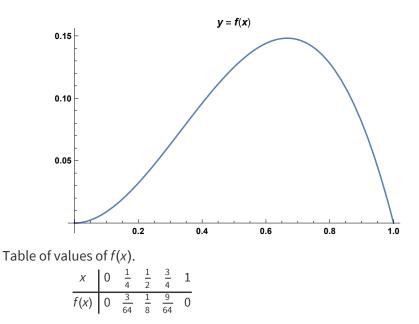
Final Exam

MAT 229, Spring 2021

- **1.** Find an equation of the tangent line to the curve $y = \tan^{-1}(x)$ when x = 1.
- **2.** Consider the function $f(x) = x^2 \ln(x)$.
 - **2.1.** Write an integral to represent the area A between the graph of f(x) and the x-axis, from x = 1 to x = 2.
 - 2.2. Use (and demonstrate) integration by parts to compute A.
- **3.** Find the area between the *x*-axis and the curve $y = \cos^2(x) \sin^3(x)$ for $0 \le x \le \pi/2$. Show all the steps in computing any integrals.
- **4.** Consider the power series $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{(x-5)^n}{3^n}$.
 - 4.1. What is its interval of convergence?
 - **4.2.** Rewrite this as a geometric series, and hence write the function as a simple function of x (without the summation).
- **5.** (Taylor polynomials) Function g(x) has the following features
 - *g*(4) = 1
 - g'(4) = 2
 - g''(4) = 3
 - $g^{(3)}(4) = 3$
 - $|g^{(4)}(x)| \le 6$ for $3 \le x \le 5$
 - **5.1.** What is the third degree Taylor polynomial for *g*(*x*) centered at 4?
 - **5.2.** Using the remainder for the third degree Taylor polynomial, what is the maximum error in approximating g(x) with $T_3(x)$ for $3 \le x \le 5$?
- 6. Let $f(x) = x^2(1 x)$. Using exactly two equal subintervals and the following methods, compute an approximation to the integral $\int_0^1 f(x) dx$, represented in this graph, with values given in the following table. You may use any shortcuts you know.



- 6.1. First compute the exact value of the integral.
- 6.2. Now compute the numerical approximations, and fill in a table as follows.

Method	Integral value
Left endpoint	
Right endpoint	
Midpoint	
Trapezoid	
Simpson	
Exact	

7. Determine if the given series converges absolutely, converges conditionally, or diverges. Give reasons for your answer.

7.1.
$$\sum_{k=1}^{\infty} (-1)^{k+1} \frac{k}{\sqrt{3k^2+5}}$$

7.2.
$$\sum_{n=1}^{\infty} \frac{\cos(n)}{1+n^3}$$

8. the series $S = \sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$ is convergent.

- **8.1.** Choose an appropriate improper integral to demonstrate that *S* is convergent, by using the integral test.
- 8.2. Write that improper integral as a limit, and evaluate it.
- **9.** Find two sets of polar coordinates for $(x, y) = (-\sqrt{3}, 1)$, one with r > 0 and one with r < 0.
- **10.** Consider the parametric equations, given by $x(t) = 3 \sin(t)$ and $y(t) = 4 \cos(t)$.
 - 10.1. Eliminate the parameter t to write a Cartesian equation for the curve. (It is an equation, so your response must have an equals sign in it.) Your answer should not include any inverse functions (e.g. arcsin).
 - **10.2.** Write (but do not evaluate) an integral for the length of the curve over one period.

- **10.3.** Suppose the equations had been $x(t) = 3 \sin(t)$ and $y(t) = 3 \cos(t)$, instead. The integral becomes easy. Why? What curve does the parametric motion represent?
- **11.** (Vectors) Let $\vec{u} = \langle 1, 0, 2 \rangle$ and $\vec{v} = \langle 2, -2, 1 \rangle$.
 - **11.1.** Determine $2\vec{u} 3\vec{v}$ in component form.
 - **11.2.** Find a unit vector that points in the same direction as \vec{v} .
 - **11.3.** What is the angle between \vec{u} and \vec{v} ?
 - **11.4.** Find a vector that is perpendicular to both \vec{u} and \vec{v} .
- **12.** A plane in three-space may be given by a vector normal to the plane and a single point P_0 lying in the plane: $(1, 2, -1) \cdot (\langle x, y, z \rangle \langle 3, 7, 8 \rangle) = 0$.
 - **12.1.** Write this as an equation z = f(x, y).
 - **12.2.** Demonstrate that the point (3,6,6) lies in the plane.
 - **12.3.** Compute the components of the vector from the point P_0 to (3,6,6). Demonstrate that this vector is perpendicular to the vector normal.