1. (4 pts) Use the integral test to determine whether the following sums converge.

a.
$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}$$

b.
$$\sum_{n=1}^{\infty} \frac{e^n}{1 + e^{2n}}$$

2. (3 pts) Find the minimum value of N such that the remainder estimate

$$\int_{N+1}^{\infty} f(x)dx \le R \le \int_{N}^{\infty} f(x)dx$$

guarantees that $\sum_{n=1}^{N} \frac{1}{n^2}$ estimates $\sum_{n=1}^{\infty} \frac{1}{n^2}$ accurate to within 10^{-4} .

3. (3 pts) For each of the following series, if the divergence test applies, either state that $\lim_{n\to\infty} a_n$ does not exist or find $\lim_{n\to\infty} a_n$. If the divergence test does not apply, state why.

a.
$$a_n = \frac{n}{5n^2 - 3}$$
.

b.
$$a_n = \frac{2^n}{3^{\frac{n}{2}}}$$
.

c.
$$a_n = \cos n$$
.