousand years. If it were easy to tell what is really moving and what is really at rest, we would not have 
had to wait until the astronomical revolution of the sixteenth century for the big switch.  In all that follows, 
we will take the ancient point of view, that the Earth is at rest at the center of things. 
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Because of its geometrical character, Greek astronomy lent itself readily to models and instruments 
of various sorts. Celestial globes, figured with the constellations, could be used to demonstrate not only 
the daily rotation of the universe, but also various propositions of spherical astronomy. More complicated 
mechanisms (today called orreries), which were worked by gears and sometimes run by water power, 
simulated the intricate dance of the planets. Although the orreries were rare, the globes were quite common 
and played a vital role in astronomy instruction, as we can tell from references to them by Strabo [2] and 
Geminos. [3]

More significantly, specialized calculating devices called equatoria were also constructed.  An equato-
rium not only provides a visual display of planetary phenomena, but also allows the user to obtain quantita-
tive predictions (as well as retrodictions) of planet positions, while avoiding most of the calculation. With 
the aid of an equatorium, the user can obtain the longitude in the zodiac of the Sun, Moon and planets in a 
matter of minutes, rather than the hours that might be required for a straightforward trigonometric calcula-
tion from Ptolemy’s theory, or even using Ptolemy’s tables in the Almagest.

In this chapter, I will explain what an equatorium does and show how it works, taking the simplest case, 
that of the Sun, for the example. I also provide directions for making and using a solar equatorium, based 
on a Renaissance model. If we are to make sense of the equatorium, and appreciate the great simplicity it 
affords in practical calculation, we must first understand something about the ancient Greek solar theory. 
That is, we can’t appreciate the beauty of the solution offered by the equatorium, until we understand the 
nature of the problem it was intended to solve, as well as what the alternative (trigonometric) solutions of 
the same problem look like. So we must begin with an overview of the ancient solar theory.  Along the way 
I will also pose two practical astronomy problems that mathematics teachers can use with students who 
have had a bit of trigonometry. 

Hipparchos’s theory for the motion of the sun
In a simple, preliminary model, we can represent the Sun as (1) moving at constant speed (2) on a circle (3) 
that is centered on the Earth. Indeed, this is a reasonably good approximation to the facts. But if this model 
were strictly true, the equinoxes and solstices, which are evenly spaced around the zodiac, would be evenly 
spaced in time. If you simply count up the lengths of the four seasons on a modern calendar that is marked 
with the dates of the equinoxes and solstices, you will find that the longest season (summer in the northern 
hemisphere) exceeds the shortest (winter) by about 4 days. So the Sun appears to move more quickly in 
some quadrants of the zodiac than in others. One or more of our three assumptions must therefore be given 
up.  

In ancient physical thought (as elaborated in the works of Aristotle, for example), celestial objects, 
including  the Sun, are made of a fifth element, the ether, which is utterly different from the four terrestrial 
elements of earth, water, air and fire, that make up all things here below.  The essential characteristic of the 
ether is its changelessness (the heavens have always been the same) and its property of moving in uniform 
circular motion (which is the obvious motion of the stars). For an ancient Greek, therefore, it would have 
been painful to give up either the uniformity of the Sun’s motion or its circular course.  

The solution to the dilemma of the Sun’s anomalous motion was apparently due to Hipparchos (second 
century B.C.), who proposed the simple expedient of letting the Sun travel uniformly on a circle that is ec-
centric to the Earth.  It is possible that Apollonios had earlier proposed such a model.  But Hipparchos was 
the first, as far as we know, to use numerical values for the lengths of the seasons to deduce two important 
parameters of the solar theory:  the amount and the direction of the eccentricity. So the first problem to be 
solved in establishing a working theory of the Sun’s motion is illustrated in Fig. 1.

The Earth is at O (for “observer’’). Lines of sight through O connect the two equinoxes (VE = vernal 
or spring equinox, AE = autumnal equinox) and the two solstices (SS = summer solstice, WS = winter sol-
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stice). The equinoxes and solstices are equally spaced at 90° intervals as viewed from O. The Sun travels at 
a uniform speed around the Earth in the course of a year on a circle that is centered at C. The problem then, 
in the solar theory of Hipparchos, is to determine the position of C so that the lengths of the four seasons 
agree with the facts of observation:

Lengths of the Seasons (Modern)

days hours
Spring 92 19
Summer 93 15
Fall 89 20
Winter 89 0
Total 365 6

In Fig. 2 we have added a line through points O and C. 
This line cuts the Sun’s circle at A the apogee (the place where 
the Sun is farthest from the Earth in the course of the year) 
and at perigee P (where the Sun is closest to us). Astronomers 
measure celestial longitudes around the ecliptic, starting from 
the vernal equinox as zero-point. So, the angle marked A is 
called the “longitude of the Sun’s apogee’’. The distance be-
tween C and O is a measure of the off-centerednesss of the 
circle. But, the only thing that really matters is the ratio of the 
distance OC to the radius r of the circle.  Thus we define the 
“eccentricity’’ e of the circle by e = OC/r. The eccentricity 
is therefore a dimensionless number between 0 and 1. So, in 
somewhat more sophisticated language, our problem is to use 
the lengths of the seasons to determine the eccentricity of the 
Sun’s circle and the longitude of its apogee. 

Numerical elements for the theory of the sun
This is quite a nice problem for students in a trigonometry class. A beginning of the solution is illustrated 
in Fig. 3. EFGH is the zodiac in the effectively infinitely distant sphere of the fixed stars. E represents the 
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Figure �. In the solar theory of Hipparchos, the center C of the Sun’s 
circle must be placed eccentrically to the earth O in order to explain the 
inequality in the lengths of the seasons.

Figure �. The apogee A and perigee P of the 
Sun lie on line OC extended.
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vernal equinox; F, the summer solstice; G, the au-
tumnal equinox; H, the winter solstice. Points O and 
C mark the Earth and the center of the Sun’s circle, as 
before. When the Sun is at N on its orbital circle, we 
see it against E and we say that the vernal equinox is 
occuring. Similarly, at the time of summer solstice, 
the Sun is at K and we see it against F. Now add line 
QS, drawn through C parallel to GE. Similarly, add 
line PR, drawn through C parallel to FH.  

Note that arcs SKP, PAQ, QLR and RNS are each 
90°.

It is convenient to express the lengths of the sea-
sons in terms of degrees rather than days. Thus, 
Spring = 92.79 days ´ (360°/365.25 days) = 91.46°. 
The other seasons can be similarly expressed.

Then the total length of arc NKL is given, as the 
sum of the spring and summer arcs. 

And QL = NS = (NKL – 180°)/2.
It is also easy to find the arcs PK and RM, which 

are equal to one another. Note that arc KPL is just the 
length of the summer, expressed in degrees. Then PK = KPL – PAQ – QL. But PAQ = 90° and QL is already 
known, so PK  is determined. 

With arc PK known it is easy to determine the short line segment CT. (We may take the radius of the 
circle to be unity, since the absolute distance of the Sun is irrelevant in working out a theory of the Sun’s 
angular motion.)

In the same way, from arc QL we may obtain line segment CU.
And then it is any easy matter to do a little trigonometry to find distance OC (the eccentricity) and angle 

TOC. 
Final answers: from the data for the lengths of the seasons, the eccentricity OC = 0.0334,  and the lon-

gitude of the apogee (angle NOA) = 102.4°.

Calculating the sun
Once one has a complete set of elements, one can use the solar theory to calculate the Sun’s longitude (its 
place in the zodiac) for any derived moment.

There are four elements:
1) the mean daily motion n, i.e, the number of degrees per day that the Sun moves on its eccentric 

circle. This is just 360 divided by the length of the year: 360°/365.2422 days = 0.985647°/day.  
2) the longitude A of the apogee. 
3) the eccentricity e of the Sun’s circle. (We have just seen how to obtain A and e.)
4) the starting position of the Sun for some one particular moment. For example, suppose that we know 

the date and time when the Sun last passed through the apogee of its circle.

Then the problem of calculating the Sun’s longitude for a general date is illustrated in Fig. 4. Let us 
define an important quantity:  The mean anomaly ā is the Sun’s angular distance past the apogee, as viewed 
from the center C of the Sun’s circle. According to Hipparchos’s theory, ā increases uniformly with time. 

Figure �. The Sun’s circle is centered at C and lies ec-
centrically within the sphere of the cosmos, which is 
centered at the Earth O.
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(This is another way of saying that the Sun’s motion is uniform as viewed from the center C of its circle.) 
So if we know the time t elapsed since the Sun passed through apogee A, the current mean anomaly of the 
Sun is just 

 ā = nt. (1)

However, what we need to know is the true anomaly a, i.e., the angular distance of the Sun past apogee, 
as viewed from the Earth O. The relation between a and ā is 

 a = ā – q, (2)

where q is called the equation of center. [Note on terminology: in astronomy, an “equation’’ is the differ-
ence between some nonuniformly increasing quantity and the value this quantity would have if it increased 
at a uniform rate. Thus the Sun’s equation of center is the difference between a (the Sun’s actual angular 
distance beyond apogee) and ā (the angular distance at which the Sun would be found beyond the apogee 
if the Sun moved at a uniform angular speed.)  It is an equation of center because it arises from the fact that 
the Earth is not located at the center of the Sun’s circle.] 

It is another nice trigonometry problem to start from Fig. 4 and show that 

 sin sin

cos
.q e

e e
=

+ +

α

α1 2 2
 (3)

The maximum value of the Sun’s equation of center is about 1.9°, which occurs approximately (though not 
exactly) when ā = ± 90°. This means that if we ignore the eccentricity of the Sun’s circle and compute the 
Sun’s longitude as if it moved at uniform angular speed around the Earth, we could be off, at times, by as 
much as 1.9°.

So, to solve for the actual longitude l of the Sun (its angular distance from the vernal equinox, as 
viewed from the Earth) at any moment, we would perform the following sequence of calculations: calculate 
ā from Eq. (1), calculate q from Eq. (3), calculate a from Eq. (2), then finally, the actual longitude l of the 
Sun is given by 
 l = a + A. (4)

The solar equatorium
This is a fairly simple sequence of operations, but certainly tedious to perform very often. Fortunately, if we 
are content with an accuracy of, say, half a degree or so, we can dispense with any need for calculations by 

Figure �. The Sun’s mean anomaly ā increases uniformly with time. The 
true anomaly a, an angle viewed from the Earth O, therefore increases 
nonuniformly, because of the off-centeredness of the circle. The equation 
of center q is the difference in the angular positions of the Sun as viewed 
by an observer at O and an imaginary observer at C.
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building a concrete model that incorporates the elements of the solar theory. Such a model is a sort of analog 
computer that solves the specialized problem of determining the longitude of the Sun for any desired date. 
In the Middle Ages, such a model was called an equatorium, because it supplies the “equation’’ (of center), 
which we have denoted q.

The oldest extant equatoria are medieval. But it is likely that the ancient Greeks made them as well. In 
the introduction to his Handy Tables, Ptolemy remarks that one can “calculate’’ the positions of the planets 
according to the theories of the Almagest by drawing scale diagrams. [4] And it is but a short way from 
a scale drawing to a reusable instrument. For the case of the Sun, we actually have ancient directions for 
making an equatorium. Proklos (fi fth century A.D.), in his Sketch of Astronomical Hypotheses says that on 
a wooden board or bronze plate, one is to draw a zodiac circle and, within it, an eccentric circle with the 
proper eccentricity, then divide both into degrees, etc. [5] Proklos is describing an instrument virtually 
identical to the later one shown in Fig. 5.

Indeed, Fig. 5. shows a beautiful example of a medieval solar equatorium. This comes from a manu-
script, dated A.D. 1407, of the Theories of the Planets, written by Campanus of Novara in the thirteenth 
century. This was one of the fi rst competent expositions of Ptolemaic planetary theory to be written after 

Figure �. A solar equatorium in an early fi fteenth-century manuscript of the Theorica planetarum of Campanus of 
Novara. Photo courtesy of Pepys Library, Magdalene College, Cambridge. Ms. Pepys 2329, fol. 56v.
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the revival of learning in the Latin West. It is notable that a large part of the work is taken up with directions 
for making and using equatoria. Thus the equatorium entered western European astronomy right along with 
Ptolemy’s planetary theory itself. [6]

The two circles are obviously eccentric to one another. The outer circle is divided into zodiac signs and 
is centered on point d, which represents the Earth. The inner circle is divided into equal 30° signs, starting 
from the apogee b of the eccentric circle. The center of the Sun’s circle is point c, located slightly above d. 
To use the equatorium, one would first calculate the mean anomaly ā, using tables to make the arithmetic 
easier. To obtain the Sun’s longitude in the zodiac, one then pulls out a thread (no longer present) from the 
Earth d, stretches the thread through the computed position on the inner scale, and looks to see where the 
thread cuts the outer zodiac scale. 

An even simpler equatorium is shown in Fig. 6. This comes from a sixteenth-century edition of the 
Cosmographia of Petrus Apianus, as modified by Gemma Frisius. This particular instrument was designed 

Figure �. A solar equatorium in Cosmographia … Petri Apiani & Gemmae Frisii (Antwerp: 1584).
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to look like the back of an astrolabe. This makes good sense, because the solar equatorium was a common 
feature on the backs of medieval European astrolabes. [7] In Fig. 6 the outer circle is divided into zodiac signs 
as usual. But on this instrument the eccentric inner circle is divided into months of the Julian calendar year.

There are two reasons why one cannot use today the equatorium of Fig. 6. First of all, it is calibrated in 
terms of the old (Julian) calendar, rather than the Gregorian calendar we use today. This is why the vernal 
equinox (zeroth degree of Aries) matches up with March 10—rather than with March 20, as it should today. 
Second, the longitude of the Sun’s apogee changes slowly over the centuries. (The apogee moves forward 
in longitude at the rate of about 1.7° per century.) In the equatorium of Fig. 6, the apogee seems to be in the 
first few degrees of the sign of Cancer, which was approximately correct for the sixteenth century. Today, 
the apogee should be at about 103° of longitude, i.e., 13° into the sign of Cancer, as we saw above. [8]

Making a solar equatorium
It is easy to revise Apianus’s solar equatorium so that it works for today’s calendar and solar apogee, which 
is our third student project.

Make two photocopies of Fig. 6. We’ll call them copy 1 and copy 2.
For copy 1: Cut out a circle of black paper of the right size to fill up everything inside the zodiac ring 

and paste this over copy 1. Thus, only the zodiac ring still shows; and the whole center of the diagram is 
black. Find the center of the disk and label it O (by noting the intersection of the line 0°Libra—0°Aries 
with the line 0°Capricorn—0°Cancer.) Use a pin to punch a hole through the center just found. Eventually 
you will thread a string through this hole from behind the disk. Draw a line from the hole in the direction 
13°Cancer, to represent the direction of the Sun’s apogee today.

For copy 2: Cut off the zodiac ring and the black ring just inside it and discard. Measure the radius 
of the Sun’s circle. (Use the outer edge of the circle, with the alternating black and white 1°-segments). 
Multiply this radius by e = 0.0334, the eccentricity of the Sun’s circle in the modern version of Hipparchos’s 
theory. Let us call the product er.  Also, find the center of the Sun’s circle and label it C2. Use a pin to punch 
a hole at C2.

Back to copy 1:  Measure out distance er from hole O along the line toward the apogee. Make a mark 
and label it C1. Use a pin to punch a hole at C1. Note that copy 1 now has two holes—one at O and one at C1.

Putting the parts together: Stick a pin through copy 1 from behind, so that it pierces at C1.  Put copy 2 
over the pin. The purpose of the pin is to guarantee that C2 stays lined up with C1 for the following step. 

Turn copy 2 until July 5 lines up with the 13th degree of Cancer. (This is the Greenwich date—and 
place in the zodiac—when the sun reaches apogee.) Then glue copy 2 down to copy 1. When you are done, 
you can remove the pin.

Adding the fiducial string: Use a pin to push through the back of the hole at O, so that it goes all the way 
through both layers.  Then thread a string through and knot it at the back so that it can’t slip out. Be sure to 
leave five or six inches hanging free on the front side of the instrument.

You should now have an accurate solar equatorium for the twenty-first century. To use it to find the lon-
gitude of the Sun for any desired date, just pull the string through the date of interest and see where it cuts 
the zodiac. A good way to test the accuracy of your equatorium is to compare a few results with the answers 
(based on modern astronomical theory and computer calculation) that you find in in a current astronomical 
almanac.

Conclusion
The solar theory is an easily accessible branch of ancient planetary theory that can be mastered by students 
who have had some trigonometry. Even in the case of such a simple theory, the advantages offered by an 
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equatorium are very striking.  The equatorium allows one to visualize the theory in a most concrete way.  
And, it allows one to “calculate’’ the longitude of the Sun in the zodiac, simply by pulling a string through 
the day’s date, rather than by undertaking a tedious trigonometric calculation. The equatorium also nicely 
bridges two common meanings of the word “model.’’  The equatorium is a model made of paper and string.  
But it is also a concrete representation of the ancient Greeks’ abstract theory (or “model’’) for the motion 
of the Sun. Both kinds of “modelling’’ were aspects of ancient Greek astronomy. The planets naturally pose 
more complications, with their epicycles for producing retrograde motion. But it is not too hard to build 
working equatoria for the planets as well. [9] The history of these instruments is also a richly rewarding 
topic of study. [10]
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Sundials: An Introduction to Their History, 
Design, and Construction

J. L. Berggren1

Simon Fraser University

“If you put your nose pointing to the sun and open your mouth wide you will show every 
passerby the time of day.”          Quoted from The Greek Anthology in [2. p. 3]

Introduction
The sundial is one of mankind’s oldest instruments for telling the time during daylight hours. The earliest 
surviving dials come from Egypt. There we find dials from as early as the 15th century B.C. with a short 
vertical block (called a gnomon)2 of finished stone at the end of a horizontal stone ruler marked with a scale 
of hours [6, p. 59]. When the device is turned so the gnomon faces the sun and casts its shadow on the ruler, 
the end of the shadow shows the hour of the day according to an approximate arithmetic scheme. 

The first people to find exact methods for using shadows to tell time were the ancient Greeks, who used 
geometry and a geometrical model of the cosmos to construct sundials.3 Aristarchus of Samos4 invented a 
sundial called “the bowl” or “hemisphere,” which consisted of a block of stone with a hemisphere hollowed 
out of the top. From the top rim of the hemisphere a thin rod extended to the center. When the sun was shin-
ing (as it often does in Greece!) the tip of the rod’s shadow moved across a net of lines on the hemisphere 
below and told the time as the sun moved across the hemisphere of the sky. Berosus the Chaldean modified 
this to form a dial by cutting away the part of the hemisphere south of the course of the shadow tip at the 
summer solstice.5 (Figures 1a and 1b show the original bowl dial and Berosus’s cut-away version.)

The hemispherical dial vividly illustrates the point that the design of a sundial rests on a mathematical 
projection of the surface of the visible hemisphere onto some other surface. In these cases it is a hemisphere, 
but Greeks also designed dials in which hour lines appear on the surfaces of cones, cylinders, globes, and 
planes6.
1 The author thanks Dover Publications for generously allowing the reproduction of figures from [3]. He also thanks Brian Albinson, 
Margareta Hedin, Siegfried Rasper, Fred W. Sawyer, III, and the editor, Amy Shell-Gellasch, for their contributions to the writing 
of this paper. Any errors that remain are the author’s responsibility.
2 A Greek word denoting, in this context, a vertical object, such as a block or rod, erected specifically to cast a shadow.
3 For a good account of Greek and Roman sundials see [2].
4 A Greek astronomer, best known for exploring the hypothesis of a heliocentric cosmos. Ptolemy credits him in his Almagest with 
observing the summer solstice in 281/80 B.C.
5 Berosus worked on the Aegean island of Cos ca. 270 B.C. That he and Aristarchus were contemporaries, lends credence to these 
two reports of early Greek sundials. That Berosus’s dial was a modification of Aristarchus’s dial, and not an independent invention, 
is simply my supposition. (Book IX of Vitruvius’s Architecture, is our source for this, and he simply lists both men as inventors of 
dials.)
6 For pictures of some known conical, globe and planar dials see [2, 231 (conical); 376–378 (globe); 330 (planar)]. [2, 56] also 
refers to five cylindrical dials of Roman provenance.
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Greek dials differed from modern dials in three ways: (1) They told time using the concept of a “sea-
sonal hour”, a period of time equal to 1/12 the length of daylight on a given day.7 (2) They commonly had 
horizontal or vertical gnomons, rather than one pointing to the north celestial pole, as is usual today. (3) 
They indicated time by the position of the tip of the shadow of the gnomon, not the edge of its shadow. 

The Greek theory of the cosmos
Since the ancient Greek theory of the cosmos is still a useful pedagogic device today for helping students 
understand how a sundial works we shall explain it briefly here.8

Greek astronomers believed the universe, which they called the ‘cosmos,’ was an immense, but finite, 
sphere9, which rotated once each day around an axis through the north and south celestial poles and the 
center of an immobile earth (shown in gray in Figure 2), whose center coincided with that of the cosmos. 
(We shall, for brevity, call the surface of the sphere of the cosmos the ‘celestial sphere.’)

The earth was also a sphere, but so small in relation to that of the cosmos that it had the ratio of a point 
to the size of the larger sphere.10 A consequence of this is what we call the: 
Fundamental Theorem of Gnomonics. When designing a sundial we may take any point on earth to be 
the center of the cosmos.

The cosmos rotated each day in a westerly direction uniformly around an axis that joined the north and 
south celestial poles11. (We shall henceforth refer to it as ‘the polar axis.’) As the cosmos rotated, it carried 
the sun, moon, and stars around the earth. And the sun was so far away that all its rays hitting the earth at 
any moment could be considered as being parallel.

In this model three great circles are important, all of them imagined as being on the celestial sphere. 
(For the Greeks, circles were two-dimensional areas and the intersection of these circles with the earth at 
the center of the cosmos gave rise to like-named circles on the earth.) 
7 Their lengths depend not only on the local latitude but also on the season of the year, hence the term ‘seasonal’.
8 For a discussion of the cosmography relevant to dials from a heliocentric standpoint see [5, pp. 18–31].
9 The stars were in the surface of the sphere and were carried around by the daily rotation of the cosmos.
10 See, for example, Ptolemy’s Almagest I,6.
11 Today the North Star is near the northern end of this axis. But, in Euclid’s time for example, there was no visible star near this 
spot. 
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One of these circles is the equator (shown in Figure 2), a great circle on the celestial sphere. 
Perpendicular to the polar axis, it separates the northern hemisphere from the southern.

The horizon (seen in section as a straight line in Figure 3) of any locality on the earth is the intersection 
of the celestial sphere with the plane tangent to the sphere of the earth at that locality. 

The horizon separates the part of the cosmos visible at that locality from the invisible part. By the 
Fundamental Theorem of Gnomonics we may assume that the horizon plane passes through the center of 
the cosmos and so, the horizon is a great circle on the celestial sphere.12 

This circle is a fixed plane, inclined to the equator at an angle equal to the complement of the observer’s 
latitude. Hence, as Figure 3 shows, the angle between the polar axis and the horizon is equal to the latitude 
of the locality (denoted by f), a basic fact for dial makers.

A third great circle relevant to the design of sundials is the local meridian, which passes through both 
poles and the point directly above the observer, called the zenith.13 (The intersection of the meridian with 
the earth is what is nowadays also called, in geographical parlance, the local meridian.) The meridian circle 
is perpendicular to the horizon and equator, and its intersection with the earth at a locality marks the local 
(true) north and south. The sun reaches its maximum altitude14 for any given day, and is due south for an 
observer north of the Tropic of Cancer, as it crosses the local meridian. 

In addition to these great circles, other circles are also important. In the course of a year the sun appears 
to make a rotation around the celestial sphere, and its annual path as seen against the background of that 
sphere is a circle on that sphere, called ‘the zodiac’ or ‘ecliptic’. This is shown in Figure 2 as a circle skewed 
to the equator and bounded by two circles parallel to the equator. One, on the north, is known as the Tropic 
of Cancer and that on the south is called the Tropic of Capricorn. On any given day the sun is at some posi-
tion in one of the twelve signs of the zodiac, and in the course of the daily revolution of the cosmos around 
the earth the sun makes, to a first approximation, a circle centered on the polar axis and perpendicular to 
it.15 This is called its day circle. These circles are parallel to the equator and are sometimes referred to as 

12 We may, thus, speak of the visible and the invisible hemispheres of the cosmos for a given locality.
13 The great circle on the earth directly below it in this model is the meridian of longitude of the observer.
14 The altitude of any celestial object (relative to a horizon) is the arc of the great circle passing through the zenith of the observer 
between the object and the horizon.
15 This is true only to a first approximation since, as the ancients would have put it, the sun also has a slow eastwards motion of its 
own along the circle of the zodiac amounting to a little less than 1° per day. Since the zodiac is not perpendicular to the polar axis 
the motion of the sun on the zodiac means that the sun appears to move north and south in the sky during the course of a year, so 
that in fact the sun during the day traces out part of a spherical helix.
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parallel circles. Only one of them, the equator itself, is a great circle. Figure 3 shows arcs of the day circles 
of the sun at two different positions, denoted by small crosses.

Following upon the Greek invention of the science of sundials (called ‘gnomonics’) both the medieval 
Islamic civilizations and Renaissance Europe made important contributions to its development. Islamic 
astronomers, in particular, invented dials whose gnomons pointed to the north celestial pole.16 This idea, 
which connected the design of dials with the apparent motion of the sun around the cosmos during the 
course of the day, had important consequences for the design of dials, which we shall now elaborate.

The equatorial dial
The geometry of the celestial sphere with its axis, equator, and meridians, enters the design of a sundial 
for a given locality as follows. At midnight (sun time) the sun will by definition be on the northern half of 
the meridian of the locality. At noon it will have traveled halfway around its day circle so it will be on the 
southern half of that meridian. Midway between these two times, at 6:00 A.M., the sun will have traveled 
one-fourth of its day circle, and so it will be east of the locality. Similarly, at 6 P.M. it will be west of the 
locality, three-quarters of the way around its day circle. By midnight it will be back where it started.17

With this in mind it is easy to understand the design of our first dial, called an equatorial dial, two 
examples of which are shown in Figure 4, from [3, pp. 22 & 55].18 (Note, however, that the direction of 
celestial north is up and ‘into’ the paper in the dial on the left, but up and ‘out of’ the paper in the dial on 
the right.) 

Equatorial dials are most aptly described as “bare-bones” models of the cosmos relative to the user’s 
locality. The dial on the left consists of a vertical semicircle, representing the northern half of the observer’s 
meridian. To it is fastened, at right angles, a graduated semicircle, which represents the plane of the equa-
tor. (Both semicircles may be supposed to be in the planes of the circles they represent.) The equator has a 
scale of hours around it, usually from 6:00 A.M. on the west edge to 6:00 P.M. on the east, and these may be 
subdivided into 5- or 10-minute intervals. A gnomon joins the north and south poles on the meridian circle, 
and thus represents the polar axis. It is tilted to the horizon at an angle equal to the latitude, so it is parallel 
to the polar axis (Again, see Figure 3). So, by the Fundamental Theorem of Gnomonics, the intersection of 
the diameters of the two perpendicular semicircles of the dial may be taken as the center of the cosmos, and 
the gnomon as lying in the polar axis.

Figure �

16 Space does not allow a proper account of the many contributions of Islamic astronomers to sundials, and the reader who wants 
to read something of them should consult [1].
17 This neglects the slight daily motion of the sun north or south of the ecliptic discussed in Note 15.
18 A large example of such a dial may be seen at http://web.fcnet.fr/frb/sundials/photos/chicago.jpg.
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As the sun travels across the sky from east to west each day, the shadow of the gnomon tracks steadily 
across the equatorial semicircle on the dial, from west to east.19 And at any time during the day it has 
tracked across the same proportion of the equatorial semicircle as the sun in the same time has moved along 
its day circle across the sky, but in the opposite direction.

This dial is based on an im-
age of the celestial sphere divid-
ed into 24 equal segments, like 
an orange, by 12 great circles 
through the poles and forming 
equally spaced meridians. The 
equator plane is perpendicular 
to the polar axis (which is the 
common intersection of these 
great circles) and the horizon 
plane is skewed to it.

Making your own sundial
To make your own equatorial 
sundial, in which the shadow 
falls on a circular disk parallel 
to the equator as on the right in 
Figure 4, photocopy Figure 5 
onto a piece of heavy-duty con-
struction paper, and assemble 
the kit as shown in Figures 6a 
and 6b.

Make the indicated cuts 
(solid lines) and folds (dashed 
lines).20 Fold the two sides of 
the gnomon and glue them onto 
each other. In Figures 6a and 6b 
the pointed end of the gnomon 
sticks upwards through a slit in 
the face of the dial, the gnomon 
being perpendicular to the face. 

The lower edge of the gno-
mon passes through the dial 
face so it just touches the line 
joining the marks for 6 A.M. and 
6 P.M. As a consequence it is the 
lower edge of the shadow that 
tells the time.
19 For this reason the morning hours appear on the western edge of the equatorial arc.
20 One does not, however, cut around the solid circumference of the circle or any of the hour lines inside it. The solid lines next 
to the ‘50’ mark the positions of the lower edge of the gnomon for that latitude. (The dial in the photo has numerals marking 
corresponding positions for other latitudes.)
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The dial is designed for 50° N. latitude but can easily be adapted to any latitude by making angle XYZ 
in Fig. 5 equal to the latitude of the locality. The dial has numerals on both its upper and lower faces because 
the dial faces are in the plane of the equator.21 So when the sun is north of the equator, in spring and summer, 
from (roughly) March 21 to Sept 21 the shadow of the gnomon falls on the upper face, but during the rest 
of the year it falls on the lower face.

Sundials and clock time
But can such a simple device really do what our clocks do, i.e. tell accurate time? The answer to this ques-
tion depends on what kind of time we mean.22 Our equatorial dial shows true local sun time. For example, 
it will show noon when the sun is due south. But most people will find that the sun is not due south when 
their watches show noon. This has nothing to do with whether they are using daylight saving time but arises 
from the difference between sun time and standard time.

Until the late 1800s, standard time had not been invented and time at each locality was governed by the 
sun’s position relative to the local meridian. A good sundial was more accurate than a good clock, and up 
to 1900 the French railroad system used precision sundials, rather like the example on the left in Figure 4, 
known as heliochronometers, to set its clocks [5, p. 17]!

However, the introduction of the railroad, telegraph, and other means of rapid communication made 
local time an inconvenience. And it was a railway planner, the Canadian Sir Sandford Fleming, who  out-
lined a plan for worldwide standard time in the late 1870s.23 Following Fleming’s ideas, delegates from 27 
nations met in 1884 in Washington, D.C., for the Meridian Conference and agreed on a system of standard 
time that is basically the one now in use. 

Twenty-four standard meridians of longitude, 15º apart, form the framework of standard time, the first 
meridian (through Greenwich, England, at longitude 0°) being the prime meridian. These meridians are the 
center lines of 24 standard time zones, and each is referred to as the meridian for its zone. For example, 
Vancouver, B.C., whose longitude is 123°, is in the Pacific Standard Time zone, whose meridian is 120° W 
of Greenwich.24

Since each degree of longitude corresponds to 4 minutes difference of time (24*60/360) one can correct 
the time read from an equatorial dial to obtain standard time by adding (subtracting) 4 minutes from the 
time shown on the dial for each degree of longitude one is west (east) of the meridian for one’s zone. One 
could, equally well, rotate the hour markings on the equatorial band around the gnomon counterclockwise 
(clockwise) an appropriate number of degrees and so build the correction into the dial. 

However, as we indicated above, our model is only a first approximation, because the westward motion 
of the sun during the course of a day is not exactly uniform. As we said, the sun also moves slowly eastward 
along the ecliptic25 (shown in Figure 2) over the period of a year. This motion varies but is, on the average, 
slightly less than 1° per day. In addition to this, the ecliptic is inclined to the equator. These two factors 
combine to create a disagreement between a sundial and watch time, which varies according to the time of 
year, but may amount to more than 16 minutes at some times. For example, on Halloween a sundial is more 

21 This follows from the Fundamental Theorem of Gnomonics and the fact that the gnomon makes an angle with the horizon equal 
to the latitude.
22 For another discussion of the different kinds of time see [7, pp. 6 – 17].
23 For details on Fleming and standard time see http://geography.about.com/library/weekly/aa030899.htm.
24 In practice, the theoretical zone lines have in many cases been adjusted for the convenience of inhabitants. Thus all of China, 
which stretches from E to W over 4 theoretical time zones, is on the same time. And Spain, most of which is west  of the Greenwich 
meridian, is on Central European time, where the clocks are one hour ahead of Greenwich.
25 This is a great circle running along the middle of the belt of constellations known as the zodiac.



��� Hands On History

than 15 minutes ahead of a watch. This difference is called ‘the equation of time’ and Figure 7 shows how 
it varies over the year.26 

As with the correction for standard time, the equation of time may be incorporated into the design of 
a dial by means of a curve called the analemma,27 an elongated, asymmetric “fi gure-8.” shown below in 
Figure 8. This curve is divided into 12 segments (not shown here), representing the 12 months of the year. 

The curve has a slightly off-center vertical axis that 
passes through points representing the four days 
during the year (as shown in Figure 8) when the 
equation of time is zero.

The perpendicular distance to the axis from a 
point in a segment corresponding to a given day of 
a given month measures, in an appropriate unit, the 
magnitude of the equation of time. 28 According to 
the French historian of astronomy, J. B. Delambre, 
the French gnomonist Grandjean de Fouchy (1740) 
fi rst constructed this curve. (It, or the graph, is of-
ten seen on sundials.) Figure 9 shows an equato-
rial sundial built by the talented gnomonist Brian 
Albinson of North Vancouver. It has not only a 
graph of the equation of time on the white vertical 
piece in back but also has the characteristic “fi gure 
8” of the analemma cut into the gnomon in such 
a way that when the gnomon is facing the sun the 
dial automatically corrects for the equation of time. 
The gnomon can also be rotated 90°, as in the pho-
to, to show sun time, indicated by the center of the 
sunbeam passing through a slit in the gnomon.

26 This plate, published by the North American Sundial Society, shows that the sundial is furthest behind the clock in mid-February 
and furthest ahead at the beginning of November.
27 The vertical axis is measured in 5-minute intervals from –15 minutes to +20.
28 The use of the word ‘equation’ here is traditional but refl ects an archaic usage of that term to denote a correction added to or 
subtracted from a fi rst approximation to produce a closer approximation.

Figure � Figure �

Figure �
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Failure to understand the corrections for mean time and the equation of time leads many to conclude 
with Hilaire Belloc that a good motto for sundials is: “I am a sundial and I make a botch/Of what is done 
much better by a watch.”29 However, a well-constructed dial tells local sun time very accurately, and, with 
the corrections just discussed, will yield time as shown on a watch as well.

Other Dials
With an understanding of the equatorial dial it is easy to see how to design the familiar horizontal dial, 
shown in Figure 10 [3, p. 25]. In this dial, the gnomon is the top edge of what is usually a triangular-shaped 
piece mounted perpendicularly on the horizontal base of the dial. 

Figure �0

One edge of the gnomon (the one culminating in the upper point in Figure 10) makes an angle f with 
the base, and so points towards the celestial north pole. On the dial are inscribed the numerals for the hours 
and the edge of the shadow falling on the hour lines indicates the time of day. Unlike successive hour lines 
on the equatorial dial, those on the horizontal dial do not make equal angles. Rather, the angles between the 
successive hour lines depend on the local latitude, i.e. the angle the gnomon makes with the base. This is 
because the horizon is not perpendicular to the earth’s axis but is skewed to it. And finding these angles is 
the principle mathematical task in designing a horizontal dial.

In making a horizontal dial one may have to take into account the thickness of the gnomon. This is 
because it is the western edge of the gnomon that casts the morning shadows and the eastern edge that casts 
the afternoon shadows. So, if the gnomon has any substantial thickness, the dial should have two noon 
lines, parallel to each other and separated by the width of the gnomon. (In Figure 10 the sloping edge of the 
29 Quoted from the article “Can your sundial really tell the time?” by Hugh Harris-Evans on the website
www.goarticles.com/cgi-bin/showa.cgi?C=24342.
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gnomon which casts the shadow is beveled to form a line, so the same edge casts the shadow all day and 
there is no need for two noon lines. But, often, the horizontal dial is a split dial, with a morning half and an 
afternoon half.)

The formula for the angles, A, that the hour lines on a horizontal dial make with the noon lines is
tan(A) = tan(t)sin(f), where t is the so-called “hour-angle” (15° for 11 A.M. or 1 P.M., 30° for 10 or 2, etc.), 
and f is the local latitude. Thus, for Vancouver, B.C., at latitude 49° north, the hour line for 10 A.M. should 
be drawn at an angle of 23.5° to the noon line.

The two main mathematical tools in dial making are calculation and geometrical construction. A teach-
er electing to approach the subject through the former can give the student interesting, and often non-trivial, 
applications of trigonometry, and in this electronic age, calculation is a quicker approach. Some geometric 
constructions, however, especially when explained in terms of the intuitive model of the equatorial dial, 
can be more illuminating for the student, and their derivation can develop a student’s spatial intuition. The 
exercises at the end of this paper suggest possibilities for both approaches.

In [3, 99-1-1] and [4,45-47] there are instructions for constructing the hour lines for a horizontal dial of 
given latitude by plane geometry, without doing any calculation. An outline of the construction, based on 
the description in [4], is as follows. One first draws three parallel lines, JJ¢, NN¢ and MM¢. In doing this 
construction one chooses the distance, LN, between the lower parallels to be any convenient length for the 
base of the gnomon. Then one takes KN, the distance between the upper parallels, to be LN*sin(f). Finally, 
one constructs KL and K¢L¢ perpendicular to JJ¢ and separated by a width that one wants to use for the 
gnomon of the sundial.

7 8 9 10 11 1 2 3 4 5

K K'

L L'M M'

J J'

N N'

Figure ��

Having thus established the basic framework for designing the dial, one now draws lines radiating from 
K and K¢ so they divide each of the two right angles at K and K¢ into 6 equal parts of 15° each. Then one 
uses the numerals shown in Figure 12 to label the intersections of these lines with line NN¢.30 Finally, one 
joins these intersections with the points L and L¢ as shown in the figure. These lines are now the hour lines 
for a horizontal sundial for a locality having latitude f and whose gnomon, of width LL¢, points toward the 
pole in the direction of N.

To see why this is so, imagine the part of Figure 11 above the line NN¢ 
to be creased along that line and folded towards the reader until the two 
strips of paper make an angle of 90° – f at the crease. It is a good exercise 
to show that if L and K are joined by a line, as in Figure 12, then angle L 
would equal f and angle K would be right. Thus the strip KN, which has 
the hour lines for an equatorial dial radiating out of K, would be set up ex-
actly right for an equatorial dial with the (imaginary) piece KL as the part 

30 Note that the noon lines, the two parallels through L and L¢, are not labeled “12” here, for lack of space.

Figure ��
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of its gnomon between the dial and the horizon.31 (See the dial on the right in Figure 4.) The reader who 
wants a challenge may now complete the argument to show that the lines on the lower dial are indeed the 
hour lines for a horizontal dial for latitude f and gnomon KL. 

Just as we can design a horizontal dial on the basis of an equatorial 
dial, so we can design a vertical dial on the basis of a horizontal dial. 
(“Vertical dial” refers to one mounted on a vertical wall, here assumed 
to be facing south. Its gnomon is parallel to the polar axis.) Since the 
earth is a sphere, a vertical dial at latitude f North will, if moved paral-
lel to itself southward through an arc of 90° along the same meridian, 
be a horizontal dial at latitude 90° – f South. (See Figure 13, where Z
denotes the zenith of a locality in the northern hemisphere.) 

By the Fundamental Theorem of Gnomonics the dial shows the 
same time at either place. And, because we moved the dial along a me-
ridian, the time is the same at either place. Hence, to design a vertical 
dial for latitude f North one need only design a horizontal dial for lati-
tude 90° – f South. (Note that the gnomon of such a dial points to the 
south celestial pole.)

Sundials as calendars
The ancient Greek gnomonists realized that sundials 
could be used to indicate not only the time of day but 
also the sign of the zodiac in which the sun is located 
on a given date. In Figure 1a notice that three circular 
arcs run across the hour-lines, arcs which indicate the 
seasons of the year. The northernmost of the three 
arcs is the path of the tip of the gnomon’s shadow 
when the sun enters the sign of Capricorn (i.e., the 
winter solstice). The southernmost arc is the path of 
the tip of the gnomon’s shadow when the sun enters 
Cancer (i.e., the summer solstice). And the middle 
arc is the path when the sun enters the signs of Aries 
or Libra (the vernal and autumnal equinoxes). 

In fact, anything dependent only on the declina-
tion of the sun above or below the equator, such as the 
beginnings of the months or special dates, such as an-
niversaries or birthdays, could be indicated on a dial. 
Thus, on the vertical dial shown in Figure 14, from 
St. Mary’s Church in Krakow, Poland, the shadow of 
the tip of the gnomon indicates the beginning of the 
months as it traces out the various hyperbolas.32

31 Note that the width of the gnomon means this equatorial dial is also ‘split,’ so that, e.g., the western edge of the gnomon casts 
the shadow for morning hours.
32 Unlike the circular lines in Figure 1 the curves representing the months in Fig. 12 are hyperbolas. This is because the gnomon tip 
is projecting part of the sun’s day circle onto a plane surface at an acute angle to that circle. (I thank my friend Siegfried Rasper, of 
Nienhagen, Germany, for this photograph.)

Figure ��
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Sundials in the classroom
In giving talks to high school and university students on the topic of sundials I have found that students 
are fascinated by the question of how people told time before the invention of the clock. Most of them 
have heard about sundials and know they are connected with astronomy, but they are invariably surprised 
to learn that the design of sundials relies heavily on geometry and trigonometry, so sundials are also part 
of the history of applied mathematics. Because a range of mathematics problems—from the simple to the 
difficult—arise in the design and use of sundials they are a good source of problems for classes of varying 
abilities.

To give an idea of the range of problems that a teacher can use we state a few here.

Problem 1.  A family traveling comes on a charming little town whose central square has a large bubbling 
fountain in the center as well as a beautiful sundial. The children recognize the dial as an equatorial dial but 
are surprised that its gnomon is parallel to the surface of the square. Suddenly the big sister grabs her little 
brother and dunks him in the fountain. Why did she do that? 

Problem 2.  On what days of the year will a dial at your school such as that shown in Figure 11 show the 
same time as an accurate watch does? [Hint: To solve this the student needs to use the analemma curve 
shown in Figure 8 and must know both the local longitude and that of the meridian for his/her time zone.]

Problem 3.  At what days of the year, and hours of the day, would a vertical dial for the north face of a house 
be useful in telling time? Make a sketch showing how the appearance of such a dial would differ from that 
of a dial for the south face of the same house.

Problem 4.  A student makes a horizontal dial whose gnomon is simply a stiff bar of metal or a piece of 
small-diameter pipe inclined at the appropriate angle. Thus the shadow it casts on the dial always has two 
sides. Which side of the shadow should the student use at 8 A.M.? What about noon? What about at 3:00 
P.M.?

Problem 5.  Using trigonometry, design the hour lines of a horizontal dial for your school with a gnomon 
one centimeter wide. Design a vertical south-facing dial as well. 

Problem 6.  Use the elementary theory of conic sections and a rough sketch to show that in general the 
tip of the shadow on a horizontal dial, during any given day, traces out a hyperbola. [Hint: Think how the 
parallel circle that the sun travels on during the day and the tip of the gnomon give rise to a cone that will 
be cut by the horizon plane.] Discuss possible exceptions.

Problem 7.  Use the references below by Rohr and Waugh, as well as the web resources, to write a report 
about analemmatic dials. It should explain the most obvious difference between such dials and those we 
have discussed in this article, tell when and where they were probably invented, and why the numerals for 
the hours on such dials are arranged on the circumference of an ellipse. Now use the sundial software pro-
vided by websites [10] or [12] to design such a dial for your school.

Conclusion
I hope that this paper will stimulate teachers to include some discussion of the basic geometry of simple 
sundials in their geometry and trigonometry classes. The theory uses significant high school level material 
from both these subjects, but not so advanced as to be beyond the reach of most students. It also gives the 
mathematics teacher a chance to talk about the geometry of the surface of the sphere, which provides a nice 
introduction to non-Euclidean geometry (something, I have discovered, that interests both teachers and 
students). Since the topic has a rich history it ties in nicely with social studies and art, and the construction 
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of a sundial for the school ground would make an excellent class project in which both mathematics and art 
classes could leave a heritage for coming generations of students.33
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Why is a Square Square and a Cube Cubical?

Amy Shell-Gellasch
Pacific Lutheran University

Introduction
Why is the algebraic process of forming a perfect quadratic expression referred to as completing the square? 
With simple cutouts for an overhead projector, the geometric underpinnings as well as many aspects of 
quadratic equations can be exhibited quickly and effectively. This can be expanded to the cubic with the use 
of five wooden blocks. This chapter will show how to use these items in the classroom to give students a 
geometrically intuitive as well as an historical understanding of quadratic and cubic expressions.

Creating squares
At several points in the undergraduate curriculum, as well as in some second-
ary courses, we find ourselves “completing the square.” I found myself in just 
such a position a short while back while teaching a sophomore level calculus 
course. On the spur of the moment, I asked the class if they knew why it was 
called “completing the square”. The response ranged from blank stares to 
shrugged shoulders. Looking at the clock, I decided I could sidetrack for a 
few minutes. 

I started by drawing the Figure 1 on the board to represent the statement 
x2 + bx. (In general, you will have some expression of the form ax2 + bx + c. 
But the actual process of completing the square is done on an expression of 
the form x2 + bx, after division by a and “removal” of c.) I start with the com-
ment that for the ancient Greeks as well as the Babylonians, geometry was 
physical; that x (in modern notation) represented a length, x2 an area, and so 
on.

The next step in completing the square requires b/2 to be calculated. (I 
draw as the students recite the steps in the process of completing the square.) 
By cutting and pasting in the Chinese style1, you have the same area, but in 
the form x2 + 2(b/2)x, as in Figure 2.

Finally you add (b/2)2, represented by the small square at the bottom right 
of Figure 3.

You now have regions with areas:

x2 + bx + (b/2)2 = (x + b/2)2.
1 See David Zitarelli’s chapter on the Chinese method for more on this point.
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Figure �. x2 + bx

Figure �. x2 + 2(b/2)x

Figure �. x2 + 2(b/2)x + (b/2)2
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So you have “completed the square” quite literally. The above equation and diagram allows students to 
see why we need the “square of half the second term” when completing the square. By having your students 
solve for x in this equation, they will understand where the quadratic equation comes from.

This can be done quickly at the board with chalk in one hand and eraser in the other. However, precut 
and colored pieces of overhead transparencies can be used to much more effect. This can also be done any-
time the topic comes up, but it is most effective as a transition to a discussion of the cubic.

I have found that most students can recite the steps in the process most successfully, but have no idea 
where they come from. This quick demonstration is all that is usually needed to make the steps as well as 
the name clear. From my experience, this quick side-trip into the history of mathematics is very enlighten-
ing and exciting for many students. Since it can be done so quickly, and on a topic that they are familiar 
with, it is a painless way to incorporate some history into your teaching. (Inserting history of mathematics 
into a lesson just for the sake of incorporating it can seem arbitrary to the students, and as such, it becomes a 
burden to the teacher and the students if overdone. However, inserting history at those “teachable moments” 
whether planned or not, is more natural and profitable for the students.)

A little history
The ancient Babylonians describe a way of “completing the square” 2 that is a cut and paste method that 
transforms a rectangle to a square. [2] This justification for the “algebraic” method of completing the square 
resurfaces two and a half millennia later with the Islamic scholars. The Babylonian process is almost identi-
cal to that provided by Al-Khwarizmi in the 9th century. Arab mathematicians, like their Greek forerunners, 
did not acknowledge negative coefficients or roots. Each quadratic was categorized and solved according 
to its form. For example, ax2 = bx + c and ax2 + bx = c (with a, b, c all positive) were considered different 
forms. Al-Khwarizmi was dealing only with the form x2 + bx = c. In particular the case x2 + 10x = 39.3 [1]  
As was the norm, he stated his solution in narrative form. It translates algebraically to

( ) cbcbx −+= 22 . 

To explain his solution, Al-Khwarizmi describes a physical cut-and-paste method equivalent to that pre-
sented above. Using a geometric or physical interpretation to justify or explain a non-physical or algebraic 
process was very rare at that time. Thus Al-Khwarizmi was ahead of his time by using tools from geometry 
to solve algebraic problems. It was not until the 17th century that solving the general quadratic in the form 
ax2 + bx + c = 0 was done without dealing with individual cases of the coefficients.4

To finish the story of my classroom experience: at this point, one of my students, who had been an aver-
age, though uninspired and for the most part uninvolved student, really perked up. That the term “complet-
ing the square” literally meant something intrigued him. When I then explained that to the ancient Greeks 
virtually everything in geometry had a physical meaning, he was hooked. Not only did his grades and 
involvement improve, his new interest in math history motivated him to submit a paper for the Association 
for Women in Mathematics writing contest that won him first prize at the collegiate level!

2 Remember that the term completing the square is a modern construct; and the Babylonians did their mathematics rhetorically. 
Symbolic algebra is only approximately 500 years old.
3 Babylonian mathematics, as well as that of many other ancient cultures, did not present general procedures as we are accustomed 
to. They presented a specific, though general example to show the method. Students were expected to glean the general procedure 
from one or more of these examples.
4  For general information on this topic see a general history of mathematics text such as Victor Katz’s A History of Mathematics: 
An Introduction, for more detail see Ronald Calinger’s Classics of Mathematics [3]. 
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The cubic

A brief history
Virtually any history of mathematics book from popular accounts such as [4] to scholarly texts such as 
[2] visits the very public and controversial dispute between Cardano and Tartaglia over the solution to the 
general cubic (c. 1545). So how did Cardano solve the cubic? And does it have a physical manifestation 
as the solution to the quadratic does? The method presented here is a modernized version of what Cardano 
did, and is equivalent to Al-Khwarizmi’s work. See Ronald Calinger’s Classics of Mathematics for their 
original works. [3] As stated above, since negative numbers in general, and negative roots to equations 
in particular, were not accepted until the Renaissance, mathematicians from the ancients through Car-
dano considered separate cases where we would consider only one. We would write all cubic equations 
as 3 2 0,ax bx cx d+ + + =  with all coefficients ranging over the reals. Mathematicians such as Cardano 
wrote the equations so that all coefficients were positive. In particular he solved the cases of a cube and a 
line equal to a number and a cube equal to a line and a number. In modern algebraic notation this would 
be 3x cx d+ =  and 3x cx d= +  respectively.5 

Solving the cube
So now, how would you solve or complete the cube? First, since the solution to the quadratic was already 
known from antiquity, Gerolamo Cardano (1501–1576) wanted to transform the cubic into a quadratic, or 
at least a form susceptible to the quadratic formula. He realized that an equation of the form x3 + px = q can 
be rewritten in the form u6 + ru3 + s3 = 0, which is a quadratic in u3. His line of attack was then to transform 
the general cubic into such a quadratic.

Consider a cube with side dimension a + b (see Figure 4). 

 3 3 2 2 3( ) 3 3a b a a b ab b+ = + + +  (1)

Regroup to get

 
3 3 3( ) 3 ( ) .a b a ab a b b+ = + + +  (2)

Now let a + b = u and b = v. Then a = u – v as in Figure 4. 
Rewriting (2) produces 

 
3 3 3( ) 3 ( ) .u u v uv u v v= - + - +  (3)

Cardano used the following clever substitutions: 
 ,x u v= -  (a)

 3 ,p uv=   (b)

 
3 3.q u v= -   (c)

After rearranging terms, Cardano transformed (3) into x3 + px = q, where p and q are positive. Using 
equation (b) which defines p, we have 

.
3
pv
u

=

From (c), this leads to 
3

3 .
3
pq u
u

æ ö÷ç= - ÷ç ÷çè ø

5 We would group all forms together as ax3 + cx + d = 0.
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This can be rewritten as the quadratic 
3

6 3 0.
3
pu qu

æ ö÷ç- - =÷ç ÷çè ø

Since the quadratic was solved in antiquity, we have 

2 3
3 ,

2 2 3
q q pu

æ ö æ ö÷ ÷ç ç= + -÷ ÷ç ç÷ ÷ç çè ø è ø

ignoring the negative (impossible) root.
Using (c), we come to 

2 3
3 .

2 2 3
q q pv

æ ö æ ö÷ ÷ç ç=- + -÷ ÷ç ç÷ ÷ç çè ø è ø

And finally, x = u – v gives us

 

2 3 2 3
3 3 .

2 2 3 2 2 3
q q p q q px

æ ö æ ö æ ö æ ö÷ ÷ ÷ ÷ç ç ç ç= + - - - + -÷ ÷ ÷ ÷ç ç ç ç÷ ÷ ÷ ÷ç ç ç çè ø è ø è ø è ø

Since our cube has side a + b = u, and u = x + v, we have solved the cubic by finding x. But b = v so 
x = a. Thus we have solved the cubic by finding the small cube a3 .

v u – v

u

a

b

Figure �. Decomposition of a Cube

How does this relate to our three-dimensional cube in Figure 4? The small cube in the upper right front 
corner is (u – v)3 = x3 = a3, the larger cube in the lower back left corner (not visible in Figure 4, but visible 
in the lower left of Figure 5) is v3 = b3 and the whole cube is u3 = (a + b)3. The three identical rectangular 
blocks have dimension u by v by u – v (or a + b by b by a). See also Figure 6. 

The case of x3 = px + q is handled similarly by letting x = u + v, p = 3uv and q =  u3 + v3. 
So the cubic equation can be interpreted physically as a cube. Just as the solution to the quadratic is the 

smaller square that is found when we complete the square, the solution of the cubic is seen to be a smaller 
cube making up part of the larger cube. Thus we have completed the cube.
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I have always found that bringing in non-mathematical history really sparks the interest of those stu-
dents in class with non-scientifi c interests, such as the language arts majors. For example, there is an inter-
esting connection between Cardano and Shakespeare. 6

The model
The wooden cube shown in Figure 5 depicts the three-di-
mensional analog of the cut-and-paste solution to the qua-
dratic discussed in the fi rst part of this chapter. 

When assembled, the resulting cube (Figure 5) has di-
mensions of 9 cm. This is a nice hand-held size. You may 
choose to make yours larger to be more easily seen in the 
classroom. The individual pieces shown in Figure 6 have the 
following dimensions:

6 cm cube,
3 cm cube,
three 3´6´9 cm rectangular blocks.

The most direct way to make these elements is to cut 
them from appropriately sized pieces of wood using a jigsaw 
or table saw. Then sand the pieces until they fi t together to 
form a seamless, or nearly so, cube.7

Figure �. Three-dimensional cubic pieces

6 In 1573, Edward de Vere, the Sixteenth Earl of Oxford (1550–1604) sponsored an English translation and publication of Cardano’s 
Cardanus’s Comfort. This is a work of philosophy as opposed to mathematics. In Cardanus’s Comfort is the following passage,

What should we account of death to be resembled to anything better than sleep…But if thou compare death to long 
travel…there is nothing that doth better or more truly prophecy the end of life than when a man dreameth that he doth 
travel and wander into far countries.

If the ideas in this passage sound vaguely familiar, then you probably know your Shakespeare. Hamlet’s “to be or not to be” 
soliloquy has the same message. Many scholars believe Edward de Vere was Shakespeare. Did Shakespeare get some of his 
material from Cardano? Perhaps. 

In his edition, de Vere also included one of his own poems, of very Elizabethan style.
[“Shakespeare” By another Name, Anderson, Mark, Gotham Books, 2005, pp. 64–65.]
7 This cube as well as the cycloid and brachistochrone in the chapter by V. Fredrick Rickey, were constructed by the late Cliff 
Long.

Figure �. Three-dimensional cubic
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In the classroom
By observing the blocks depicted in Figures 5 and 6, you will see two cubes and three identical rectangular 
blocks. The dimensions, and thus the volumes, of these are: a3, b3, and ab(a + b). When assembled, the new 
cube has dimension a + b for a volume of (a + b)3. Thus these cubes give visual confirmation of the fact 
that (a + b)3 = a3 + 3ab(a + b) + b3. 

Viewing the blocks in this light is the tack I most often take when using them in the classroom, whether 
it be a general history of mathematics class or a pre-calculus or calculus class. In these classes I do not go 
into the algebraic gymnastics presented above since in these courses the solution of the cubic is not covered, 
and might be too complex for the students. I give them the blocks and let them explore on their own. If this 
is done during work on completing the square, the three-dimensional version becomes a challenge problem. 
If it is done during a section on the cubic, this is a physical way of exploring the concepts. And if this is a 
lesson on the binomial theorem, it is a way for students to view the algebraic formula visually and geometri-
cally. In these cases I do not present much more than what is represented by equations 1–3 above.

In a course that discusses the solution of the cubic in more detail, I would use the blocks first as a way to 
encourage students to try to find the solution to the cubic on their own. However, similar discovery exercises 
should be given in preparation for this. This is a fairly complex algebraic process and will be frustrating for 
the students if they are not accustomed to formulating solutions on their own. I use the blocks again as a 
visual aide as the solution is being presented to the class. This requires that time is set aside for a full look 
at the solution and its history. If you want to really side-track, ask what the solution of the quartic would 
look like!

Conclusion
The vast majority of students have to complete the square and use the quadratic formula by the time they 
reach college. By using the cutouts and presenting the historical background, the procedure and formula 
they are asked to memorize take on meaning that is otherwise lost to them. By going a step further and us-
ing blocks to present the three-dimensional analog, we encourage students to look past what is traditionally 
presented to try and foresee the continuation of the theory. A cubic equation actually represents a physical 
cube, and as such, can help guide them in understanding the solution.

Too often students view mathematics as a laundry list of unrelated and disconnected rules. By present-
ing the historical basis for some topics, especially the most common ones, we enable our students to view 
mathematics in a more holistic manner. We can encourage them to think of the connections in mathematics 
and share in the joy of discovering mathematical generalizations.
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The Cycloid Pendulum Clock
of Christiaan Huygens

 Katherine Inouye Lau Kim Plofker
 Brown University Union College

Introduction
The cycloid was an important “new curve’’ attracting mathematicians’ attention in the seventeenth and 
eighteenth centuries. It turned out to be particularly significant in the study of the behavior of objects fall-
ing under the force of gravity: the cycloid is not only the brachistochrone (path of descent in shortest time) 
but also the tautochrone (path of descent in equal time from any point on the path). New mathematical tools 
such as the calculus made it possible to apply the study of such curves, and of concepts such as their “evo-
lutes’’ and “involutes’’, to mechanical problems.

The significance of these developments is often lost on students who find them unfamiliar and remote. 
The story of Huygens’ cycloid pendulum clock is an intriguing, easy-to-understand application of these 
mathematical ideas to a very practical problem.  And it supplies a hands-on construction project that rein-
forces students’ comprehension of how the cycloid and evolutes of curves actually work. 

Huygens and the cycloid

Timekeeping problems and the tautochrone curve

In the middle of the seventeenth century, the scientific revolution and nautical discovery were in full swing. 
The expansion of trade and colonization meant an increasing need for accuracy in determining longitude at 
sea. An accurate clock would solve the problem of measuring time differences precisely enough to deter-
mine longitude; it would also be useful in many scientific experiments. The trouble was that clockmaking 
technology at that time wasn’t developed enough to produce a sufficiently accurate clock. A “good’’ clock 
of the period might lose or gain as much as a quarter-hour per day. (The longitude problem and its influence 
on  clockmaking have lately been the subject of several studies [1], [10].)

Clockwork mechanisms were not reliably regular: that is, they did not repeat their motions in equal 
time intervals, because the mechanical forces that drove them fluctuated too much. Around 1600, Galileo 
had recognized that the solution to this problem might lie in the physics of the ordinary pendulum [2]. The 
time a given pendulum took to swing in a circular arc appeared constant, independent of the amplitude of 
the swing. That meant that its oscillations would be constant—tautochronous—even if their amplitude 
changed. So the pendulum could be used for an accurate timekeeping device even though its oscillations 
grew smaller as it swung back and forth. (Galileo gave his own account of his pendulum experiments in 
Dialogue Concerning Two New Sciences [6].)



��� Hands On History

Huygens’ clockwork
Unfortunately, the circular arc of a swinging pendulum is only approximately a tautochrone. The pendulum 
will in fact take longer to swing through large arcs than through small ones. This disadvantage was over-
come by the Dutch mathematician Christiaan Huygens in his work on the pendulum clock.

The Netherlands in the seventeenth century was a major maritime power, so Dutch scientists were well 
aware of the practical importance of building better clocks.  Huygens, born in 1629 into a wealthy family of 
the Netherlands aristocracy, soon showed an aptitude for both mathematics and mechanical tinkering [5].  
In his publications from the 1650s till the end of his life in the 1690s, he investigated topics such as squaring 
the circle, telescope construction, the mechanics of elastic bodies, and the nature of light (his explanation 
of how wave propagation can produce the effects of geometrical optics is now known as “Huygens’ prin-
ciple’’). The mechanical and mathematical problems involved in improving the performance of clocks also 
occupied much of his attention throughout his scientific career [4].

When Huygens initially invented the pendulum clock in 1656–57, he used an empirical solution to 
make the pendulum’s swing more tautochronous [11]. Realizing that the circular arc needed to become 
steeper at its ends, he enclosed the string on which the pendulum bob hung between two metal “jaws’’ or 
“cheeks’’ whose lower ends curved outwards. Now the swinging string, instead of remaining straight like 
the radius of a circle, curved along the surface of the “cheek’’ and at the end of the swing lifted the bob 
above its former circular path. The steeper arc caused the bob to fall faster, counteracting the slowing-down 
effect of the larger swing. (See the illustration of Huygens’ design in the chapter by V. Frederick Rickey in 
this volume [8].)

The mathematics of the cycloid and “evolving’’ curves
In 1659 Huygens began to analyze his empirical “fix’’ mathematically, trying to determine what sort of 
curve for the pendulum’s swing would make it truly tautochronous. He found that the curved path he was 
looking for was surprisingly similar to another curve he had recently studied: the path traced out by a point 
on the circumference of a circle rolling along a straight line. Huygens was then able to prove that this curve 
(known as the cycloid) was indeed exactly the path that a truly tautochronous pendulum would follow.1

Huygens’ proof, presented in his 1673 book Horologium Oscillatorium or The Pendulum Clock [3], 
was a lengthy geometrical demonstration (he considered geometry more mathematically sound than the 
newfangled methods of infinitesimals). The gist of the standard calculus proof of the tautochrone property 
of the cycloid is as follows.

Considering the bob to be falling in uniform gravity along some arc to the lowest point of its swing, 
the equations of motion give its velocity v only in terms of gravitational acceleration g and y, the height of 
the fall:

 
1
2

2mv mgy= .  (1)

The velocity is ds/dt, the change in distance traveled along the arc with respect to the change in time:

 ds
dt

gy= 2 .  (2)

If the arc of descent is chosen to be half a cycloid, then ds can be expressed in terms of the parametric equa-
tions for the cycloid, namely
 x = a(q – sinq),      y = a(1 – cosq). (3)
1 See the above-cited chapter [8] for more detail on discoveries of the properties of the cycloid. An interesting 
discussion of how Huygens identified the cycloid in this problem, with some reproduced sketches from his 
own notebook, is presented in an online paper [7].
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We can solve for dt in terms of dq and integrate it over the entire descent to get the time of descent. But if we 
now pick any other point on the same half-cycloid and substitute its value into the same equations instead, 
the expression for the time of descent turns out to be exactly the same. Thus the cycloid must indeed be the 
tautochrone curve.

Pendulum suspension

Pendulum traces out
evolvent or involute

Figure �. Evolute tracing out a secondary curve

Having found that the pendulum’s path must be a cycloid, Huygens sought to know what shape the 
enclosing “cheeks’’ of the pendulum should be. What sort of curve would cause the end of the pendulum 
string to trace out a cycloid as it fell away from the curve?  In fact, that curve is also a cycloid.  This remark-
able feature of “this marvelous line’’, as Huygens called it, led him to investigate the general relationship 
between a given curve (which he named an “evolute’’) and the secondary curve (“evolvent’’ or “involute’’) 
traced out when the first curve is straightened out starting at one end, like a pendulum string falling away 
from its “cheek’’.  (Figure 1 shows this “evolution’’ in the case of the cycloid. The general properties of 
evolutes and involutes also proved useful in the design of the teeth of  rotating gears, whose curves need to 
fit into and unroll from one another smoothly.) 

Construction of the model
Using Huygens’ idea
Although the complete mechanism of Huygens’ cycloidal pendulum clocks is quite complicated, the cycloi-
dal pendulum itself is much easier to build. Constructing the model shown in Figure 2 is an appropriate task 
for advanced high school and college students. The model compares the swing of a pendulum restrained 
by cycloidal “cheeks’’ to that of another pendulum oscillating freely in a circular arc. The regulating effect 
of the “cheeks’’ is surprisingly evident, even without any driving mechanism. Furthermore, the hands-on 
experience of building the model is a wonderful way to become very familiar with the shape and complex-
ity of the cycloid.

For visual inspiration, students can look at woodcuts of Huygens’ detailed clock mechanisms from his 
book [3].
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Figure �. Cycloid pendulum model

Step-by-step directions
For the construction, you will need one free afternoon, brief assistance from a friend, two pendulum bobs, a 
dowel half an inch in diameter, thin wire, a long straightedge, a sharp pencil, a large sheet of tracing paper, 
cardstock (two pieces 12´12 inches), and cardboard (a panel 18´24 inches and a circle seven inches in 
diameter).

• Prepare the tool for drawing the cycloid: a circle seven inches in diameter cut from cardboard, with 
a notch on the circumference for the point of a pencil.

• On a cardboard panel about 18 inches tall by 24 inches wide, draw a horizontal line which bisects 
the panel.

• Next, roll the circle along the underside of your horizontal, using a ruler as a guide (see Figure 
3). Begin and end with the pencil on the horizontal line, about an inch from either vertical edge 
of the panel. With a friend’s help to hold the pencil, use a continuous rolling motion to draw a 
smooth curve. You have created the evolvent or involute that will be traced out by the cycloidal 
pendulum. 

Horizontal line
Ruler

Start pencil on the ruler

Roll the circle along ruler

The cycloid

The pencil traces out a cycloid.

Figure �. Create a cycloid from a circle
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Point B
(Dowel for pendulums)

Point C

Point A

Point D

Horizontal line

7 inches

7 inches

Figure �. Labeling the points on the panel

• Trim the left or right edge of the panel so that the evolvent is centered.
• Label the lowest point on the evolvent A (see Figure 4). Seven inches above the horizontal and di-

rectly over A, mark the point from which the pendulums will hang as B. Label the two points where 
the evolvent intersects the horizontal as C and D.

• To create the corresponding evolutes, use tracing paper to transfer the curve AD to CB and then AC 
to DB. 

• Compare the cycloid to a circular arc by drawing a circle with center B and radius AB, as in Figure 
5. In the completed model each pendulum will attach at B, but one will follow a circular path while 
the other will be compelled to trace out the cycloidal path.

Circle with center B

Horizontal line

Point B
(Dowel for pendulums)

Point A

Figure �. Comparing the cycloid to a circle with center B and radius AB
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• Along the evolute, construct two “cheeks’’ as shown in Figure 2. Each rectangular strip juts out 
perpendicular to the panel, confining the pendulum between the evolutes to a cycloidal path. Each 
“cheek’’ is attached to the panel by a fringe along its length and a triangular tab at either end. Cut 
and fold the “cheek’’ from cardboard and the fringe from cardstock, using the template shown in 
Figure 6.

Glue to panel

Built-in tab

Check:

Fold on dotted lines

Attach fringe between tabs

Paper fringe:

Fold

Cut fringe

Glue to check

Fringe
height
2 inches

Check
height
5 inches

Glue this half to panel
along the evolvent

Check width BD

Figure �. Template for cheeks, tab, and fringe

• Glue the uncut half of the fringe to the cheek and then attach both cheeks to the panel as shown in 
Figure 7. Align the cheek curve with the curve of the evolute.

Tab

Fringe

Check

Evolute

Point B

Pane
l

Figure �. Construction and placement of cheeks, tab, and fringe
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Display tabs Tab sideview:
Glue to back of panel
Into box

Cheeks

Point D

Point
(Dowel for pendulums)

B

Point C

Point A

Horizontal line
Dotted line = circle with center B

Solid line = tautochrone

Panel:

Figure �. Adding the dowel and display tabs

• At point B, cut a hole and insert a sturdy dowel (half an inch in diameter), as shown in Figure 8. 
• For display, tabs glued to the top of the panel can tuck under books on a shelf or into the top fold of a 

weighted cardboard box. For stability, insert the dowel completely through the panel and the box.
• Finally, attach to the dowel two small pendulum bobs (available at hardware stores) suspended by 

thin wire or inelastic string. Install the first bob close to the panel where its string will curve against 
the cheeks and produce a cycloidal path. Position the second bob farther from the panel, where it 
will swing freely in a circular path. (If the pendulums tend to slide along the dowel, skewer card-
board tabs between them as shown in Figure 2.)

• Pull up both pendulum bobs to the same height; release them and observe the difference in their 
swings.

Conclusion: possibilities for further investigation
Students at the advanced high school or college level, with some calculus training, can explore this project 
in a class on the history of mathematics (particularly the historical development of calculus) or history of 
science. It would serve as a useful demonstration tool for a student presentation on the topic of evolutes 
and involutes or the tautochrone.  Pendulum clocks in general are a fascinating introduction to much of the 
mathematics and mechanics of the seventeenth century; a student inspired to learn more about them might 
like to seek out physical examples somewhat more complex than this cardboard model.  A reproduction of 
Huygens’ clock at the Science Museum in London can be seen online [9]. 
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Build a Brachistochrone
and Captivate Your Class

 V. Frederick Rickey
United States Military Academy

Introduction
Cliff Long (1931–2002) [5] was a master teacher whose office was a wonderful place to visit, for it was 
crammed with a wealth of teaching devices. From his early Bug on a Band [6], to his slides and flexible 
model of quadratic surfaces [3,4], to his head of Abraham Lincoln made with a computer-controlled milling 
machine [1], and his fascination with knots [7], Cliff was always on the lookout for new ways to illustrate 
mathematical concepts. 

As a young faculty member I went to his office whenever I wondered how best to present some topic in 
class. He had thought long and hard about everything he taught and was full of ideas about how to enhance 
learning. Cliff was my mentor and I learned an immense amount about teaching from him. 

Of all the things in his office, my favorite was his brachistochrone. I borrowed it to use in talks when-
ever the Bernoullis were mentioned. The brachistochrone problem was my favorite way to end a class on 
the integral calculus, for it provided a lovely way to review many of the topics we had studied [10]. Shortly 
before I retired from Bowling Green State University in 1998, Cliff talked to me about an improved design 
for the brachistochrone and asked for my suggestions. Little did I know that he was making one for me. I 
was honored. 

Parametric equations
When introducing the topic of para-
metric equations, a good way to pro-
ceed is to arrive in the classroom with 
your brachistochrone under your arm. 
When your students arrive, take the 
circular disk and draw a cycloid on the 
blackboard (see Figure 1). Be sure to 
tell the students that a cycloid is the 
curve generated by a point on the cir-
cumfrence of a circle that is rolling 
along a straight line and that the word 
derives from the Greek word for circle, 
kuklos. Perhaps they will have heard 
of epicycloids, those circles rolling on Figure �. Rolling a curve to produce a cycloid
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circles, that are part of Ptolemaic astronomy. Of course you will want to practice drawing a cycloid in 
advance, for it is a little tricky to get the disk to roll without slipping; also you need to keep enough pres-
sure on the disk—and the chalk—so that the chalk will trace the curve. If the blackboard does not have a 
protruding edge that you can roll the disk on then you will have to get several students to hold a meter stick 
tightly against the blackboard so that you will have a firm base to roll the circle on. If the blackboard slides 
up so that you can work at a more convenient height, that is even better.

Now we are ready to derive parametric equations 
for the cycloid. If you place the wooden disk on the 
base line and then trace around it with chalk, you can 
draw a circle on the base line of your cycloid, as in 
Figure 2. 

For the parameter we use q, the angle the circle 
has rolled through. We begin with q = 0 and the trac-
ing point P at the origin. If the circle has radius r, 
then when it rolls through angle q the circle will roll 
the distance OT = rq. To locate the x-coordinate of 
the point P, first move to the right the distance OT 
and then left the distance QP, i.e., rsin q. Similarly, 
to obtain the y-coordinate we move up to the cen-
ter of the circle (TC), i.e., up r. and then down to P, 
i.e., down CQ or rcos q. Thus we have the parametric 

equations. Moving left (down) accounts for the minus sign in the parametric equations.

x r r
y r r
= -
= -

ì
í
ïï
îïï

θ θ

θ

sin ,
cos .

At this stage your students should plot these equations on a computer algebra system and observe that 
the graph they obtain looks like what was sketched on the blackboard by the rolling circle. 

While the early history of the cycloid is unknown, Galileo named the curve (it is also called the roulette 
and trochoid) and attemped to find the area under the curve in 1599. He approximated the area by making 
a physical model and weighing it. His conclusion was that the area under one arch of the cycloid was about 
three times the area of the generating circle. One could repeat Galileo’s experiment in class by constructing 
an accurate arch of a cycloid and weighing it—but you will need a chemist to loan you an accurate scale. In 
1643, Roberval proved Galileo’s conjectured value of 3 was correct. Tangents to the curve were constructed 
later in the decade by Descartes, Fermat and Roberval, presumably independently. In 1658, Pascal posed a 
number of problems related to the cycloid. The most interesting of these, the rectification, or arc length, of 
the curve, was solved by Christopher Wren [17]. In 1686, Leibniz found a Cartesian equation for the curve: 

y x xx dx
x xx

= - +
-ò2

2
.

Bernoulli’s New Year’s Day problem
Just nine months after Newton left the Lucasian Professorship at Cambridge to take up “ye Kings business’’ 
at the Mint in London, he received a letter from France containing a flysheet printed at Groningen which 
was dated January 1, 1697. He received it on January 29, 1696; this is no typo, England was not yet on the 
Gregorian calendar [17]. It was addressed

Figure �. Finding parametric equations for the cycloid
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To the sharpest mathematicians now flourishing throughout the world, greetings from Johann 
Bernoulli, Professor of Mathematics.[11]
You might wonder why Johann Bernoulli was teaching in the Netherlands. This was because his older 

brother, Jacob, held the professorship of mathematics at the university in their native town of Basel; the 
newly married Johann was forced to look elsewhere. Through the help of Liebniz and L’Hospital he ob-
tained a position at the university in Groningen. Bernoulli’s stated aim in proposing this problem sounds 
admirable: 

We are well assured that there is scarcely anything more calculated to rouse noble minds to attempt 
work conductive to the increase of knowledge than the setting of problems at once difficult and use-
ful, by the solving of which they may attain to personal fame as it were by a specially unique way, 
and raise for themselves enduring monuments with posterity. For this reason, I … propose to the 
most eminent analysts of this age, some problem, by means of which, as though by a touchstone, 
they might test their own methods, apply their powers, and share with me anything they discovered, 
in order that each might thereupon receive his due meed of credit when I publically announced the 
fact. [11]
Bernoulli’s new year’s present to the mathematical world was a great gift, a difficult problem that 

would enrich the field:
To determine the curved line joining two given points, situated at different distances from the hori-
zontal and not in the same vertical line, along which a mobile body, running down by its own weight 
and starting to move from the upper point, will descend most quickly to the lowest point. [11]
This is the brachistochrone problem. The word was coined by Johann Bernoulli from the Greek words 

`brachistos’ meaning shortest and ‘chronos’ meaning time. But the problem was not new.  In 1638, Galileo 
attacked it in his last work, Discorsi e dimostrazioni matematiche, intorno à due nuoue scienze [Discourses 
and Mathematical Demonstrations Concerning Two New Sciences], but he was unable to solve it. Galileo 
was only able to prove that a circular arc provided a quicker descent than a straight line. Bernoulli noted 
this in his flysheet when he wrote that the solution to the brachistochrone problem was not a straight line, 
but a curve well known to geometers.

Earlier, in June 1696, Johann Bernoulli published a paper in Germany’s first scientific periodical, the 
Acta eruditorum, wherein he attempted to show that the calculus was necessary and sufficient to fill the gaps 
in classical geometry. At the end of the paper the brachistochrone problem was posed as a challenge, setting 
a deadline in six months, but Bernoulli received no correct solutions. He had received a letter from Leibniz 
sharing that “The problem attacked me like the apple did Eve in Paradise’’ [14] and that he had solved it 
in one evening. In fact, he had only found the differential equation describing the curve, but had not rec-
ognized the curve as an inverted cycloid. Bernoulli and Leibniz interpreted Newton’s six month silence to 
mean the problem had baffled him—indeed he had not seen it. To demonstrate the superiority of their meth-
ods, Leibniz suggested the deadline be extended to Easter and that the problem be distributed more widely. 
So Bernoulli added a second problem, had a flysheet published, and made sure it circulated widely. 

The brachistochrone problem was a difficult one. Pierre Varignon and the Marquis de L’Hospital, in 
France, and John Wallis and David Gregory, in England, were all stumped. But Newton was not. Thirty 
years later Newton’s niece Catherine Barton Conduitt recalled, 

When the problem in 1697 was sent by Bernoulli—Sr. I. N. was in the midst of the hurry of the 
great recoinage [and] did not come home till four from the Tower very much tired, but did not sleep 
till he had solved it wch was by 4 in the morning. [15, pp. 582–3; 16, pp. 72–73]
The next day Newton sent his solution to his old Cambridge friend Charles Montague, who was then 

President of the Royal Society. He published Newton’s work anonymously in the February issue of the
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Figure �. Newton’s Construction

Transactions of the Royal Society of London. The trap that Bernoulli and Leibniz had set for Newton failed 
to snare its game. 

Newton provided no justification for his solution, only showing how to construct the necessary cycloid 
[11, p. 22; 16, p. 75]. He simply drew an arbitrary inverted cycloid with its starting point at A, the higher of 
the two points, and then drew a line between the two given points, A and B. This line intersects the arbitrary 
cycloid at Q. Then he found the ratio of the line segment from the starting point to the final point to the line 
segment from the starting point to the initial cycloid, i.e., AB/AQ. He used this ratio to expand the radius of 
the initial circle to produce the circle which would generate the desired cycloid. 

Derek T. Whiteside, who has published the extremely valuable edition of The Mathematical Papers of 
Isaac Newton, claims that the fact that it took Newton twelve hours to solve these problems indicates that 
his mathematics was rusty from nine months disuse. It also shows that the gradual decline in Newton’s 
mathematical ability had set in. However, his solution of the brachistochrone problem is counterevidence to 
the myth that Newton’s old age was mathematically barren [16, pp. xii, 3] . 

Immediately on receiving the solution of the anonymous Englishman via Basnage de Beauval, Bernoulli 
wrote Leibniz that he was “firmly confident’’ that the author was Newton. Leibniz was more cautious on the 
authorship of the problem, admitting only that the solution was suspiciously Newtonian. Several months 
later Bernoulli wrote de Beauval that “we know indubitably that the author is the celebrated Mr. Newton; 
and, besides, it were enough to understand so by this sample, ex ungue Leonem.’’ Within a few weeks this 
shrewd guess was common knowledge across Europe. The phrase goes back to Plutarch and Lucian, who 
allude to the ability of the sculptor Phidias to determine the size of a lion given only its severed paw. 

Not having succeeded in trapping Newton, Bernoulli lost interest, leaving it to Leibniz to publish 
the solutions in the May 1697, Acta (pp. 201–224). These included Johann’s own solution, one by his 
older brother Jakob, one by L’Hospital (probably produced with the help of Johann Bernoulli), one by 
Tschirnhaus, and a reprint—seven lines in all—of Newton’s. This time Newton was not anonymous, for 
Leibniz had mentioned him in his introductory note. Leibniz was so embarrassed by the whole thing that he 
wrote the Royal Society indicating that he was not the author of the challenge problems. Technically, this 
was true, but he had contrived with Bernoulli to embarrass Newton. 

 Within a few years there were solutions by John Craige, David Gregory, Richard Sault and Fatio de 
Duillier. In 1704 Charles Hayes, in his widely read Treatise on Fluxions, presented it as a mere worked 
example in this textbook. As often happens, a difficult problem, once cleverly solved, comes within the 
grasp of many. 

Perhaps the most important of all of these solutions is that by Jakob Bernoulli. While somewhat ponder-
ous, it led to a new field of mathematics, the calculus of variations, a branch of analysis where the variables 
are not numbers but functions. 

The clever elementary solution of Johann Bernoulli is the one that I like to present at the end of a course 
on the integral calculus, for it provides both a wonderful story and a great review. You can find it in many 
places, e.g., [10, 12]. Translations of the solutions of the Bernoulli brothers can be found in [13].
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Building your brachistochrone
One of my students, Zachary Seidel, had a brachistochrone shaped sliding board as a young child. His father 
had studied mathematics as an undergraduate and decided that his son should have the quickest slide in the 
neighborhood. Such a slide is probably too big for your classroom, so the model designed by Cliff Long 
will be described. 

You will need a sheet of 3/4 inch plywood that measures roughly 30 by 14 in. First cut a strip off the 
long edge about 1 1/4 inches wide; its use will be described momentarily. From another piece of plywood, 
cut out a circle of radius 4.5 in. Drill a hole in the center and insert a 1/4 inch dowel that sticks up far enough 
to provide a nice handle. Near the circumfrence of the disk drill another hole that will hold a small piece 
of chalk (ideally the chalk would be at the circumference, but that makes the construction of our bachisto-
chrone harder). The distance from the center of this hole to the circumference of the disk should be slightly 
more than the radius of the chalk. This is so the chalk will not fall out. You should also drill another hole in 
the disk at about half the radius so the chalk can be moved there later to draw a curtate cycloid. 

Figure �. The Finished Brachistochrone

Figure �. Details of construction.
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Use this disk and chalk to trace out one arch of the cycloid on the sheet of plywood. Start with the chalk 
about 2 inches from the short edge and on the same side where you cut out the disk. Now cut on this chalk 
line and you will have a cycloid. Use your router to cut out a groove on the edge of the plywood so you will 
have a track for a marble to run down. 

The fun part of this model is a straight line track for another marble to run down. It will be used to dem-
onstrate clearly that the straight line is not the quickest path. To do this, you will use the piece of plywood 
that you cut off earlier. Cut a groove on one side for the marble. Cut a slot along the middle of this board 
starting about one inch from the end and about 12 inches long. The slot should be wide enough so that it 
will slide over a set screw. The idea is that you want to adjust where the straight line track ends. At one 
extreme it should be possible to go almost horizontally across the whole arch of the cycloid; on the other, 
you want to be able to adjust it so that the straight line track ends at the low point on the inverted cycloid, 
and perhaps even before that. 

Next cut out a semi-elliptical piece on the yet untouched straight base. With a screw, and washer used as 
a spacer, this will provide a toggle stand for your brachistochrone. Finally, you need a place to store several 
marbles (three are suggested in case you lose some of your marbles in class). See Figure 5. 

Using your brachistochrone in class

After you have drawn a cycloid on the 
chalkboard, and before you have de-
rived its equation, hold your brachis-
tochrone up to the chalkboard to show 
the students that the curve you just 
drew is the same curve as your bra-
chistochrone. Now you can explain 
Johann Bernoulli’s problem and let 
them test the cycloid solution against 
the straight line solution. 

This is an opportunity to get your 
students involved. Invite several of 
them to adjust the straight line chute 
so that it ends at the low point of the 
inverted cycloid on the brachisto-

chrone. Have one of them get out two marbles and hold them with one hand so that one marble is on the 
brachistochrone track and the other is on the straight line track. By using one hand it is easier to release the 
marbles simultaneously. Some chaos will result when the marbles go flying off the end of the tracks and 
across the room. Probably some students will be disbelievers—when one first encounters this demonstra-
tion it is hard to believe that the cycloid track is quicker than the straight line track—and want to try them-
selves. This is good; get everyone involved. 

Next adjust the straight chute to direct one marble to another point. Pick a point that is beyond the 
low point of the brachistochrone, on the uphill slope. This time, to the astonishment of the students, the 
marble race is even more unfair. Travel along the brachistochrone is much quicker. Students are perplexed 
that the quickest way to get from A to B is to dip below B and then coast back up to it. They will ask why 
this happens. They do not realize that they are asking to see the proof that the brachistochrone really is the 
quickest path. This shows the motivational power of interesting historical examples combined with a tactile 
demonstration of the result. 

Figure �. Brachistochrone = Cycloid.
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I have met mathematicians who believed that to get from A to B on the quickest path, that one should 
draw a cycloid that begins at A and has its low point at B. To see that this is incorrect, examine Newton’s 
picture again (Figure 3). A little thought will show that it is rarely the case that B is at the bottom of the 
cycloid. If the points are far apart, it is impossible to get from the upper to the lower point without dipping 
below the lower point and then coasting back up. 

The brachistochrone model can be used to demonstrate another interesting property of the cycloid. The 
curve is isochronous, i.e., no matter where one starts on the curve the time it takes to reach the low point is 
the same (see [2] for the original proof). To illustrate this, have a student hold a marble in each hand, one 
on each side of the minimum point on the cycloid, but at different distances from the midpoint, and then 
release them simultaneously. They will collide at the low point of the cycloid. To confirm this the observer 
needs to be directly in front of the model and to focus on the minimum point of the cycloid (a mark on the 
model will help locate this point for the observer). Your students will want to repeat this multiple times from 
different starting positions thereby giving all a chance to observe up close. Andy Long, Cliff’s son, suggests 
another way to do this. Ask your students to close their eyes and remain quiet so that they can hear the equal 
beats of a single marble rolling back and forth on the cycloidal track. Use a large amplitude so that it goes 
back and forth a number of times. Your students will unconsciously rock their heads back and forth in time 
with this cycloidal clock. 

The ordinary pendulum is not isochronous; the period T depends upon both the length L and the angle 
of oscillation q. This provides an interesting real  world example of a multivariable function, which is due 
to Daniel Bernoulli in 1749. 
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When the angle of oscillation is small, then all of the terms of the series involving the sine can be ig-
nored. This provides yet another point in the curriculum to bring in this circle of ideas. 

 Christiaan Huygens, the foremost mathemati-
cal physicist in the generation before Newton, 
took advantage of this property of the cycloid to 
design an accurate pendulum clock (Figure 7). But 
he needed one more mathematical property of the 
cycloid: the evolute of a cycloid is another cycloid 
of the same size. 

He hung the bob of his pendulum on a thread 
that swung between cycloidal cheeks. The cheeks 
prevented the bob from swinging in a circular arc 
like in a regular pendulum. When the bob moved to 
the side it wound around the cycloidal cheeks and 
was pulled up slightly. He showed that the curve of 
the bob was a cycloid. 

Huygens published this work in his Horologium 
oscillatorium of 1673; you can read how he con-
structed a cycloid (he had a clever device for 
avoiding slippage) and designed his clock [2]. A 
model of his clock can be seen in the Borehaave, 
a wonderful science museum in Leiden in the 
Netherlands. Unfortunately, as one might suspect, Figure �. The Pendulum Clock of Christiaan Huygens
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the accuracy of Huygens’ clock was killed by friction. This illustrates the old adage: In theory, theory and 
practice are the same, but in practice, theory and practice are not the same. 

Trains and epicycloids
A rewarding question to pose to students is this: As you watch a speeding train go by, what point on it is 
moving backwards? It will probably take some prompting to get them to realize that the answer is the bot-
tom of each wheel, the flange, which is the part of the wheel below the top of the rail and which keeps the 
train on the track. This will give us another opportunity to use our device, but we will need another piece 
to attach to our cycloid drawer, a piece of wood several inches longer than the radius of our disk. It should 
have a hole which goes over the peg at the center of the disk, another peg to go in the hole where the chalk 
went while drawing the cycloid, and another hole near the end for another piece of chalk. This arrangement 
forces the board to turn as the disk turns. If the chalk is at distance d > r from the center of the circle, then it 
produces a prolate cycloid. When you use this device to draw a prolate cycloid in class, your students will 
literally be able to see that when the chalk is at the bottom of the curve it is moving backwards. 

The student who understands how the parametric equations for the ordinary cycloid were obtained will 
have no trouble finding the equations for a prolate cycloid: 
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If we compute the derivative in the x-direction we obtain 

dx
d
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θ

θ= = - cos

If q is (near) an even multiple of p, then this derivative is negative. In practical terms, the bottom of the 
train wheel is moving backwards. 

When d is arbitrary the curve is called a trochoid, when d > r it is a prolate cycloid and when d < r it is 
a curtate cycloid. Curtate cycloids are used by some violin makers for the back arches of some instruments, 
and they resemble those found in some of the great Cremonese instruments of the early 18th century, such 
as those by Stradivari [8].

Conclusion
One does not have to prove everything one talks about. We mathematicians need to start talking about math-
ematics. There are so many interesting things in mathematics that will captivate students. Once learners are 
interested they will be motivated to get a deeper understanding of that mathematics. They will seek out the 
proofs on their own. 

We have seen the essential ingredients of good teaching combined in one problem. It is a problem 
with a fascinating history, connected to a multitude of important names that our students should know. The 
mathematics is tractable to undergraduates. The ideas can be used at several places in the curriculum and 
this spiral approach enhances learning. Finally one has a nice classroom device. For all of this, I thank Cliff 
Long. 

The author would like to thank Andy Long of Northern Kentucky University, Tom Hern of Bowling 
Green State University, and Florence Fasanelli of AAAS for helpful commments on drafts of this paper and 
colleague LTC Michael Huber for “lending a hand’’ in the preparation of this paper. 
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Exhibiting Mathematical Objects: Making Sense 
of your Department’s Material Culture

Peggy Aldrich Kidwell
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Introduction
Most of the chapters in this volume suggest ways to use historical mathematical instruments or replicas 
of those instruments to highlight mathematical or pedagogical principles within the classroom. Yet, some 
teachers and professors may wish to bring these objects to a wider audience. An on-line or physical exhibit 
is one venue for increasing public awareness of mathematics and of one’s own mathematics department. 
This chapter outlines fundamental principles of exhibit planning to help professors, teachers, and students 
identify, understand, and arrange historical objects and books that might be available to them. It suggests 
methods appropriate to a range of projects, from those displayed for a single day to cases professionally 
designed at the time of a major school anniversary or building renovation. It is illustrated with examples of 
models, devices, and books held by the Smithsonian’s National Museum of American History (NMAH) and 
the Smithsonian Institution Libraries.

Preliminaries
What is meant by the “material culture” of mathematics? This term simply refers to the objects used in 
mathematical research and teaching. It includes books, letters, and manuscript notes relating to mathemat-
ics. It encompasses drawing instruments as well as computing devices such as slide rules, planimeters, 
adding machines, and electronic calculators. It also includes physical objects that teach mathematical prin-
ciples—certain games, toys and puzzles; geometric models; and mathematically important software. If 
you, your colleagues, or your students have any of this mathematical “stuff” tucked away in a drawer, closet 
or library, you have the raw materials for an exhibit. This chapter suggests how you might organize such 
materials into a coherent presentation.

Why exert the effort to prepare a mathematics exhibit? There are several potential benefits. It is fun 
to learn about what these objects are, who used them, and how they were used. This new knowledge will 
enhance your own sense of mathematics and its past. Some of this knowledge and enjoyment may rub off 
on your visitors. An exhibit that contains objects that were once used—or are like those once used—at your 
institution also contributes to a broader historical account of the school and encourages visitors to explore 
that history. An exhibit might serve as a group project in a mathematics or history of mathematics class.
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What if you do not have any objects? First, look around your library, your classrooms, your office, and 
your home. Is there an old teaching slide rule? A blackboard made of slate? Are there strange looking string, 
plaster, paper, or plastic models? Early commercial graphing calculators or software packages? Published 
journals with papers by Einstein or anyone else whom you would like to discuss? Mathematical puzzles 
and toys? Does another department such as physics or engineering have punch cards, calculating machines, 
planimeters, drawing instruments, or slide rules? Is there an institutional museum? Does someone in your 
department make models, fold origami, or collect mathematical mouse pads? Does an alumnus have a col-
lection? Is there a sundial on campus? Did the school newspaper or yearbook show anything about math 
students, faculty or clubs? How, if at all, does your school show up in a search of the mathematical journals 
preserved on databases such as JSTOR? 

Remember, today’s college students were born in the late twentieth century. What is familiar to you 
may be unknown to them and vice versa. If there is truly nothing on campus, consult your local histori-
cal society and/or public library. They may have intriguing books and objects they would love to put on 
display. Of course, you might also want to talk about objects far older than anything your school has. If so, 
you could combine photographs of the real thing with clearly identified replicas. Indeed, making the replica 
could be the subject of the exhibit. Here you might want to talk about what you think is mathematically es-
sential to representing a given type of object (e.g., using the correct projection on an astrolabe) and what is 
not (making it out of brass). That is, you might want to try to say what a replica does and does not represent 
about the historical object it attempts to duplicate.

Where could an exhibit be mounted? Traditionally, objects have been shown in glass cases (preferably, 
closed locked cases with alarms). Older buildings at schools and colleges often have empty display cases 
in hallways near entry doors or classrooms. The keepers of those cases might be pleased to have someone 
volunteer to fill one of them. Campus librarians also often mount changing exhibits and might be amenable 
to a mathematics display. There is information about constructing and installing new cases in Good Show. 
[70] If you have students working on an exhibit, you can also encourage them to prepare a poster or tabletop 

Figure �. “Slates, Slide Rules and Software: Teaching Math in America.” 
Negative number 2002-1655. Courtesy of the Smithsonian’s National Museum of American History.
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exhibit for presentation at a conference. Finally, virtual exhibits are increasingly appearing on the World 
Wide Web. Several on-line exhibits are listed in the references and can serve as models. 

How can someone without curatorial experience create an appealing exhibit? In the remainder of the 
chapter, we will outline some fundamental and uncomplicated steps that amateurs can learn from the profes-
sionals. These steps will be illustrated with two exhibits prepared by the authors. The first was “Slates, Slide 
Rules and Software: Teaching Math in America,” a showcase curated by Peggy Kidwell, the first author 
of this chapter, and built by Smithsonian staff over a period of several months. It had a budget of several 
thousand dollars and was on display at NMAH from February 2001 to February 2004 (Figure 1). It lives 
on as an on-line exhibit. [24] The second was “What Every Math Major Needs to Know,” an exhibit of rare 
mathematics books from the collections of the Dibner Library at NMAH that Amy Ackerberg-Hastings, the 
second author of this chapter, developed over a period of several weeks and with no allotted budget (Figure 
2). It was on view during a few days of July 2002.

We hope that by reading about what went into these exhibits, you will gain a better sense of what you 
and your students might do. Much of what we will say about selecting an organizing scheme, finding out 
about objects, and combining visual and written information would apply even if you choose to present 
your ideas in a virtual exhibit by designing Web pages. Finally, these comments should make it easier if you 
decide to hire people with special expertise in areas such as exhibit design, object conservation, photogra-
phy, and exhibit construction to work on your show.

Choosing an ordering scheme
An “ordering scheme” is the unifying structure of an exhibit. As is true of any writing project, you need to 
begin by writing a preliminary thesis statement. In other words, your first task is the intellectual exercise of 

Figure �. First of three cases for “What Every Math Major Needs to Know.” 
Negative number 2005-27185. Courtesy of the Dibner Library, Smithsonian Institution Libraries.
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deciding what you are exhibiting and why you think other people ought to see these objects. For example, 
Peggy began with the thesis that mathematics teaching in the United States has reflected other aspects of 
American history. This led her to organize objects into four historical periods:

• The Early Republic (the period in the early nineteenth century when public elementary schools were 
established to educate citizens).

• The World Stage (the time of American economic prosperity around 1900 that saw the emergence of 
a research community in mathematics and the expansion of public high schools).

• The Cold War (the “New Math” era of the 1960s).
• The Information Age (the final decades of the twentieth century, when electronic calculators, micro-

computers, and mathematical software became common).
As she dug further into this story, Peggy modified her thesis. Not only historical events, but changing 

demographics had a major influence on mathematics teaching. When primary, university, secondary, and, 
finally, preschool education expanded, or when the sheer number of schoolchildren grew, mathematics edu-
cation changed at the same time. That is to say, Peggy did not develop a thesis or study her objects in isola-
tion from each other. Rather, she went back and forth between objects and the ideas she had about them. 
Delving into a topic in this way is part of what makes an exhibit intellectually challenging.

This give and take process helped Peggy decide which objects and graphics she used in and collected 
for the exhibit. For instance, to represent relatively recent technologies, she acquired user manuals for the 
1989 version of DERIVE™ software from Soft Warehouse, Inc., in Honolulu. To liven up the show, she 
found at least one image of people using objects for each section of the exhibit. For example, a photograph 
from Wellesley College shows students with their instructor examining models like those from NMAH’s 
collections. Having an organizing scheme also helped rule out some objects. The Smithsonian has a device 
for teaching elementary arithmetic called a Visigraph that dates from about 1910. The Visigraph stands 
about 3 feet high. Including it would have dwarfed the objects relating to high schools and universities 
which she wished to highlight in that time period.

The periodization scheme also helped the designer of “Slates, Slide Rules.” He divided the case into 
four units reflecting the four themes. (See Figure 1.) Each area had labels on a different color of board 
(white, lilac, green, and blue). The back of the case also was made from a material that represented the era 
(clapboard, brick, ceramic tile, and aluminum). These visuals helped guide visitors through the array of 
objects on exhibit.

For her project, Amy began by contemplating who would be viewing the exhibit: the sixteen partici-
pants in the George Washington University Summer Program for Women in Mathematics during their “re-
laxing” day. (A second group of five mathematics teachers from Washington, D.C., middle and high schools 
also visited the exhibit a few days later.) Many of these undergraduate mathematics majors ultimately teach 
mathematics at the secondary, undergraduate, or graduate level, so Amy decided to look for historical ex-
amples of significant mathematical ideas that might come up in a mathematics classroom. She consulted a 
few general works to complement personal brainstorming. [7; 11; 15] She had the Dibner’s collection of 
approximately 10,000 rare books that cover all of the sciences to draw upon, and she placed the books she 
chose in three 5-foot by 2-foot glass cases in the library’s reading room. Items in the exhibit were supported 
by the library’s triangular book cushions and by plexiglass stands reused from earlier exhibits.

Given a general theme and these limitations of space and objects, she thought about what she wished to 
show. She wanted to use a variety of types of material (including early printed books, scholarly journals, pa-
perback textbooks, and manuscript letters) by a variety of mathematicians (including as many women and 
as many English-language items as possible). Of course, she also hoped to provide maximum visual appeal. 
A treasure in the history of mathematics, the 1482 first printed edition of Euclid’s Elements of Geometry 
(edited by Campanus) was displayed to illustrate the Fundamental Theorem of Arithmetic. Although the 
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Dibner owns the first edition of Diophantus’ Arithmetica to incorporate Pierre de Fermat’s famous marginal 
note into the printed text, Amy decided to represent Fermat’s Last Theorem with a letter by Sophie Germain 
about her non-admittance to a scientific society to remind the students that women contributed to the at-
tempts to solve this problem and to point out that these contributions did not necessarily lead to full partici-
pation in mathematical communities. Instead of showing a page of Latin text that would be mysterious to 
many American undergraduates, the figure from Gottfried Leibniz’s 1684 Acta Eruditorum article, “Nova 
Methodus pro Maximis et Minimis,” was chosen to represent Differentiation. Each book was measured 
while it was lying open before final decisions about arrangement were made.

Finding out about objects
Once you have a thesis or theme in mind, the next step is to learn about the objects you intend to exhibit. 
Begin with an examination of all parts of one of the objects, taking careful notes on what you observe. Con-
sider not only what an object is, but any names or numbers associated with it. For example, if the object was 
produced commercially, does it have a model and/or serial number? This information could help pinpoint 
its date and place of origin. What do you know about the history of the artifact? Is there something about 
its previous owners or the way that it was used that makes it different from other things of the same type? 
Read any directions or documents that came with the object. As you acquire information, figure out a way 
that you can keep track of it, such as a card file or database.

There are many experts who can assist you with this process. Make friends with your librarians, col-
leagues, and, if there is one, the archivist at your institution. There may be instruction manuals as well as 
records explaining the purchase date and location and the reason for acquiring an object in your depart-
ment. An archivist may have photographs documenting the use of your object or, more broadly, the history 
of activities in your department. Such visual images can add greatly to the appeal of an exhibit. College 
catalogues can provide further information about the history of your department’s curriculum, as well as 
the names and educational attainments of faculty. Catalogues may also contain references to instruments 
owned by the mathematics department. Remember, too, that objects sometimes find their way into an ar-
chive or library.

You can use the bibliography at the end of this chapter to locate print and Web resources related to your 
objects. It may even be possible to contact specialists familiar with specific objects, such as slide rules or 
computers. This is one area where student help can be readily enlisted, but be sure to evaluate the veracity 
of any information found on the Web.

During this stage of the process, you may need the guidance of a conservator. [60; 61; 62; 63; 64; 65] 
Objects, especially those made from textiles or paper, are easily damaged by exposure to light or improper 
mounting. Book exhibits are generally very dimly lit for this reason. Of course, it is possible to use an im-
age of a text rather than the text itself. You also may have the good fortune to have a duplicate of an object 
that you consciously use as a prop, knowing that it will probably suffer from being exhibited. For example, 
a piece of sheet music included in “Slates, Slide Rules” was such a duplicate. A conservator can make sug-
gestions about how best to mount objects. In fact, an exhibition can offer an excuse to transform objects in 
very poor condition into something closer to their original state. This means that you will have to learn what 
objects should look like so a conservator can do his or her work. Figure 3 shows a model of an elliptic cone 
and hyperboloid of one sheet that came to the museum without strings, restrung for exhibition.

If you have the good fortune to hire a designer, he or she will need color photographs and measurements 
of each object, as well as an opportunity to see what you intend to exhibit. The designer also needs warnings 
about any objects requiring low light levels as well as copies of graphics. He or she will specify how images 
should be cropped and/or enlarged. Of course, the exhibit plan will also include the text that you plan to 
include about each object, which brings us to another topic.
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Figure �. Geometric model manufactured in 1893 by Ludwig Brill of Darmstadt, Germany, restrung for exhibit. 
Gift of Wesleyan University. Negative number 2001-11865. Courtesy of the Smithsonian’s National Museum of American History.

Writing labels
In a temporary exhibit, it is quite possible to simply tell your visitors orally what each object is. However, 
for the sake of your visitors who wander by a few minutes late, as an aid and supplement to what you say, 
and as a record of what you have done, it is preferable to refer to your ordering scheme and write up some 
of what you have learned into object labels. This is an especially important exercise if students are prepar-
ing the exhibit.

Do not assume that your audience has foreknowledge of your objects or even of mathematics. You will 
want to write text that is true but brief, clear but concise. Most viewers will not spend much time on read-
ing. In addition, because viewers will be standing some distance away from the exhibit, you will need to 
choose a very large type size. The Smithsonian’s Guidelines for Accessible Exhibition Design recommend 
a minimum type size of 24 points for a viewing distance of 3 inches, 48 points for 39 inches, 100 points for 
78 inches, and 148 points for 118 inches. Choose a standard, readily legible font. Use a line length for text 
that facilitates reading; a maximum of 55 characters per line is a good rule to follow. You can divide your 
text into columns, although a maximum length of 100 words per label often works well. Do not set text in 
all capital letters, and avoid the use of script and italic type for essential information. If you expect to have 
a substantial number of visitors with disabilities, consider alternative forms of labels: large print versions, 
docents, Braille documents, audio versions. Place objects and labels where they can be seen by children, 
short people, and visitors in wheelchairs. Think about whether and how you wish to acknowledge those 
who have provided objects, graphics, and other assistance in preparing your show. 

To write good labels, start with more information than you need, write, edit out some items, ask others 
to read your labels, and proofread again. What fundamental background information, historical context, and 
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mathematical context do you need to convey? (One alternative when you have much more information to 
share than is manageable for an exhibit is to prepare handouts for those viewers who want to learn more.) 
Each label ought to be self-contained. At the same time, though, try to provide a narrative that draws view-
ers through the exhibit in an orderly fashion. You should select a title for your exhibit. You may want to 
provide a main label that introduces viewers to your thesis, and section labels for the different parts of the 
exhibit. Do not, on the other hand, turn this process into an obsession. Invest a level of effort appropriate 
to the scope and scale of your exhibit. Indeed, creating labels is not necessarily an expensive aspect of the 
exhibit: while the labels for “Slates, Slide Rules” were prepared professionally, the labels for “What Every 
Math Major Needs to Know” were printed on the back side of scratch tagboard (one example of a low-key 
label appears in Figure 4).

Figure �. Exhibit label from “What Every Math Major Needs to Know.”

Publicizing your exhibit
As you plan your exhibit, think about how it might attract visitors. Enticing objects arranged elegantly in a 
prominent location are a natural draw. So are related events, particularly events involving food (not, how-
ever, food that can be deposited on the objects). Time your exhibit to coincide with a meeting of the MAA, 
a colloquium on a related topic, or campus events such as Homecoming or Commencement. Send out fliers 
and electronic announcements. Tell the admissions office why every prospective student and student parent 
should see this glimpse into your institution’s vibrant past. Think about school groups, especially at times 
of the year when teachers are especially inclined to take field trips (October, March, April and May are 
particularly good). Pass along information about the exhibit to institutional and community newspapers. 
Remember that if you want to attract visitors, you need to start this publicity before the exhibit is ready. This 
is yet another good reason to have a strong organizing scheme from the beginning.

Conclusion
In this chapter, we have provided a general overview of the process for identifying objects and organizing 
them into exhibits. We hope you can apply these suggestions to your own specific situation. Of course, 
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looking at objects may well lead you to endeavors other than exhibits. You may find some apparatus that 
still is useful in the classroom. You might decide to produce an on-line catalog of your collections, as the 
University of Arizona’s mathematics department did. [37] You might also find, like us and other authors of 
articles in this volume, that the objects you study lead you to publish research in the history of mathematics 
and mathematical instruments. In all these endeavors, we wish you the best!
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Annotated Bibliography

This bibliography is intended especially for those planning exhibits of mathematical instruments and books 
found in American colleges and universities. It includes some of the sources that would be of use in iden-
tifying, interpreting, and exhibiting objects that might be found on a campus in the United States. A few 
works that describe other kinds of objects are included as examples of how information can be presented. 
The focus of the bibliography is on planning the themes of an exhibit and identifying objects, not on con-
servation, design, or exhibit fabrication.

I. General works in history of mathematics, computing, and mathematical instruments

1. Amy Ackerberg-Hastings, Peggy A. Kidwell, and David L. Roberts, Material to Learn: Tools of American Math-
ematics Teaching, 1800–2000, The Johns Hopkins University Press, Baltimore, 2008.

2. Joe Albree, David C. Arney, and Frederick V. Rickey, A Station Favorable to the Pursuits of Science: Primary 
Materials in the History of Mathematics at the United States Military Academy, American Mathematical Society 
& London Mathematical Society, Providence, R.I., 2000. A catalog of one important collection of mathematics 
books, with much interesting material about mathematics teaching at West Point.

3. William Aspray, ed., Computing before Computers, Iowa State University Press, Ames, 1990. A collection of use-
ful articles about pre-electronic computing devices.

4. James A. Bennett, The Divided Circle: A History of Instruments for Astronomy, Navigation and Surveying, Phaid-
on Christie’s, Oxford, 1987. This book is not explicitly about mathematical instruments, but it touches on related 
topics.

5. Carl B. Boyer, A History of Mathematics, Uta C. Merzbach, rev., John Wiley & Sons, New York, 1991. A very 
useful general work.

6. Florian Cajori, The Teaching and History of Mathematics in the United States, Government Printing Office, Wash-
ington, D.C., 1890. A classic survey of mathematics teaching in the U.S. up to 1890.

7. William Dunham, Journey Through Genius: The Great Theorems of Mathematics, Penguin Books, New York, 
1991. History of mathematics “highlights” that could be used as the basis for an exhibit.

8. Peter Duren, Richard A. Askey, and Uta C. Merzbach, eds., A Century of Mathematics in America, 3 vols., Ameri-
can Mathematical Society, Providence, R.I., 1988. Contains a variety of reference and source material.

9. Walther Dyck, Katalog mathematischer und mathematisch-physikalischer Modelle, Apparate und Instruments, 
C. Wolf & Sohn, Munich, 1892. The catalog of one of the first exhibits devoted exclusively to mathematical 
instruments.
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10. Clark A. Elliott, compiler, Biographical Index to American Science: The Seventeenth Century to 1920, Greenwood 
Press, New York, 1990. Includes mathematicians.

11. John Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader, Macmillan Education in association 
with the Open University, Houndmills, Basingstoke, Hampshire, 1987. Source material with historical context.

12. Charles C. Gillispie, ed., Dictionary of Scientific Biography, 18 vols., Scribner, New York, 1970–1980. A multi-
volume biographical encyclopedia that includes mathematicians.

13. E. M. Horsburgh, ed., Handbook of the Napier Tercentenary Celebration or Modern Instruments and Methods 
of Calculation, G. Bell and Sons and the Royal Society of Edinburgh, Edinburgh, 1914. This is an overview of 
instruments of calculation available in 1914, as well as historic objects exhibited at the celebration of the 300th 
anniversary of the publication of John Napier’s tables of logarithms. In 1982, the book was republished with a new 
introduction by Michael R. Williams.

14. Louis C. Karpinski, with the cooperation of Washington Libraries of Walter F. Shenton, Bibliography of Math-
ematical Works Printed in America through 1850, The University of Michigan Press, H. Milford, Oxford Univer-
sity Press, Ann Arbor and Oxford, 1940. An annotated listing of early American mathematics books. There is a 
1980 Arno reprint of this work.

15. Victor Katz, A History of Mathematics: An Introduction, HarperCollins, New York, 1993. General reference and 
textbook in the history of mathematics.

16. Peggy A. Kidwell and Paul E. Ceruzzi, Landmarks in Digital Computing: A Smithsonian Pictorial History, Smith-
sonian Institution Press, Washington, D.C., 1994. Brief accounts of a few important objects in the Smithsonian 
collections, with bibliography.

17. Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford University Press, New York, 1972. 
A survey work.

18. Henri Michel, Scientific Instruments in Art and History, R. E. W. Maddison and Francis R. Maddison, trans., The 
Viking Press, New York, 1967. This is one of several introductions to scientific instruments that makes an excel-
lent coffee table book as well as contains useful information. The kinds of instruments shown in these books are 
relatively rare in American colleges. Other books of the same sort have been written by Nigel Hawkes and by 
Harriet Wynter and Anthony Turner. 

19. Karen Hunger Parshall and David E. Rowe, The Emergence of the American Mathematical Research Community 
1876–1900: J. J. Sylvester, Felix Klein, and E. H. Moore, American Mathematical Society & London Mathemati-
cal Society, Providence, R.I., 1994. A basic outline of the formation of the mathematical community in the U.S.

20. Deborah J. Warner, and Robert Bud, eds., Garland Encyclopedia of Scientific Instruments, Garland, Hamden, 
Conn., 1998. A collection of useful articles about various types of scientific and mathematical instruments, with 
bibliographies on different kinds of instruments.

21. Michael R. Williams, A History of Computing Technology, 2nd ed., IEEE Press, Los Alamitos, Cal., 1997. An out-
line of the history of computing devices to about 1970.

Related web sites:

22. Epact: Scientific Instruments of Medieval and Renaissance Europe, <www.mhs.ox.ac.uk/epact>. An online da-
tabase of medieval and Renaissance scientific instruments made before 1600 A.D. that are in various European 
collections. It includes an encyclopedia that describes each kind of instrument shown.

23. Werner Girbardt und Werner H. Schmidt, Katalog der Rechentechnischen Sammlung des Instituts für Mathematik 
und Informatik Ernst-Moritz-Arndt-Universität Greifswald <www.uni-greifswald.de/~wwwmathe/RTS/>. Catalog 
of the mathematical instruments at this German mathematics institute. The instruments range from mechanical 
adding and calculating machines and slide rules to electronic calculators and personal computers.

24. Peggy A. Kidwell, curator, Slates, Slide Rules, and Software: Teaching Math in America, Smithsonian National 
Museum of American History, <americanhistory.si.edu/teachingmath>. The Web site of a Smithsonian exhibit on 
mathematics teaching devices.
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25. David Kullman and Thomas Hern, eds., Ohio Masters of Mathematics, <www.bgsu.edu/departments/math/Ohio-
section/bicen/>. Brief biographical accounts of mathematicians who had some association with the state of Ohio.

26. Museum of the History of Science, Oxford, <www.mhs.ox.ac.uk>. In addition to Epact (see above) this site has 
several admirable on-line exhibits and also an on-line collections database describing the collections at Oxford. 
There are also links to related Web sites.

27. John J. O’Connor and Edmund F. Robertson, The MacTutor History of Mathematics Archive, University of St. 
Andrews, <www-groups.dcs.st-andrews.ac.uk/~history/>. Contains numerous useful links.

II. Works on specific kinds of instruments

For information on specific makers, it often is most useful to consult their published catalogs. There are 
bibliographies in the Encyclopedia of Scientific Instruments listed above. [20] The bibliography of the 
Scientific Instrument Commission of the International Union of the History and Philosophy of Science is 
available electronically at <www.sic.iuhps.org/in_bibli.htm>.

a. Drawing instruments
28. Maya Hambly, Drawing Instruments 1580-1980, Sotheby Publications, London, 1988. A very useful book written 

for collectors.

29. William Ford Stanley, Mathematical Drawing and Measuring Instruments, E. & F. N. Spon, New York, 1888. An 
account by an eminent nineteenth-century English maker.

30. Several American scientific instrument dealers sold mathematical instruments. For information about them, one 
can consult: Physical Sciences Collection: Surveying and Geodesy, Smithsonian’s National Museum of Ameri-
can History, <americanhistory2.si.edu/collections/surveying/>, a web site on Smithsonian surveying and geodesy 
collections. 

31. There are also articles about various specific drawing instruments in Rittenhouse: Journal of the American Scien-
tific Instrument Enterprise. 

b. Geometric models
32. H. Martyn Cundy and A. P. Rollett, Mathematical Models, Clarendon Press, Oxford, 1961. This is not an historical 

source, but gives a useful description of several kinds of models.

33. Gerd Fischer, ed., Mathematische Modelle aus den Sammlungen von Universitäten und Museen, 2 vols., 
Vieweg&Sohr, Braunschweig, 1986. The first volume of this work shows photographs of models (mainly late 
nineteenth and early twentieth century German models by Brill and Schilling); the second provides mathematical 
interpretation. There is some introductory material on how the models were made.

34. History of Mathematics at the United States Military Academy, <www.dean.usma.edu/math/about/history/>. In-
cludes images of nineteenth-century French models for descriptive geometry designed by Theodor Olivier.

35. Le Raccolte Museali Italiane di Modelli per lo Studio delle Matematiche Superiori, 
 <www.dma.unina.it/~nicla.palladina/catalogo/>. An Italian on-line museum of geometric models (many of these are 

nineteenth-century German models), with photographs.

36. Peggy A. Kidwell, American Mathematics Viewed Objectively—The Case of Geometric Models, in Vita Math-
ematica: Historical Research and Integration with Teaching, Ronald Calinger, ed., Mathematical Association of 
America, Washington, D.C., 1996, pp. 197–208.

37. Mathematical Teaching Tools in the Department of Mathematics, The University of Arizona, 
 <www.math.arizona.edu/~models/>. An on-line catalog of the models, calculating machines and other teaching 

devices at the University of Arizona.

38. Karen Parshall and David E. Rowe, Embedded in the Culture: Mathematics at the World’s Columbian Exposition 
of 1893, The Mathematical Intelligencer 15, no. 2 (1993) 40–45.
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39. David L. Roberts, Albert Harry Wheeler (1873–1950): A Case Study in the Stratification of American Mathemati-
cal Activity, Historia Mathematica 23 (1996) 269–287.

40. Amy Shell-Gellasch, The Olivier String Models at West Point, Rittenhouse, 17 (2003) 71–84.

41. University of Toronto Museum of Scientific Instruments, <www.chass.utoronto.ca/utmusi/>. This Web site has a 
small section on geometric models, many from the collection of H. S. M. Coxeter.

42. Magnus J. Wenninger, Polyhedron Models, The University Press, Cambridge, 1971. Instructions for model 
makers.

c. Slide rules
43. Florian Cajori, A History of the Logarithmic Slide Rule and Allied Instruments, Astragal Press, Mendham, N.J., 

1994. This is a reprint of the original edition of 1910. Cajori’s classic work was also published in several editions 
of W. W. Rouse Ball’s String Figures and Other Monographs.

44. Peter M. Hopp, Slide Rules: Their History, Models and Makers, Astragal Press, Mendham, N.J., 1999. This book 
was written primarily with collectors in mind.

45. Dieter von Jezierski, Slide Rules: A Journey Through Three Centuries, Rodger Shepherd, trans., Astragal Press, 
Mendham, N.J., 2000. This book, again published for collectors, is a translation of a text published in German in 
1977. The author was the marketing manager of A. W. Faber-Castell for 40 years.

46. Journal of the Oughtred Society. A publication aimed primarily at slide rule collectors.

d. Planimeters and other integrators
47. Joachim Fischer, Instrumente zur mechanischen Integration: Ein Zwischenbericht, in Brückenschläge: 25 Jahre 

Lehrstuhl für Geschichte der exakten Wissenschaften und der Technik an der Technischen Universität Berlin, 
Hans-Werner Schütt and Burghard Weiss, eds., Engel, Berlin, 1995, pp. 111–156.

48. H. de Morin, Les Appareils d’Integration. Gauthier-Villars, Paris, 1913. 

e. Calculating machines and other digital devices
49. David J. Brydan, Napier’s Bones: A History and Instruction Manual, Harriet Wynter Ltd, London, n.d. A brief 

account of an aid to computation used in the seventeenth and eighteenth centuries.

50. Ernst Martin, Die Rechenmaschinen und ihre Entwicklungsgeschichte, Johannes Meyer, Pappenheim, 1925. An 
account of the calculating machines available to that time. An English translation was published in 1992.

f. Other Teaching Apparatus, Puzzles and Educational Games
51. Charnel Anderson, Technology in American Education 1650–1900, Washington, D.C.: Government Printing Of-

fice, 1960.

52. Karen Hewitt and Louise Roomet. Educational Toys in America: 1800 to the Present, Burlington, Vt.: University 
of Vermont, 1979. This is an exhibit catalog.

53. Peggy A. Kidwell, An Erasable Surface as Instrument and Product: The Blackboard Enters the American Class-
room—1800–1915, Rittenhouse 17 (2003) 85–98. 

g. Electronic computers and calculators
54. Janet Abbate, Inventing the Internet, MIT Press, Cambridge and London, 1999. This book would be of use if one 

wished to consider the influence of computers on mathematical communication. 

55. Guy Ball and Bruce Flamm, The Complete Collector’s Guide to Pocket Calculators, Wilson/Barnett Publishing, 
Tustin, Cal., 1997.

56. Larry Cuban, Oversold and Underused: Computers in the Classroom, Harvard University Press, Cambridge, 
2001. This book does not have any particular discussion of mathematics teaching.
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57. Larry Cuban, Teachers and Machines: The Classroom Use of Technology Since 1920, Teachers College, New 
York and London, 1986. This volume talks about the use of radio, television and the computer in teaching, but not 
necessarily mathematics teaching.

58. Thomas F. Haddock, A Collector’s Guide to Personal Computers and Pocket Calculators (1956–1991), Books 
Americana, Florence, Ala., 1993. 

59. The journal IEEE Annals of the History of Computing includes articles about a wide array of electronic and pre-
electronic computing devices.

III. Conservation of objects
Here you would do well to consult with librarians (especially those in Special Collections) and any museum staff who 
might be associated with your institution. Other sources include:
60. Canadian Conservation Institute, CCI Notes. Short notes on the conservation of specific types of objects.
61. American Institute for Conservation, Directory of American Institute for Conservation of Historic and Artistic 

Works. This is an annual publication that lists qualified conservators. For further information, see <aic.stanford.
edu>.

62. Per E. Guldbeck, The Care of Historical Collections: A Conservation Handbook for the Nonspecialist, American 
Association for State and Local History, Nashville, 1972. Described by Smithsonian conservators as an “oldie but 
goodie” that might be available through interlibrary loan.

63. Jane S. Long and Richard W. Long, Caring for Your Family Treasures, Heritage Preservation, Washington, D.C., 
2000. For ordering information and related publications see the Heritage Preservation web site at 

 <www.heritagepreservation.org/>. 
64. National Park Service, Conserve O Grams, U.S. Government Printing Office. Notes on specific topics.
65. National Park Service, Exhibit Conservation Guidelines. A general and helpful compact disc.

IV. Exhibit design & material culture

66. Asa Briggs, Victorian Things, University of Chicago Press, Chicago, 1988. A general historical discussion of how 
manufactured objects became common in the nineteenth century.

67. Creating a Classroom Museum, Smithsonian Center for Education and Museum Studies, <smithsonianeducation.
org/educators/lesson_plans/collect/crecla/crecla0a.htm>. This web site describes steps elementary school students 
might take in creating a classroom exhibit. 

68. Steven Lubar and Kathleen M. Kendrick, Legacies: Collecting America’s History at the Smithsonian, Smithsonian 
Institution Press, Washington, D.C., 2001. Coffee table book that distinguishes between artifacts and relics, while 
suggesting how objects can be informative.

69. Beverly Serrell, Exhibit Labels: An Interpretive Approach, Alta Mira Press, Walnut Creek, 1996.
70. Lothar P. Witteborg, Good Show!: A Practical Guide for Temporary Exhibitions, Andrea P. Stevens, ed., Steven 

D. Schindler, illus., Smithsonian Institution Traveling Exhibition Service, Washington, D.C., 1991. This is a nuts 
and bolts guide on planning, fabricating, installing, securing and publicizing a temporary exhibit. It assumes that 
the exhibit itself is coming from elsewhere. Includes bibliography.
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