Directions: You must skip one problem — write “skip” prominentlgr/on it. ‘Show your work!
Answers without justification will likely result in few points. Your written work also allows me the
option of giving you partial credit in the event of an incorrect final answer (but good reasoning).
Indicate clearly your answer to each problem (e.g., put a box around it). Good luck!
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a. (4 pts) Use the figure to illustrate how Newton’s method works starting from the guess
xr = 0.5. Include the calculation of the next iterate (you don’t need to do it in general, just
for = 0.5), and you can use these values: p(0.5) = —0.884766, and p'(0.5) = 0.353125.

b. (2 pts) p(x) is not expressed efficiently for calculation. How might you write it better?
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c. (4 pts) The quadratic form of Newton relied on fitting the “tangent quadratic”. Knowing
that p”(0.5) = 0.45625, write the tangent quadratic at z = 0.5. (Hint: use Taylor’s

Theorem.)
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Problem 2. (10 pts) We've studied how to compute linear splines and the errors we make
in using them. Suppose that we use the “knots” (x;,y;) = (i * h,sin(x;)), where h = 0.1 and
create a linear spline interpolator for sin(x). (Calculations below are in radians, of course).

a. (3 pts) Write an explicit formula for the piece of the linear spline s(x) used to estimate
sin(.55). What is the estimate for sin(.55), and how does it compare to the true value?
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b. (3 pts) We can make some statements about the error we make in estimating sin(.55)

' using the linear spline, by considering properties of sin(z) in the neighborhood of x = .55.
/ What can we say? 2
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o c. (3 pts) Bound the error we make’in estimating sin(.55) using the linear spline.
, Flog = cos &

r\}/ N e 03 by . LU= —£en X

o o ¥ e e = }k»xo) k%) () d i) 2
"
P /Z !
\ 1 Ly
(0/ §5= ()/j.pj (U,J’J‘f De"") \‘\\‘ \,) o~

4’)



' Z; flzi]
Tog = 0 1
. : \
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b. (3 pts) Write the Newton interpolating polynomials (from constant to quadratic) ob-
tained by successively adding the points in the order z;, z5, and .

a. (3 pts) Complete the divided-difference table above.
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c. (3 pts) Write the interpolating polyngmial in Lagrange form.
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d. (1 pt) What is the difference between these polynomials?
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Problem 4:

(10 pts) Discuss the advantages and disadvantages of each of the following

root finding methods. Mention order of convergence when you can, dangers, possibilities,
mathematical underpinnings, etc. Show me that you understand each method.
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' Problem 5. (10 pts) We seek a root of
f(z) = z +In(z)

You consider two possibilities, both of them fixed-point methods: Newton’s method, and the
more straightforward method suggested by

Flag) =0 = 7==1uz)

So define g(z) = — In(z).

a. Sketch (roughly) the graphs of z and — In(z) below, and conclude that there is a unique
root:
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b. Explain why ¢(z) is a poor choice for a fixed-point iteration scheme.
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Problem 5. (10 pts) We seek a root of

f(z) = z + In(z)

You consider two possibilities, both of them fixed-point methods: Newton’s method, and the
more straightforward method suggested by

f(2)=0 <= z=—-In(z)
So define g(z) = — In(z).

a. Sketch (roughly) the graphs of z and — In(z) below, and conclude that there is a unique

root:
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b. Explain why g(z) is a poor choice for a fixed-point iteration scheme.
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c¢. Newton’s method is also a fixed-point iteration scheme. What is Newton’s fixed-point
function to find roots of f7
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Problem 6. (10 pts) Determine a low-degree polynomial approximation to
f(z) =cos(z) — 1

for |z| < 0.1 having a relative error of less than or equal to 107 in magnitude. (Hint: Taylor
series remainder term, and both numerator and denominator are easy to bound.)
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