Indeterminate Forms and L’Hopital’s rule

a.

Definitions

An indeterminate form is one that requires further study to be eval-
uated. One of the most important in calculus is the form of type 0
since the derivative function limit is of this form:
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If f is continuous at x, then this form is indeterminate of type 0
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Other indeterminate forms include —, e.g.
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and 0 x 00, e.g.
lim x In(z).

z—0

Theorems

e L’Hopital’s rule: Suppose f and g are differentiable and ¢'(x) #
0 near a (except possibly at a). Suppose that

lim f(z) =0 and lim g(x) =0

or that
lim f(z) = £oo and ﬂlclir(llg(alz) = +00
Then

lim /(@) = lim f'(z)
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If the limit on the right side exists (or is oo or —o0).

These quotients are called indeterminate forms, since we can’t tell
which way they’ll turn out by inspection.
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c. Properties/Tricks/Hints/Etc.

e Other indeterminate forms include products 0 * oo, which we can
rewrite as quotients: e.g.
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lim sin(z) In(z) = lim n(z)
z—0 2—0 csc(x)

e Differences can be indeterminate, e.g. 0o — oo, which we may also
be able to rewrite as quotients: e.g.
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which we see is an indeterminate form as a quotient.
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is indeterminate, then you can apply the rule again (provided the
derivative functions satisfy the constraints of the theorem):
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etc. This could go on for a long time!

d. Summary

There are certain limits that are “indeterminate”, and L’Hopital’s rule

provides us a method for determining them. Especially important are

00
limits that are essentially of the form oo * 0, or 0’ or —.
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