
Section 4.1: Sets

March 17, 2025

Abstract

This section, the only section we consider from Chapter 4,

gives us some basic vocabulary and notions of sets that we will

need when we get to Boolean algebras later. We observe that

the rules satisfied by the binary operations of “intersection” and

“union” from set theory are essentially the same as the rules of

the binary connectives ∧ and ∨ of propositional logic.

One of the most important ideas in this section is that of the

“power set” – the set of all subsets of a set.

We also prove that there are infinitely many different sizes

of infinite sets – did you know that?

1 Notation

A set (call it A) is loosely a collection of objects within some universe;
the objects are called the elements of A.

Capital letters denote sets, and ∈ denotes membership in a set, so
that x ∈ A means that x is a member (or element) of a set, and x /∈ A
means that x is not a member.

Sets are unordered: the order in which the elements are listed is unim-
portant.

We can use predicate logic to determine (or even define) when two sets
are equal:

A = B ⇐⇒ (∀x)[(x ∈ A→ x ∈ B) ∧ (x ∈ B → x ∈ A)]

The notation for a set whose elements are characterized by possessing
property P is

S = {x|P (x)}
and is read “S is the set of all x such that P (x)”

One curiously useful set is the empty set, denoted ⊘ or {}.
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Some important sets of numbers:

N Natural numbers – although our author throws in 0, argh!
Z Integers – positive and negative natural numbers, plus 0
Q Rational numbers – reals expressible as ratios of integers
I Irrational numbers – reals not expressible as ratios of integers
R Real numbers – the continuum of numbers on the real number line

C Complex numbers – including the important number i =
√
−1

I was always taught that the natural numbers start from 1. In particu-
lar, 0 is not at all “natural” – it must have required quite a stretch for
a civilization to realize that they needed a symbol for nothing!

Example: Practice 3, p. 224. Describe each set:

(a) A = {x|x ∈ N ∧ (∀y)(y ∈ {2, 3, 4, 5} → x ≥ y)}

(b) B = {x|(∃y)(∃z)(y ∈ {1, 2} ∧ z ∈ {2, 3} ∧ x = y + z)}

2 Relationships between Sets

A is a subset of B, denoted A ⊆ B, if

(∀x)(x ∈ A→ x ∈ B)

and A is a proper subset of B, denoted A ⊂ B, if

(∀x)(x ∈ A→ x ∈ B) ∧ (∃x)(x /∈ A ∧ x ∈ B)

Example: Practice 6, p. 225

Theorem:
A = B ⇐⇒ A ⊆ B ∧B ⊆ A
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3 Sets of Sets

Power Set: Given set S, the power set of S, denoted ℘(S), is the set
of all subsets of S. (Note that S and ⊘ are themselves elements of the
power set of S.)

Example: How big is the power set of a given set? (Practice 8 and
9, p. 227; power set for A = {1, 2, 3}, and how many elements in the
power set more generally?)

Figure 1: Pascal’s Triangle (aka binomial coefficients)

Pascal’s triangle gives you the breakdown on the number of various
sized subsets you can create from a set of a given size. The line number
n in the triangle (indexed from 0) tells you the size (n) of the underlying
set, and the total across the row tells you just how many subsets there
are (2n). This is called the cardinality of the set: Card(℘(S)) = 2n –
its size. But cardinality is used even for infinite sets.

4 Binary and Unary Operations

We can create ordered pairs of elements of a set. From A = {1, 3, 4}
we can create the ordered pairs (1, 3) and (3, 3), for example. As you
can tell from the name, the order of the elements is important!

Question: How many distinctly different ordered pairs are there if we
have a set with n elements?

Definition: ◦ is a binary operation on a set S if for every ordered
pair (x, y) of elements of S, x ◦ y exists, is unique, and is a member of
S.

Definition: ◦ is well-defined if x ◦ y exists and is unique.

Definition: ◦ is closed if x ◦ y ∈ S.
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Three ways to fail to be a binary operation on S:

(a) there are pairs for which x ◦ y fails to exist;

(b) there are pairs for which x ◦ y gives multiple different results;

(c) there are pairs for which x ◦ y doesn’t belong to S.

Definition: a unary operation on a set S associates with every
element x of S a unique element of S.

Example: Practice 12, p. 230

5 Operations on Sets

Given a set S of elements of interest (the universal set), we may want
to operate on various subsets of S (that is, elements of ℘(S)). For
example,

Definition: Let A,B ∈ ℘(S). The union of A and B, denoted A∪B,
is given by {x|x ∈ A∨x ∈ B}. The intersection of A and B, denoted
A ∩ B, is given by {x|x ∈ A ∧ x ∈ B}.

These are examples of binary operations on the power set of a set.

Definition: For a set A ∈ ℘(S), the complement of A, denoted A′,
is {x|x ∈ S ∧ x /∈ A}.

Definition: For sets A and B ∈ ℘(S), the set-difference of A and B,
denoted A−B, is given by {x|x ∈ A ∧ x /∈ B}.

Venn Diagrams are useful tools for visualizing the notions of union and
intersection. The diagrams in Figures 4.1 and 4.2 (p. 231) illustrate
these notions “pictorially”:

Examples:

(a) Practice 14, p. 232: illustrate A′ using a Venn Diagram.

(b) Practice 15, p. 232: illustrate A−B using a Venn Diagram.
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Definition: For set A,B ∈ ℘(S), the Cartesian product (cross
product) of A and B, denoted A × B, is the set of all ordered pairs,
and is given by

A×B = {(x, y)|x ∈ A ∧ y ∈ B}.

6 Set Identities

We will encounter the following “Set identities” later in the context of
“Boolean algebras”:

1a. A ∪B = B ∪ A 1b. A ∩ B = B ∩ A commutative property
2a. (A ∪ B) ∪ C = A ∪ (B ∪ C) 2b. (A ∩ B) ∩ C = A ∩ (B ∩ C) associative property
3a. A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) 3b. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) distributive property
4a. A ∪ ⊘ = A 4b. A ∩ S = A identity property
5a. A ∪ A′ = S 5b. A ∩ A′ = ⊘ complement property

Notice again the “dual” nature of the properties: it seems that the
operations of ∪ and ∩ have a lot in common!

Question: What correspondence do you observe between these iden-
tities and those of wffs with the logical connective ∧ and ∨?

7 Countable and Uncountable Sets

As an interesting application of set theory, we will now demonstrate
that there are infinitely many sizes of infinity.

The natural numbers comprise the smallest infinity, a denumerable
or countable infinity.

We prove that two sets are of equal size (even if infinite!) by creating
a one-to-one correspondence between the two sets: f : A → B. If
such a correspondence exists, then the two sets have the same size.
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By one-to-one correspondence we mean that each element of
each set has a unique partner (no member of either set is “left behind”).
I imagine a dance, where all elements of both sets are happily dancing
with their special partners. Such a partnership is actually a one-to-
one and onto mapping: not only does each x have a unique partner y
(one-to-one), but vice versa (so every element y is a partner).

Example: The even natural numbers E are the same size as the
natural numbers, as shown by the one-to-one correspondence

f : IN→ E given by n←→ 2n

(Notice that each element of E is a partner of a natural number).

Theorem: the rational numbers (ratios of integers) are countable.

Theorem (Cantor’s diagonalization argument, Example 23, p. 238):
the real numbers are not countable.

Theorem: the power set of a set S is always larger than S (punch line:
there is always a bigger infinity than the one you already have).

Proof: By contradiction. Consider f : S → ℘(S) a one-to-one corre-
spondence between S and ℘(S). That is, every element of S is partnered
with a unique element of ℘(S) (and vice versa). (We will show that
this is impossible.)

Denote by f(S) the set of subsets that are the images of all the
elements of S: f(S) ≡ {f(x)|x ∈ S}. Then we have asserted that
f(S) = ℘(S) – that is, that every subset of S is the image of some
element of S.

However, consider the subset of S given by

A = {x ∈ S|x /∈ f(x)}

But A /∈ f(S) (because it’s different from every element f(x) of f(S)),
by design; and yet A ∈ ℘(S). This is a contradiction: we asserted that
the mapping was one-to-one – i.e., that f(S) = ℘(S).

Just to try to make the nature of the set A a little clearer, here’s
the purported one-to-one mapping by f :

x1 → B1 = f(x1)
x → B = f(x)
x∗ → B∗ = f(x∗)
...

...

But A = {x ∈ S|x /∈ f(x)} is different from each of the sets on the
right-hand side, by construction: for example, if x1 ∈ B1, then A rejects
it (and hence is different from B1); if x /∈ B, then A accepts it (and
hence is different from B); if x∗ /∈ B∗, then we take x∗ ∈ A (and
hence A is different from B∗); and so on. It’s the same argument as
Cantor’s diagonalization argument, on steroids....
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