Section Summary: 12.2

1. Definitions

- vector: a quantity having both direction and magnitude (length). A two-dimensional vector is an ordered pair $\mathbf{a} = \langle a_1, a_2 \rangle$; A three-dimensional vector is an ordered triple $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$. The numbers a_1, a_2 , and a_3 are called **components of a**.
- A **representation** of the vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is a directed line segment \mathbf{AB} from any point A(x,y) to the point $B(x+a_1,y+a_2)$. A particular representation of \mathbf{a} is the directed line segment \mathbf{OP} from the origin to the point $P(a_1,a_2)$, called the **position vector** of the point $P(a_1,a_2)$. Representations in 3-d are defined analogously.

Vectors will generally be written with an arrow, e.g. **a**, since it's hard to write boldface on paper or on the board.

• **parallel vectors**: if two vectors are parallel, then one can be written as a scalar multiple of the other:

$$\mathbf{a} = c\mathbf{b}$$

• unit vector: a vector whose length is 1.

2. Theorems

None to speak of.

- 3. Properties/Tricks/Hints/Etc.
 - Given the points $A(x_1, y_1, z_1)$ and $B(x_2, y_2, z_2)$, the vector **a** with representation **AB** is

$$\mathbf{a} = \langle x_2 - x_1, y_2 - y_1, z_2 - z_1 \rangle$$

• The length of the two-dimensional vector $\mathbf{a} = \langle a_1, a_2 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2}$$

The length of the three-dimensional vector $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ is

$$|\mathbf{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$$

1

• Addition is defined componentwise, so that $\mathbf{a} + \mathbf{b}$ is defined as

$$\mathbf{a} + \mathbf{b} = \langle a_1 + b_1, a_2 + b_2, a_3 + b_3 \rangle$$

Subtraction is defined in the obvious way.

Addition is carried out geometrically by putting the tail of vector \mathbf{b} to the head of \mathbf{a} and creating the vector from the tail of \mathbf{a} to the head of \mathbf{b} , creating a parallelogram.

• Multiplication of a vector by a scalar: If c is a scalar (e.g., a real number) and $\mathbf{a} = \langle a_1, a_2 \rangle$, then the vector $c\mathbf{a}$ is defined by

$$c\mathbf{a} = \langle ca_1, ca_2 \rangle$$

and similarly for three-dimensional vectors.

• Properties of vectors:

1.
$$\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$$

2. $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$
3. $\mathbf{a} + \mathbf{0} = \mathbf{a}$
4. $\mathbf{a} + -\mathbf{a} = \mathbf{0}$
5. $c(\mathbf{a} + \mathbf{b}) = c\mathbf{b} + c\mathbf{a}$
6. $(c + d)\mathbf{a} = c\mathbf{a} + d\mathbf{a}$
7. $cd\mathbf{a} = c(d\mathbf{a})$
8. $1\mathbf{a} = \mathbf{a}$

• Special vectors (the **standard basis vectors**, of length 1):

$$\mathbf{i} = \langle 1, 0, 0 \rangle$$
 $\mathbf{j} = \langle 0, 1, 0 \rangle$ $\mathbf{k} = \langle 0, 0, 1 \rangle$

Any vector can be expressed as a sum of the standard unit vectors:

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$$

• Vectors can be defined in *n*-dimensions in entirely analogous ways.

4. Summary

This section simply introduces us to a quantity, called a vector, which allows us to capture both magnitude and direction. This is useful (for example to indicate wind speed and direction on a weather map), and a set of rules and properties are defined to help us to manipulate these quantities.

Every vector can be expressed as a sum of special "basis" vectors, which are of unit size (length 1).