Taylor Series

MAT 229, Spring 2025

Supporting materials

If you wish to get a different perspective on the notes below, try either of the following textbook sections.

- Strang's Calculus
 Vol. 2, 6.3: Taylor and Maclaurin Series
- Stewart's Calculus Section 11.10: Taylor Series
- Boelkins/Austin/Schlicker's <u>Active Calculus</u> Section 8.5: Taylor Polynomials and Taylor Series

Functions as power series

Questions

Let
$$k(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
.

- What is the domain of this function?
- What is *k*(0)?
- Write out the first 5 terms of k(x), the first 5 terms of k'(x) and the first 5 terms of $\int k(x) dx$. What well known function is this?

Taylor series

Given a function we want to find a power representation for it if possible.

- We need to specify a center of convergence (a MacLaurin series is just a Taylor series centered at 0).
- A good power representation is one for which it converges for more than just the center.
- Building a power series from a known series, like the geometric series, works in some but not all cases.

Questions

Given function f(x), suppose it has a power series representation centered at x = a.

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$$

What are the values c_n ?

- Write this function with the first 6 terms of the power series written out (n = 0, 1, 2, 3, 4, 5).
- What happens when *x* = *a* is plugged into this function?
- What happens when x = a is plugged into this function after both sides are differentiated.
- What happens when *x* = *a* is plugged into this function after both sides are differentiated twice.
- What happens when *x* = *a* is plugged into this function after both sides are differentiated three times.
- What happens when *x* = *a* is plugged into this function after both sides are differentiated four times.
- In general, what appears to be true?

Definition

If f(x) is differentiable to all orders at x = a, then its *Taylor series* centered at a is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} \left(x - a \right)^n$$

DEFINITION

If f has n derivatives at x = a, then the nth Taylor polynomial for f at a is

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

The *n*th Taylor polynomial for f at 0 is known as the *n*th Maclaurin polynomial for f.

From the above, if f(x) has a power series representation centered at a, it must be its Taylor series.

Comment:

- The tangent line (the osculating line) to the graph at x = a is best written -- and best thought of, perhaps -- as S₁. Write that out, and confirm it.
- What might you call S₂?
- What might you call S₃, etc.?

Questions

- What is the Taylor series centered at 0 for $f(x) = \frac{1}{1-x}$?
- What is f⁽¹⁰⁰⁾(0)?

What is f⁽⁵⁰¹⁾(0)?

Questions

- What is the Taylor series centered at 0 for f(x) = ln(1 + x)?
- What is f⁽¹⁰⁰⁾(0)?
- What is f⁽⁵⁰¹⁾(0)?
- What is the Taylor series centered at 0 for *x* ln(1 + *x*)?

Questions

Let $f(x) = e^x$.

• What is the Taylor series for f(x) centered at 0?

```
In[•]:= Series[Exp[x], {x, 0, 10}]
```

- What is $f^{(n)}(x)$?
- What is *f*^(*n*)(0)?
- For which values of x does this series converge?
- Using the above, what is the Taylor series for k(x) = x e^x centered at 0?
- What is true about k⁽ⁿ⁾(0)?

Questions

Let $g(x) = \sin(x)$.

- What is the Taylor series for *g*(*x*) centered at 0?
 - What is *g*^(*n*)(*x*)?
 - What is g⁽ⁿ⁾(0)?
- For which values of x does this series converge?
- Using the above, what is the Taylor series for $m(x) = x^2 \sin(x)$ centered at 0?
- What is true about m⁽ⁿ⁾(0)?

Questions

Let $h(x) = \cos(x)$.

- What is the Taylor series for h(x) centered at 0?
- For which values of x does this series converge?
- What is $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$?
- Using the above, what is the Taylor series centered at 0 for $\frac{1-\cos(x)}{x^2}$?

Questions

Let $h(x) = \cos(x)$.

- What is the Taylor series for h(x) centered at $\pi/2$?
- For which values of *x* does this series converge?

Questions

Let $k(x) = \cos(x^2)$.

- Using the Taylor series centered at 0 for cos(x), what is the Taylor series centered at 0 for k(x)?
- The derivative $k^{(n)}(0)$ is 0 for which values of *n*?