Section 8.2: Logic Networks

April 15, 2021

Abstract

We examine the relationship between the abstract structure
of a Boolean algebra and the practical problem of creating (opti-
mal!) logic networks for solving problems. There is en-

a‘IQLegiL,l\let\lV\mks which allows us to pass from one to the
other. While a problem might be easiest formulated in terms of
a truth function, we might then recast it as a Boolean expres-
sion to then feed into a logic network. Then Boolean algebra
provides us with a simple mechanism by which to simplify the
expressions, and hence to simplify the underlying logic network.

We’ll examine the binary adder (and half-adder) as a partic-

ular example, which will later be implemented as a Finite State
Machine.

1 An Example Application, and Funda-
mental Parallels

Example: Two light switches, one light!

The problem is as follows: A light at the bottom of some stairs is
controlled by two light switches, one at each end of the stairs. The two
switches should be able to control the light independently. How do
we wire the light?

e A Truth Function: f(s1,$2) =L
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e A Logic Network (Basic Components, Mechanics, and Conven-
tions)
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e Lines can be split to serve as input to more than one device.



e There are npv loops, with output of a gate serving as input to the
same gate. (feedback). ™.

e

e There are no delay éleme\gi;s.

Figure 8.6, p. 638, shows how to wire an “or” — we do it in parallel
(“and” is wired in series).

2 Applications
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Example: Exercise 15, p. 657
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(notice that you can easily simplify that canonical sum-of-products,
using some Boolean algebra.)

2.2 Converting Boolean Expressions to Logic Net-
works

Example: Practice 11, p. 645 (reprise)

i o~ \oco b
/\\/\(/\ X)_.V)(- \C‘b :\/&e/{k/ L
"

)



# Tyt o dS £ ok

%
Example: Exercise 2, p. 655
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2.3 Converting Logic Networks to Truth Functions
or Boolean Expressions

Example: Exercise 5, p. 655
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2.4 Simplifying Canonical Form

We can use properties of Boolean algebra to simplify the canomcal
form, creating a much simpler logic network as a result.

Example: Practice 11, p. 645 (reprise)
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Wouldn't it be nice if there were some systematic way of doing this?
That’s the subject matter of the next section! We'll see two different
ways to simplify a cannonical sum of products.



2.5 An example: Adding Binary numbers
2.5.1 Half-Adders

Half-Adder: Adds two binary digits.
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§ = Xpre + T
C = T1T2

s is the result of an “XOR” operation (exclusive or) of the two inputs,
whereas ¢ is the product of the two inputs. Note, however, that the
half-adder doesn’t implement s in this way: instead,
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2.5.2 Full-Adders /(l

s = (1 +x3) - (vra)

Questions:
a. How?
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Full-Adder: Adds two digits plus the carry digit from the preceding
step (which we can create out of two half-adders!).
Given the preceding carry digit ¢;_1, and binary digits x; and ;.

We'll use a half-adder to add z; to y;, obtaining write digit ¢.and
carry digit .
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e Then use a half-adder to add the carry digit ¢;_; to o; the write c_' X. \/,’ —
digit is s;, and call the carry digit c. AT
r r
e To get the carry digit ¢;, compare the carry digits ¢ a C;\_‘ X % *
either gives a 1, then ¢; = 1 (so it’s an “or”). .
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Let’s derive all that from the truth functions, repfesenting the sum
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So the canonical sum of products forms of each function are
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We recognize these quantities in terms of half-adders: \’/’Z.¢:_\/CW J‘“) e e{ 7’2_(

e We recognize the write digit ¢ and the carry digit v of the half- Sppmc L\,_(&‘ -cd Lo~
adder of z; and y;.

e Then s; is just the write digit s of the half-adder of ¢;_; and o;

e Meanwhile, ¢; is the sum of v and the carry digi(@r the half- P ;
adder of ¢;_; and o. o 4
e That is illustrated in this figure: I

Figure 1: The full-adder takes input digits x; and y;, as well as the
carry digit ¢;_; from the previous step and computes write digit s; and
carry digit ¢;. Then do it again!
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