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Abstract

Now we’re going to use the tools of formal logic to reach
logical conclusions (“prove theorems”) based on wffs formed by
some given statements. This is the domain of propositional
logic.

• Propositional wff: represent some sort of argument, to be tested,
or proven, by propositional logic.

• valid arguments, e.g.

P1 ∧ P2 ∧ . . . ∧ Pn → Q

have hypotheses (we suppose – assert – that the Pi are true), and
a conclusion (Q). To be valid, this argument must be a tautology
(always true). To be an argument, Q must not be identically true
(i.e. a fact, in which case the hypotheses are irrelevant, by the
truth table of implication).

Examples

a. Valid argument: If logic is hard, then I am a monkey’s uncle.
I am not a monkey’s uncle. Therefore, logic is not hard.

b. Invalid arguments: If people are crazy, then they should be
in an asylum. I am in an asylum.

i. Therefore 1 + 1 = 2.

ii. Therefore I am crazy.

• Proof Sequence: a sequence of wffs in which every wff is an
hypothesis or the result of applying the formal system’s derivation
rules (truth-preserving rules) in sequence.

Our Objective: to reach the conclusion Q from the hypotheses
P1, P2, . . ., Pn (with reasons!).



The famous cartoonist Sidney Harris knows that you need to fol-
low the rules (equivalence and inference rules) in a proof sequence:

• Types of derivation rules:

– Equivalence rules: We can substitute equivalent wffs in

a proof sequence by invoking equivalence rules.



You’re asked to prove the implication equivalence rule in
Practice 9: that is, prove that

P → Q←→ P ′
∨Q

is a tautology (notice how we use order of precedence of
operations to drop parentheses). How would you prove it?
And can you see another theorem, suggested by the com-
mutativity of disjunction, as well as double negation (i.e.
Q←→ (Q′)′)?

Implication seems somewhat unusual, but it is suggested by
Exercise 11a, section 1.1:

“If the food is good, then the service is excellent.”

So when we negate it, it leads to the rule

(P → Q)′ ⇐⇒ P ∧Q′.

– Inference rules: from given hypotheses, we can deduce
certain conclusions.

∗ modus ponens: If P is true, and Q follows from P ,
then Q is true: P ∧ (P → Q)→ Q

∗ modus tollens: If Q follows from P , and Q is false,
then P is also false: (P → Q) ∧Q′

→ P ′

∗ conjunction: If P is true, and Q is true, then they’re
both true together: P ∧Q→ (P ∧Q)

∗ simplification: If both P and Q are true, then they’re
each true separately: P ∧Q→ P , and P ∧Q→ Q

∗ addition: If P is true, then either P or Q is true (or
both): P → P ∨Q

Of these, addition may seem a little odd: what do you gain
by adding an arbitrary argument Q to an already true wff
P into a logical or?

http://www.nku.edu/~longa/classes/mat385/days/day02/negation.html


The difference between equivalence rules and inference rules
is that equivalence rules are bi-directional (work both ways),
whereas some inference rules are uni-directional (work in
only one direction - e.g., simplification; this is what infer-

ence is all about:

“from this we can infer that” does not mean that “from that
we can infer this”.

Practice 10, p. 30 (and also suggests a reasonable step 4.)

1. (A ∧ B′)→ C hyp
2. C ′ hyp

Let’s start with #19, p. 37: Prove that the argument

(A′
→ B′) ∧ B ∧ (A→ C)→ C

is valid.

Then, for a more elaborate example, let’s look at #31, p.
37, which shows that one can prove anything if one intro-
duces a contradiction (e.g. this problem, on a mensa quiz
I once found: “If 1/2 of 24 were 8, what would 1/3 of 18
be?”1). Also called an inconsistency, this is a beautiful
and important example:

P ∧ P ′
→ Q

Notice that in the table 1.14 (More Inference Rules, p. 37)
some rules appear twice (e.g. contraposition): two uni-
directionals can make a bi-directional (which makes this ef-
fectively an equivalence rule).

Note for your homework: you are not allowed to invoke
the rule that you are trying to prove! Notice that the entries
in this table are followed by exercise numbers: it is in those
exercises that the results are actually proved.

1Their solution (and I quote): “The best way to solve this is by setting up

proportions:
1/2× 24

8
=

1/3× 18

z
. Then

12

8
=

6

z
, so z = 4.” But wait – didn’t

they say that 1/2 of 24 is 8?!



– Deduction method: if you seek to prove an implication
(that is, if the consequent of the theorem is itself an im-
plication), then you can simply add the antecedent of this
consequent implication to the hypotheses making up the an-
tecedent, and prove the consequent of the concluding impli-
cation:

P1 ∧ P2 ∧ . . . ∧ Pn → (R→ S)

can be replaced by

P1 ∧ P2 ∧ . . . ∧ Pn ∧R→ S

This is really “Exportation” (from Table 1.14) backwards,
which means that Exportation is actually an equivalence rule
(it is: check the truth tables, or construct a proof).

If you’re interested in seeing why this rule works, you should
try #55, p. 38, but think of it this way: we’re interested in
assuming that all the Pi are true, and see if we can deduce
the implication R → S. If R is false, then the implication
is true. The only potentially problematic case is where R is
true, and S is false. Then what we want to know is: given
that

P1 ∧ P2 ∧ . . . ∧ Pn ∧R

are true, is S true?



Exercise #37, p. 38:

(A′
→ B) ∧ (B → C) ∧ (C → D)→ (A′

→ D)

– Hypothetical syllogism: The theorem above (#37) can
be proven more easily using this method:

(P → Q) ∧ (Q→ R)→ (P → R)

(one of the rules in Table 1.14). This rule might well be
referred to as transitivity.

A new rule is created each time we prove an argument; but we
don’t want to create so many rules that we keel over under their
weight! Keep just a few rules in view, and learn how to use them
well....

• Our goal may well be to turn a “real argument” into a symbolic
one. This allows us to test whether the argument is sound (that is,
that the conclusion follows from the hypotheses), without being
distracted by the verbiage.

Exercise #47, p. 38: If the ad is successful, then the sales
volume will go up. Either the ad is successful or the store will
close. The sales volume will not go up. Therefore the store will
close. (A, S, C)

The trouble comes because the language may obscure the struc-
ture of the syllogism; we seek to cut through the language to get
at the logical skeleton and work with that.

• The propositional logic system is complete and correct:

– complete: every valid argument is provable (we can show
that it is a tautology).

– correct: only a valid argument is provable (only tautologies
are provable).

The derivation rules are truth-preserving, so correctness is pretty
clear; completeness is not! How can we tell if we can prove every
valid argument?!


