Section Summary: Calculus with Parametric Curves

a. Definitions

None to speak of.

b. Theorems

If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$, $g' \ge 0$, then the surface area of the surface obtained by rotating C about the x-axis is given by S, where

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

c. Properties/Tricks/Hints/Etc.

It is important to distinguish between the derivatives with respect to the parameter t and with respect to x: in general

$$\frac{dy}{dt} \neq \frac{dy}{dx}$$

One reflects the time rate of change in y; the other indicates the tangential rate of change in the curve of y = f(x).

If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β , then the length of C is

$$L = \int_{\alpha}^{\beta} \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

If a curve C is described by the parametric equations x = f(t), y = g(t), $\alpha \le t \le \beta$, where f' and g' are continuous on $[\alpha, \beta]$, $g' \ge 0$, then the surface area of the surface obtained by rotating C about the x-axis is given by S, where

$$S = \int_{\alpha}^{\beta} 2\pi y \sqrt{\left(\frac{dy}{dt}\right)^2 + \left(\frac{dx}{dt}\right)^2} dt$$

d. Summary

Suppose that we can write our parametric curves as y = F(x):

$$x = f(t)$$
 $y = g(t)$
 $y = F(x)$

For example,

$$\begin{array}{ccc} x = sin(t) \\ & \longrightarrow & y = x^2 \\ y = sin^2(t) \end{array}$$

Then, using the chain rule,

$$F'(x) = F'(f(t)) = \frac{g'(t)}{f'(t)}$$

or

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

Problem #67, p. 677 shows that this is often possible: "If f' is continuous and $f'(t) \neq 0$ for $a \leq t \leq b$, show that the parametric curve $x = f(t), y = g(t), a \leq t \leq b$ can be put in the form y = F(x)."

f' must be of fixed sign (positive or negative) on [a, b], as it is continuous and never zero (by the intermediate value theorem).

Thus f is strictly monotonic (either increasing or decreasing) on the interval, and hence one-to-one $[f(x_1) = f(x_2) \Longrightarrow x_1 = x_2]$ on [a, b].

Therefore the inverse f^{-1} exists and is continuous on [f(a), f(b)], so

$$t = f^{-1}(x)$$

and

$$y = g(t) = g(f^{-1}(x)) \equiv F(x).$$

That is,

$$F = g \circ f^{-1}$$

So what's the problem with

$$x = sin(t)$$

$$y = sin^{2}(t)$$

$$y = x^{2}$$

The problem is that the same curve is used over and over as the path for the parametric motion. The point turns around whenever $x'(t) = \cos(t) = 0$: at those times, the motion is stopped, and the point is turning around on the parabola.

Much of this is just about change of variable. We start with our old formulas: for example, if f' is continuous on [a, b], then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Now, suppose that x and y are given parametrically, as x=f(t) and y=g(t). Then

$$L = \int_{\alpha}^{\beta} \sqrt{1 + \left(\frac{dy/dt}{dx/dt}\right)^2} \frac{dx}{dt} dt$$

where $\alpha = f^{-1}(a)$ and $\beta = f^{-1}(b)$. (Note: since f^{-1} must exist, x is travelling from left to right or from right to left, and doesn't stop; that is, $\frac{dx}{dt} \neq 0$).