
Section Summary: 7.3: Partial Fractions

1 Mostly real thinking...

Real polynomials mean thinking about complex roots (but then kind of ignoring them!:)

a. Definitions

• rational function: a ratio of polynomials, f(x) =
P (x)

Q(x)

• Proper rational expression: one for which the degree of the numerator polynomial is strictly
less than that of the denominator.

b. Theorems

First of all, it’s important to know that, by the Fundamental Theorem of Algebra, any polyno-
mial of degree n can be written as a product of n linear factors:

P (x) = a(x − x1)(x − x2) · · · (x − xn)

However the xi may be complex. If so, and if the coefficients of the polynomial are real, then complex
roots appear only as complex pairs: u±vi (where u and v are real numbers, and the imaginary number
i is the square root of -1).

If you multiply the two linear terms corresponding to such a pair, (x − (u + vi)) and (x − (u− vi)),
you get

(x − (u + vi))(x − (u − vi)) = x2 − ((u + vi) + (u − vi))x + (u + vi)(u − vi)

which works out to
(x − (u + vi))(x − (u − vi)) = x2 − 2ux + (u2 + v2)

(that is, a quadratic, with real coefficients).

So the upshot is that every real polynomial can be written as a product of linear terms and quadratic
terms (with complex roots), all with real coefficients.

c. Properties/Tricks/Hints/Etc.

Every rational function can be expressed as a sum of a polynomial and a proper rational expression.
This is the most illuminating way to write the rational function, because it shows off the behavior
of the rational function. If f is improper, then we can rewrite it as

f(x) =
P (x)

Q(x)
= S(x) +

R(x)

Q(x)

where S and R are also polynomials, with deg(R) < deg(Q).
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We can find this representation by long-division (which you may or may not recall, but it’s not
difficult).

Now as x → ∞,
R(x)

Q(x)
→ 0, since the degree of Q is greater than the degree of R. This means that,

far from the origin, f(x) ≈ S(x). That is, f looks like the polynomial S.

So near the origin, the proper rational function
R(x)

Q(x)
may dominate – for example, if Q has real

roots, this expression may blow up (or down) to infinity (or negative infinity). This is the very
un-polynomial-like behavior, which is characteristic of the nastier rational functions.

d. Summary

Now what we learn in this section is that

∫

f(x)dx =
∫

(

S(x) +
R(x)

Q(x)

)

dx =
∫

(S(x)dx +
∫

R(x)

Q(x)
dx

The first part is easy (integral of a polynomial), whereas the second part can be rewritten as a sum
of “fractional” terms:

R(x)

Q(x)
=

A1

(x − x1)
+

A2

(x − x2)
+ . . . +

An

(x − xn)

if the roots of Q are distinct and real.

If the roots repeat, or if the roots are complex, we need to adjust things a little.

If we have repeated real roots (say x1 repeats 3 times), then we’ll have terms

A

(x − x1)
,

B

(x − x1)2
,

C

(x − x1)3

For each quadratic term having complex roots, non-repeated, ax2 + bx + c, there is a term

Ax + B

ax2 + bx + c

Once again, if this term repeats in the factorization of Q, then we need one such term for each power
of the quadratic in the partial fraction decomposition.

2 If you’ll deal with “complexities”

Consider
∫ 1

x2 + 1
dx = tan−1(x) + C

We know that x2 + 1 = (x + i)(x − i), so

1

x2 + 1
=

A

x + i
+

B

x − i
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where A and B are complex numbers.

Multiplying out, we get

1

x2 + 1
=

A

x + i
+

B

x − i
=

A(x − i) + B(x + i)

(x + i)(x − i)
=

A(x − i) + B(x + i)

x2 + 1

Since the first and last expressions are equal, their numerators must be equal. So

1 = A(x − i) + B(x + i) = (A + B)x + (B − A)i

Since the left-hand side is independent of x, the right-hand side must be independent of x, too. Hence

A + B = 0 =⇒ B = −A

Thus (B − A)i = −2Ai = 1, so A =
i

2
. Therefore B =

−i

2
, and

1

x2 + 1
=

i

2

(

1

x + i
−

1

x − i

)

Therefore
∫

1

x2 + 1
dx =

∫

i

2

(

1

x + i
−

1

x − i

)

dx =
i

2
(ln(x + i) − ln(x − i)) + C

Now you might be wondering about several things at this point. Number one, you’re wondering
whether you ever should have thought that you’ll deal with “complexities”. :)

Seriously, you might be wondering what to make of those logs (and wonder about the missing absolute
values, etc.). There are several issues, wrapped up with these “complexities”.

In particular, a complex number can be represented by a product of a positive real number and a
complex exponential (which can itself be represented as a complex sum of a sine and cosine! Miracles,
it seems....):

x + i = reiθ = r(cos(θ) + i sin(θ))

The positive real number r is called the “modulus” (the size of the complex number), and given in
this case by r =

√
x2 + 1. Once again we equate real and imaginary parts, to determine that

cos(θ) =
x

r
=

x√
x2 + 1

and

sin(θ) =
1

r
=

1√
x2 + 1

Furthermore, we can use our properties of logs to write

ln(x + i) = ln
(

reiθ
)

= ln(r) + ln
(

eiθ
)

= ln(r) + iθ

and it turns out that
ln(x − i) = ln

(

re−iθ
)

= ln(r) − iθ

so that
∫

1

x2 + 1
dx =

i

2
(ln(r) + iθ − (ln(r) − iθ)) + C =

i

2
(2iθ) + C = −θ + C
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From our definitions of cos(θ) and sin(θ), we can see that tan(θ) =
1

x
, so that

−θ = − tan−1

(

1

x

)

= tan−1

(−1

x

)

That’s interesting! So it turns out that

∫

1

x2 + 1
dx = tan−1(x) + C = tan−1

(−1

x

)

+ C

Well, sort of...! Plot both of those arctans, and you’ll see something very interesting! One of those
arctans has a very serious problem when it comes to x = 0. But notice, in particular, that

d

dx

(

tan−1

(−1

x

))

=
1

x2 + 1

everywhere but at x = 0.

The mysteries that you discover should lead you to take complex analysis, in order to resolve them
with oddities called “branch cuts”, and “singularities”, and the like....
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