
Section Summary: Calculus with Parametric Curves

a. Definitions

None to speak of.

b. Theorems

If a curve C is described by the parametric equations x = f(t), y = g(t),
α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β] and C is traversed
exactly once as t increases from α to β, then the length of C is
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If a curve C is described by the parametric equations x = f(t), y = g(t),
α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β], g′ ≥ 0, then the
surface area of the surface obtained by rotating C about the x-axis is
given by S, where

S =
∫ β
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c. Properties/Tricks/Hints/Etc.

It is important to distinguish between the derivatives with respect to
the parameter t and with respect to x: in general
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One reflects the time rate of change in y; the other indicates the tan-
gential rate of change in the curve of y = f(x).
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If a curve C is described by the parametric equations x = f(t), y = g(t),
α ≤ t ≤ β, where f ′ and g′ are continuous on [α, β], g′ ≥ 0, then the
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d. Summary

Suppose that we can write our parametric curves as y = F (x):

x = f(t)
−→ y = F (x)

y = g(t)

For example,
x = sin(t)

−→ y = x2

y = sin2(t)

Then, using the chain rule,

F ′(x) = F ′(f(t)) =
g′(t)

f ′(t)

or
dy

dx
=

dy

dt
dx
dt

Problem #67, p. 677 shows that this is often possible: “If f ′ is con-
tinuous and f ′(t) 6= 0 for a ≤ t ≤ b, show that the parametric curve
x = f(t), y = g(t), a ≤ t ≤ b can be put in the form y = F (x).”

f ′ must be of fixed sign (positive or negative) on [a, b], as it is continuous
and never zero (by the intermediate value theorem).

Thus f is strictly monotonic (either increasing or decreasing) on the
interval, and hence one-to-one [f(x1) = f(x2) =⇒ x1 = x2] on [a, b].
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Therefore the inverse f−1 exists and is continuous on [f(a), f(b)], so

t = f−1(x)

and
y = g(t) = g(f−1(x)) ≡ F (x).

That is,
F = g ◦ f−1

So what’s the problem with

x = sin(t)
−→ y = x2

y = sin2(t)

The problem is that the same curve is used over and over as the path
for the parametric motion. The point turns around whenever x′(t) =
cos(t) = 0: at those times, the motion is stopped, and the point is
turning around on the parabola.

Much of this is just about change of variable. We start with our old
formulas: for example, if f ′ is continuous on [a, b], then the length of
the curve y = f(x), a ≤ x ≤ b, is

L =
∫ b
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Now, suppose that x and y are given parametrically, as x = f(t) and
y = g(t). Then
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where α = f−1(a) and β = f−1(b). (Note: since f−1 must exist, x is
travelling from left to right or from right to left, and doesn’t stop; that
is, dx

dt
6= 0).
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