Section 8.4: T	Testing the Difference	Between Proportions
----------------	------------------------	---------------------

Today we will study

How to perform a z-test for the difference between two population proportions p_1 and p_2

Two-Sample z-test for the Difference Between Proportions

Review some notation.

Symbol	Description	
p_1, p_2	Population proportions	
n_1, n_2	Size of each sample	
x_1, x_2	Number of successes in each sample	
\hat{p}_1, \hat{p}_2	Sample proportions of successes	
\bar{p}	Weighted estimate for p_1, p_2	

Three conditions must be satisfied to perform this z-test.

- The samples must be independent.
- The samples must be large enough to use a normal sampling distribution.
- The samples must be randomly selected.

Remarks

Large enough means:

$$n_1 p_1 \ge 5,$$
 $n_1 q_1 \ge 5$
 $n_2 p_2 \ge 5,$ $n_2 q_2 \ge 5$

If these conditions are satisfied, then the sampling distribution for $\hat{p}_1 - \hat{p}_2$, the difference between the sample proportions, is a normal distribution.

Two-Sample z-Test for the Difference Between Prportions A **two-sample z-test** can be used to test the difference between two population proportions p_1 and p_2 when a sample is randomly selected from each population. The **test statistic** is $\hat{p}_1 - \hat{p}_2$, and the **standardized test statistic** is $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\bar{p}\bar{q}}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}$ where $\bar{p} = \frac{x_1 + x_2}{n_1 + n_2}$ and $\bar{q} = 1 - \bar{p}$.

Remark

If the null hypothesis states $p_1 = p_2$, $p_1 \leq p_2$, or $p_1 \geq p_2$, then $p_1 = p_2$ is assumed and the expression $p_1 - p_2$ above is equal to 0.

As before
$$\hat{p}_1 = \frac{x_1}{n_1}$$
 and $\hat{p}_2 = \frac{x_2}{n_2}$

	Claim	
Decision	Claim is H_0 .	Claim is H_a
Reject H_0 .	There is enough evidence to re- ject the claim	There is enough evidence to support the claim
Fail to Reject H_0 .	There is Not enough evidence to reject the claim	There is Not enough evidence to support the claim