Approximating Integrals on the TIs
- 
Define dd(n)=(b-a)/n
- 
Define xx(k,n)=a+k*dd(n)
- 
Define lrr(n)=dd(n)*  (f(xx(k,n)),k,0,n-1) (f(xx(k,n)),k,0,n-1)
- 
Define rrr(n)=dd(n)*  (f(xx(k,n)),k,1,n) (f(xx(k,n)),k,1,n)
- 
Define trap(n)=(lrr(n)+rrr(n))/2
- 
Define mx(k,n)=(xx(k-1,n)+xx(k,n))/2
- 
Define mi(n)=dd(n)*  (f(mx(k,n)),k,1,n) (f(mx(k,n)),k,1,n)
- 
Define simp(n)=(trap(n/2)+2*mi(n/2))/3
- 
Define f(x) = .... Example: Define f(x)=1/x
- 
left endpoint STO a Store the left endpoint as a
- 
right endpoint STO b Store the right endpoint as b
Entering lrr(n), rrr(n), trap(n), mi(n) and simp(n) for a specific power of n yields the
approximating sums. For example, the approximating sums for the integral
  
 
for n=5 are
- 
lrr(5)=.745635
- 
rrr(5)=.645635
- 
trap(5)=.695635
- 
mi(5)=.691908
- 
simp(10)=.693150
Note that the Simpson's Rule approximation is for the same integral with n=10.
- 
For the Trapezoidal Rule:
   
 
where K is an upper-bound for   on [a,b]. on [a,b].
 
- 
For the Midpoint Rule:
   
 
where K is an upper-bound for   on [a,b]. on [a,b].
 
- 
For Simpson's Rule:
   
 
where K is an upper-bound for   on [a,b]. on [a,b].
 
Upper-bounds might be determined algebraically, estimated graphically, or
derived from max/min considerations.
 
 
Wed Sep  3 18:28:23 EDT 2003