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© ual 13.4 shows animated
+ wnd acceleration vectors for
—owving along various curves.

* <hows the path of the particle
‘= 2 with the velocity and
on vectors when 1 = 1.
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As in the case of one-dimensional motion, the acceleration of the particle is defined as
the derivative of the velocity:

alt) =v'(t) =r"(r)

EXAMPLE 1 The position vector of an object moving in a plane is given by
r(f) = £*i + 1*j. Find its velocity, speed. and acceleration when # = 1 and illustrate
geometrically.

SOLUTION The velocity and acceleration at time 7 are

v(i) =r'(t) =371 + 2t

af)=r"H=6ri+2j

and the speed is

!V(t)| = v@f:)l + (21 = /9t* + 41?

When ¢ = I, we have
v()=3i+2j a(l)y=6i+2j [v(1)| =13
These velocity and acceleration vectors are shown in Figure 2. |

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position
vector r(1) = (% e'. te').
SOLUTION

v(i) =r'(t) = (21, ', (1 + De’)

ald) = v =42, ¢, 2+ e’}

[v(d)| =42 + 2* + (1 + 1Pe™ Pl

The vector integrals that were introduced in Section 13.2 can be used to find position
vectors when velocity or acceleration vectors are known, as in the next example.

EXAMPLE 3 A moving particle starts at an initial position r(0) = (1, 0, 0} with initial
velocity v(0) = i — j + K. Its acceleration is a(r) = 4¢i + 61 j + k. Find its velocity
and position at time 7.

SOLUTION Since a(f) = v'(z), we have
vir) = [ a() dr = f@ri+ory+w0d

=221+ 3 +tk+C

To determine the value of the constant vector C, we use the fact that v(0) =i — j + k.
The preceding equation gives v(0) = C,soC =i —j + k and

vi) =2 i+3j+tk+i—j+k

=2+ Di+@BF-Dj+ 0+ Dk
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The expression for r(f) that we obtained  Since v(#) = r'(r), we have
in Example 3 was used to plot the path
of the particle in Figure 4 for 0 = r =< 3. r(r) = I v(1) dr

=f[(2:2+ Di+ G —1Dj+ ¢+ 1)k]de

=EF+ i+ {F—D)+ [P+ + D

Putting ¢t = 0, we find that D = r(0) = i, so the position at time 7 is given by

=G +r+1)i+@E —-n0j+ (3P + )k

FIGURE 4

In general, vector integrals allow us to recover velocity when acceleration is |
and position when velocity is known:

v(0) = v(t) + J a(u) du (1) = r(s) + j v(u) du

If the force that acts on a particle is known, then the acceleration can be foun® =
Newton’s Second Law of Motion. The vector version of this law states that 17 &
time ¢, a force F(z) acts on an object of mass m producing an acceleration a(z). thes

F(r) = ma(r)

EXAMPLE 4 An object with mass m that moves in a circular path with constant 2=,
speed @ has position vector r(f) = a cos wt i + asin wt j. Find the force acting o= n
object and show that it is directed toward the origin.

The object moving with position P has ~ SOLUTION To find the force, we first need to know the acceleration:
angular speed w = df/dt, where 6 is
the angle shown in Figure 5. v(t) =r'(t) = —aw sin wri + aw cos i j

( P a(f) = v'(1) = —aw*cos wti — aw’sin wt j
f A \ Therefore Newton’s Second Law gives the force as
\

\<1 F(1) = ma(r) = —mw?*(a cos wt i + a sin wt j)
Notice that F(r) = —mewr(r). This shows that the force acts in the direction oppesis

to the radius vector r(#) and therefore points toward the origin (see Figure 5). Sucs ©
force is called a centripetal (center-seeking) force.

FIGURE 5

B Projectile Motion

EXAMPLE 5 A projectile is fired with angle of elevation « and initial velocity v.. S
/\ Figure 6.) Assuming that air resistance is negligible and the only external force is ¢
gravity, find the position function r(z) of the projectile. What value of o maximizes ©
range (the horizontal distance traveled)?

0 7 X SOLUTION We set up the axes so that the projectile starts at the origin. Since the ©
due to gravity acts downward, we have

S

FIGURE 6 F=ma= —mgj
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where g = |a| = 9.8 m/s* Thus
a=—4j
Since v'(f) = a, we have
v(t) = —gtj+ C
where C = v(0) = v;. Therefore

r'() =v(t) = —gtj+ v
Integrating again, we obtain

r(f) = —3gt*j + tvo + D

But D = r(0) = 0, so the position vector of the projectile is given by

E r(t) = —591%j + tv

If we write | vo| =  (the initial speed of the projectile), then
Vo = tpcos i + Ysina j
and Equation 3 becomes
r(t) = (vycos a)ti + [(vo sin @)t — %gtz] j

The parametric equations of the trajectory are therefore

E] x = (vocos a)t v = (v sin a)t — %gt2

|
|
|

The horizontal distance d is the value of x when y = (. Setting y = (), we obtain t = 0
or t = (2vy sin @)/g. This second value of ¢ then gives

dvpsinee vd(2sine cosa)  og sin 2a
d=x= (rycos a) = =
) g )

Clearly, d has its maximum value when sin 2 = 1, that is, @ = 45°. [ |

EXAMPLE 6 A projectile is fired with muzzle speed 150 m/s and angle of elevation 45°
from a position 10 m above ground level. Where does the projectile hit the ground, and
with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the projec-
tile is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expression for y.
With v, = 150 m/s, & = 45°, and g = 9.8 m/s”, we have

¥ = 150 cos(45°)t = 752 ¢
y =10 + 150 sin(45°)1 — £(9.8)1> = 10 + 75421 — 4.9¢

Impact occurs when y = 0, that is, 491 — 754/2t — 10 = 0. Using the quadratic
formula to solve this equation (and taking only the positive value of ¢), we get

= 7542 + /11,250 + 196

=~ 21.74
9.8

Then x = 754/2 (21.74) = 2306, so the projectile hits the ground about 2306 m away.
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The velocity of the projectile is

V(D) =1'() = 752 i + (75y2 — 9.87) j

So its speed at impact is

[v(21.74)| = V(752 ) + (752 — 9.8 - 21.74F =~ 151 m's

@ Tangential and Normal Components of Acceleration

When we study the motion of a particle, it is often useful to resolve the aco=
two components, one in the direction of the tangent and the other in the die
normal. If we write v = | v | for the speed of the particle, then

A\
T — f— = —
® [x'(z) | [v()| o
and so v=1T

If we differentiate both sides of this equation with respect to £, we get
@ a=v =¢'T + T’

If we use the expression for the curvature given by Equation 13.3.9, then ««

i ,
(6] K=||r'|l= ul S0 |T'| = ko

The unit normal vector was defined in the preceding sectionas N = T’/ T

T' = |T'|N = kN

and Equation 5 becomes

1

a=1¢'T + ke’N I

Writing ar and ay for the tangential and normal components of accelerat .

a-= a;rT + ang

where
ar=1v' and ay = kv’
FIGURE 7 This resolution is illustrated in Figure 7.

Let’s look at what Formula 7 says. The first thing to notice is that the &
B is absent. No matter how an object moves through space, its acceleratios
the plane of T and N (the osculating plane). (Recall that T gives the directum
and N points in the direction the curve is turning.) Next we notice that “
component of acceleration is ¢’ the rate of change of speed, and the norme.
of acceleration is kv?, the curvature times the square of the speed. This mat o
think of a passenger in a car—a sharp turn in a road means a large value of
K. s0 the component of the acceleration perpendicular to the motion is large
senger is thrown against a car door. High speed around the turn has the «
fact, if you double your speed, ay is increased by a factor of 4.
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Although we have expressions for the tangential and normal components of accelera-
tion in Equations 8. it’s desirable to have expressions that depend only on r, r’, and r".
To this end we take the dot product of v = ¢T with a as given by Equation 7:

v-a=oT- (¥'T + kv°N)

=T -T+ kTN

Therefore

¥y-a_ g -2"th
v ['(7) |

L?t: adr=pv =

Using the formula for curvature given by Theorem 13.3.10, we have

, ') X "] g (P X Q]
11 L = G S R A I E g — e M s T B
= e [r'(®)]° PR |r'() |

EXAMPLE 7 A particle moves with position function r(r) = (1>, ¢ ¢*). Find the
tangential and normal components of acceleration.

SOLUTION r() =i+ *j+ £k
r'(t) = 2ti + 2tj + 3’k
r'(f) =2i+ 2j + 6tk
(@) = VB2 + or*

Therefore Equation 9 gives the tangential component as

r'(s) - (5 8t + 18¢°
a.. = =
' |x'(r) | V812 + 97
ik
Since r'() Xr'() = (2t 2t 3| =621 — 61
|2 2 & |

Equation 10 gives the normal component as

[r'(r) X r"(z)| 642 12 -
s =
. |r'(e) | V812 + o1

B Kepler’s Laws of Planetary Motion

We now describe one of the great accomplishments of calculus by showing how the
material of this chapter can be used to prove Kepler's laws of planetary motion. After 20
years of studying the astronomical observations of the Danish astronomer Tycho Brahe,
the German mathematician and astronomer Johannes Kepler (1571-1630) formulated
the following three laws.

e ————————————,



