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The current ‘standard model’ of cosmology posits an infinite flat
universe forever expanding under the pressure of dark energy.
First-year data from the Wilkinson Microwave Anisotropy Probe
(WMAP) confirm this model to spectacular precision on all but
the largest scales1,2. Temperature correlations across the micro-
wave sky match expectations on angular scales narrower than 608

but, contrary to predictions, vanish on scales wider than 608.
Several explanations have been proposed3,4. One natural
approach questions the underlying geometry of space—namely,
its curvature5 and topology6. In an infinite flat space, waves from
the Big Bang would fill the universe on all length scales. The
observed lack of temperature correlations on scales beyond 608

means that the broadest waves are missing, perhaps because
space itself is not big enough to support them. Here we present a
simple geometrical model of a finite space—the Poincaré dode-
cahedral space—which accounts for WMAP’s observations with
no fine-tuning required. The predicted density is Q0 < 1.013 > 1,
and the model also predicts temperature correlations in match-
ing circles on the sky7.

Temperature fluctuations on the microwave sky may be expressed
as a sum of spherical harmonics, just as music and other sounds may
be expressed as a sum of ordinary harmonics. A musical note is the
sum of a fundamental, a second harmonic, a third harmonic, and so
on. The relative strengths of the harmonics—the note’s spectrum—
determines the tone quality, distinguishing, say, a sustained middle
C played on a flute from the same note played on a clarinet.
Analogously, the temperature map on the microwave sky is the
sum of spherical harmonics. The relative strengths of the harmo-
nics—the power spectrum—is a signature of the physics and geo-
metry of the Universe. Indeed, the power spectrum is the primary
tool researchers use to test their models’ predictions against
observed reality.

The infinite universe model gets into trouble at the low end of the

power spectrum (Fig. 1). The lowest harmonic—the dipole, with
wavenumber l ¼ 1—is unobservable because the Doppler effect of
the Solar System’s motion through space creates a dipole 100 times
stronger, swamping out the underlying cosmological dipole. The
first observable harmonic is the quadrupole, with wavenumber
l ¼ 2. WMAP found a quadrupole only about one-seventh as strong
as would be expected in an infinite flat space. The probability that
this could happen by mere chance has been estimated at about 0.2%
(ref. 2). The octopole term, with wavenumber l ¼ 3, is also weak at
72% of the expected value, but not nearly so dramatic or significant
as the quadrupole. For large values of l, ranging up to l ¼ 900 and
corresponding to small-scale temperature fluctuations, the spec-
trum tracks the infinite universe predictions exceedingly well.

Cosmologists thus face the challenge of finding a model that
accounts for the weak quadrupole while maintaining the success of
the infinite flat universe model on small scales (high l). The weak
wide-angle temperature correlations discussed in the introductory
paragraph correspond directly to the weak quadrupole.

Microwave background temperature fluctuations arise primarily
(but not exclusively) from density fluctuations in the early Universe,
because photons travelling from denser regions do a little extra work
against gravity and therefore arrive cooler, while photons from less
dense regions do less work against gravity and arrive warmer. The
density fluctuations across space split into a sum of three-dimen-
sional harmonics—in effect, the vibrational overtones of space
itself—just as temperature fluctuations on the sky split into a sum
of two-dimensional spherical harmonics and a musical note splits
into a sum of one-dimensional harmonics. The low quadrupole
implies a cut-off on the wavelengths of the three-dimensional
harmonics. Such a cut-off presents an awkward problem in infinite
flat space, because it defines a preferred length scale in an otherwise
scale-invariant space. A more natural explanation invokes a finite
universe, where the size of space itself imposes a cut-off on the
wavelengths (Fig. 2). Just as the vibrations of a bell cannot be larger
than the bell itself, the density fluctuations in space cannot be larger
than space itself. Whereas most potential spatial topologies fail to fit
the WMAP results, the Poincaré dodecahedral space fits them very
well.

The Poincaré dodecahedral space is a dodecahedral block of space
with opposite faces abstractly glued together, so objects passing out
of the dodecahedron across any face return from the opposite face.
Light travels across the faces in the same way, so if we sit inside the

Figure 1 Comparison of the WMAP power spectrum to that of Poincaré dodecahedral

space and an infinite flat universe. At the low end of the power spectrum, WMAP’s results

(black bars) match the Poincaré dodecahedral space (light grey) better than they match

the expectations for an infinite flat universe (dark grey). Computed for Q m ¼ 0.28 and

Q L ¼ 0.734 with Poincaré space data normalized to the l ¼ 4 term.

Figure 2 Wavelengths of density fluctuations are limited by the size of a finite

‘wraparound’ universe. a, A two-dimensional creature living on the surface of a cylinder

travels due east, eventually going all the way around the cylinder and returning to her

starting point. b, If we cut the cylinder open and flatten it into a square, the creature’s path

goes out of the square’s right side and returns from the left side. c, A flat torus is like a

cylinder, only now the top and bottom sides connect as well as the left and right. d, Waves

in a torus universe may have wavelengths no longer than the width of the square itself. To

construct a multiconnected three-dimensional space, start with a solid polyhedron (for

example, a cube) and identify its faces in pairs, so that any object leaving the polyhedron

through one face returns from the matching face. Such a multiconnected space supports

standing waves whose exact shape depends on both the geometry of the polyhedron and

how the faces are identified. Nevertheless, the same principle applies, that the

wavelength cannot exceed the size of the polyhedron itself. In particular, the inhabitants of

such a space will observe a cut-off in the wavelengths of density fluctuations.
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dodecahedron and look outward across a face, our line of sight re-
enters the dodecahedron from the opposite face. We have the
illusion of looking into an adjacent copy of the dodecahedron. If
we take the original dodecahedral block of space not as a euclidean
dodecahedron (with edge angles ,1178) but as a spherical dodeca-
hedron (with edge angles exactly 1208), then adjacent images of the
dodecahedron fit together snugly to tile the hypersphere (Fig. 3b),
analogously to the way adjacent images of spherical pentagons (with
perfect 1208 angles) fit snugly to tile an ordinary sphere (Fig. 3a).

The power spectrum of the Poincaré dodecahedral space depends
strongly on the assumed mass-energy density parameter Q0 (Fig. 4).
The octopole term (l ¼ 3) matches WMAP’s octopole best when
1.010 , Q 0 , 1.014. Encouragingly, in the subinterval
1.012 , Q 0 , 1.014 the quadrupole (l ¼ 2) also matches the
WMAP value. More encouragingly still, this subinterval agrees
well with observations, falling comfortably within WMAP’s best-
fit range of Q0 ¼ 1.02 ^ 0.02 (ref. 1).

The excellent agreement with WMAP’s results is all the more
striking because the Poincaré dodecahedral space offers no free

parameters in its construction. The Poincaré space is rigid, meaning
that geometrical considerations require a completely regular dode-
cahedron. By contrast, a 3-torus, which is nominally made by gluing
opposite faces of a cube but may be freely deformed to any
parallelepiped, has six degrees of freedom in its geometrical con-
struction. Furthermore, the Poincaré space is globally homo-
geneous, meaning that its geometry—and therefore its power
spectrum—looks statistically the same to all observers within it.
By contrast, a typical finite space looks different to observers sitting
at different locations.

Confirmation of a positively curved universe (Q0 . 1) would
require revisions to current theories of inflation, but it is not certain
how severe those changes would be. Some researchers argue that
positive curvature would not disrupt the overall mechanism and
effects of inflation, but only limit the factor by which space expands
during the inflationary epoch to about a factor of ten8. Others claim
that such models require fine-tuning and are less natural than the
infinite flat space model9.

Having accounted for the weak observed quadrupole, the Poin-
caré dodecahedral space will face two more experimental tests in the
next few years. (1) The Cornish–Spergel–Starkman circles-in-the-
sky method7 predicts temperature correlations along matching
circles in small multiconnected spaces such as this one. When
Q0 < 1.013 the horizon radius is about 0.38 in units of the curvature
radius, while the dodecahedron’s inradius and outradius are 0.31
and 0.39, respectively, in the same units. In this case the horizon
sphere self-intersects in six pairs of circles of angular radius about
358, making the dodecahedral space a good candidate for circle
detection if technical problems (galactic foreground removal, inte-
grated Sachs–Wolfe effect, Doppler effect of plasma motion) can be
overcome. Indeed, the Poincaré dodecahedral space makes circle
searching easier than in the general case, because the six pairs of
matching circles must a priori lie in a symmetrical pattern like the
faces of a dodecahedron, thus allowing the searcher to slightly relax
the noise tolerances without increasing the danger of a false positive.
(2) The Poincaré dodecahedral space predicts Q0 < 1.013 . 1. The
upcoming Planck Surveyor data (or possibly even the existing
WMAP data in conjunction with other data sets) should determine
Q0 to within 1%. Finding Q0 , 1.01 would refute the Poincaré space
as a cosmological model, while Q0 . 1.01 would provide strong
evidence in its favour.

Figure 3 Spherical pentagons and dodecahedra fit snugly, unlike their euclidean

counterparts. a, 12 spherical pentagons tile the surface of an ordinary sphere. They fit

together snugly because their corner angles are exactly 1208. Note that each spherical

pentagon is just a pentagonal piece of a sphere. b, 120 spherical dodecahedra tile the

surface of a hypersphere. A hypersphere is the three-dimensional surface of a four-

dimensional ball. Note that each spherical dodecahedron is just a dodecahedral piece of a

hypersphere. The spherical dodecahedra fit together snugly because their edge angles

are exactly 1208. In the construction of the Poincaré dodecahedral space, the

dodecahedron’s 30 edges come together in ten groups of three edges each, forcing the

dihedral angles to be 1208 and requiring a spherical dodecahedron rather than a

euclidean one. Software for visualizing spherical dodecahedra and the Poincaré

dodecahedral space is available at khttp://www.geometrygames.org/CurvedSpacesl.

Figure 4 Values of the mass-energy density parameter Q 0 for which the Poincaré

dodecahedral space agrees with WMAP’s results. The Poincaré dodecahedral space

quadrupole (trace 2) and octopole (trace 4) fit the WMAP quadrupole (trace 1) and

octopole (trace 3) when 1.012 , Q 0 , 1.014. Larger values of Q 0 predict an

unrealistically weak octopole. To obtain these predicted values, we first computed the

eigenmodes of the Poincaré dodecahedral space using the ‘ghost method’ of ref. 10 with

two of the matrix generators computed in Appendix B of ref. 11, and then applied the

method of ref. 12, using Q m ¼ 0.28 and Q L ¼ Q0 2 0.28, to obtain a power spectrum

and to simulate sky maps. Numerical limitations restricted our set of three-dimensional

eigenmodes to wavenumbers k , 30, which in turn restricted the reliable portion of the

power spectrum to l ¼ 2, 3, 4. We set the overall normalization factor to match the WMAP

data at l ¼ 4 and then examined the predictions for l ¼ 2, 3.
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Since antiquity, humans have wondered whether our Universe is
finite or infinite. Now, after more than two millennia of speculation,
observational data might finally settle this ancient question. A
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Fermi-liquid theory1 (the standard model of metals) has been
challenged by the discovery of anomalous properties in an
increasingly large number of metals. The anomalies often occur
near a quantum critical point—a continuous phase transition in
the limit of absolute zero, typically between magnetically ordered
and paramagnetic phases. Although not understood in detail,
unusual behaviour in the vicinity of such quantum critical points
was anticipated nearly three decades ago by theories going
beyond the standard model2–5. Here we report electrical resis-
tivity measurements of the 3d metal MnSi, indicating an un-
expected breakdown of the Fermi-liquid model—not in a narrow
crossover region close to a quantum critical point6,7 where it is
normally expected to fail, but over a wide region of the phase
diagram near a first-order magnetic transition. In this regime,
corrections to the Fermi-liquid model are expected to be small.
The range in pressure, temperature and applied magnetic field
over which we observe an anomalous temperature dependence of
the electrical resistivity in MnSi is not consistent with the
crossover behaviour widely seen in quantum critical systems8,9,31.
This may suggest the emergence of a well defined but enigmatic
quantum phase of matter.

In the investigation of anomalous metallic properties, often
referred to as non-Fermi-liquid phenomena, complications of
various types may arise that can lead to ambiguous interpretations.
These can be related, for example, to band structure anomalies, to
magneto-crystalline anisotropies, to the effective dimensionality or
to disorder effects. In other materials, the emergence of supercon-
ductivity may make it difficult to probe the fundamental nature of
the normal state of the underlying electronic system. In order to
conclusively assess and clarify our ideas about non-Fermi-liquid
phenomena in metals, it is essential to study materials that fulfil the
desirable criteria of purity, simplicity and convenience. The itiner-
ant-electron ferromagnet MnSi appears to be one such example10.
Under ambient conditions of pressure and applied magnetic field,
MnSi orders ferromagnetically with a small average moment of up
to 0.4 mB per Mn atom (where mB is the Bohr magneton) and a Curie
temperature TC of 29.5 K (ref. 11). At low temperatures, it exhibits
properties consistent with the formation of a weakly spin-polarized
Fermi liquid dominated by moderately renormalized 3d bands.
With its full three-dimensional cubic crystal structure, the elec-
tronic and magnetic properties of MnSi are essentially isotropic,
except for the effects of a well-understood long-wavelength helical
twist of the ferromagnetic order characteristic of crystalline struc-
tures lacking inversion symmetry—such as the B20 lattice of MnSi
(ref. 12).

The possibility of producing ultra-pure single crystals of MnSi
with a disorder mean free path in excess of 5,000 Å (as confirmed by

 

 

Figure 1 Dependence on temperature of the electrical resistivity of MnSi. The

temperature-dependent part Dr of the resistivity above the residual resistivity

r 0 ¼ 0.17 mQ cm is plotted for different conditions of pressure. a, Dr on a quadratic

temperature scale up to about 12 K and for pressures below the critical pressure, that is,

in the ferromagnetic phase. As the Curie temperature is suppressed with pressure, the

quadratic regime is observed only below about 6 K at 11.3 kbar. Inset, the cubic unit cell of

the B20 lattice of MnSi. b, Dr on a scale of T 3/2 up to about 6 K and for pressures above

the critical pressure, that is, in the paramagnetic phase. From top to bottom, the pressures

are 15.0, 18.1, 19.6, 25.3 and 27.5 kbar. The clear departure from a quadratic behaviour

is shown in the inset for 15.0, 19.6 and 27.5 kbar.
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