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1.  INTRODUCTION

The match/mismatch hypothesis (MMH) seeks to ex-
plain recruitment variation in a population by means of
the relation between its phenology — the timing of sea-
sonal activities such as flowering or breeding — and
that of species at the immediate lower level. The hy-
pothesis states that if the most energy expensive part of
the breeding phenology of the higher level (i.e. the
predator) occurs at the same time as the peak availabil-

ity of the lower level (i.e. the prey), then recruitment
will be high: the requirement of the predator matches
the availability of resources provided by the prey spe-
cies. If there is a mismatch between food requirement
and food availability, then survival and thus recruit-
ment will be low (see Fig. 1a). In the following we use
‘predator’ and ‘prey’ in the broadest sense of the words,
including for instance grazers as predators and vegeta-
tion as prey. The concept of match/mismatch stems
from fisheries biology. In 1914, Johan Hjort adopted the
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concept that understanding cod and other fishes’ sur-
vival at early stages is critical (the Critical Period Hy-
pothesis, Hjort 1914). Hjort’s hypothesis postulates that
variations in year-class strength mainly resulted from
changes in the availability of planktonic food for fish
larvae after exhaustion of their yolk supply. The first
few days after the yolk sack is consumed — as the fish
larvae change from internal to external feeding — is
critical, and involves high mortality. David Cushing,
who coineed the term ‘match/mismatch’, expanded on

this idea. Because many fish populations in temperate
waters spawn at fixed times while the timing of the
spring bloom varies according to physical environ-
mental conditions, variability in timing of the peak pro-
duction of zooplankton prey leads to variability in larval
mortality (Cushing 1969, 1990). Variability in mortality
may be imposed both because of the vulnerability of
first-feeding larvae to starvation or owing to the fact
that poorly fed larvae grow slowly and are more sus-
ceptible to predation. Since larval mortality is expected
to be higher than that at later stages, the larval
stage may be the principal determinant of year-class
strength (Mertz & Myers 1994).

The MMH has been much debated among fisheries
biologists. It is not easy to demonstrate in the field and
several authors have criticized it (Leggett & DeBlois
1994, Wooton 1998), arguing that a poor match yields
poor year classes, while a good match may yield both
good and poor year classes, depending on other fac-
tors. A number of different hypotheses have been put
forward describing mechanisms linking the environ-
ment to fish recruitment through survival and growth
during early life stages (Table 1). The member/vagrant
hypothesis underlines the role of advective losses of
eggs and larvae from favourable shelf or bank areas
(Sinclair 1988, Sinclair & Iles 1989), while the migra-
tion triangle hypothesis describes how fish must mi-
grate between spatially separate adult feeding grounds,
spawning grounds and nursery areas (Harden-Jones
1968). The match/mismatch and migration triangle
principles were somewhat more recently united to
form the hydrographic containment hypothesis (Cush-
ing 1995).

Even though the MMH has been contested during
the last decades, the importance of trophic/temporal
control on larval survival has been supported by sev-
eral studies (Ellertsen et al. 1989, Fortier et al. 1995,
Beaugrand et al. 2003). Recent work by Brander et al.
(2001) tested the hypothesis by examining the relation-
ship between modelled production of chlorophyll and
copepod eggs, driven by meteorological forcing and
cod recruitment. They concluded that the interannual
variability in Calanus spp. egg production did have a
significant effect on cod recruitment in the Irish Sea
and around Iceland. The MMH implies that the effect
of a highly variable timing of the production peak
of planktonic prey will be counteracted by the fish
spreading its spawning effort over a broad temporal
window (Mertz & Myers 1994). This was tested by
Mertz & Myers (1994) who developed a simple larval
food supply model and applied it to 11 stocks of
Atlantic cod Gadus morhua. They found support for
MMH in the form of a negative correlation between
the width of the spawning window and the coefficient
of variation (CV) of recruitment.
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Fig. 1. The match/mismatch hypothesis (MMH). (a) Interaction
between 2 trophic levels explained by the MMH. A high
match is represented by a temporal overlap of the predator
and its prey. An increase in time-lag (t0) between 2 population
peaks (m1, m2; mean peak time for Population 1 and 2, respec-
tively) leads to a low match. Adapted from Cushing (1990). (b)
Example of mismatch induced by climate change. The envi-
ronmental cues (dashed line), triggering onset of egg laying,
change in asynchrony to the environmental conditions prevail-
ing when chicks are reared and when birds’ energetic
demands are highest, as shown for the great tit (Visser et al. 

1998). Corrected from Stenseth & Mysterud (2002)
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The consequences of match or mismatch for any
given population may be highly dependent on its
genetic and age structure. If the ‘population’ in ques-
tion consists of independent subpopulations, then a
total mismatch that wipes out the year class completely
is unlikely because, for this to occur, all the subpop-
ulations then would have to fail (Neill et al. 1994). In
the case of many commercially exploited fish stocks,
fisheries-induced selection pressure has decreased
the genetic and age variation, which often leads to
spawning becoming more restricted in time and space,

thus increasing the risk for a total year class failure
(Ottersen et al. 2006).

Originally, the MMH suggested that only the vari-
ability of plankton phenology matters because the tim-
ing of fish spawning is constant. However, in some fish
stocks e.g. Georges Bank haddock (Head et al. 2005),
spawning time varies depending on environmental
conditions and thus is not consistent with the first tenet
of the MMH. However, one can argue that the most
important factor is the absolute time lag between the
peak of prey production and the peak of predator
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Hypothesis Physical features Biological features

Stable ocean Water column stability through weak Larval feeding success linked to layers with high
(Lasker 1975) local wind stress resulting in concentration of prey items

reduced turbulent mixing

Encounter rate Small-scale turbulent mixing by Larval feeding success linked to enhanced contact
(Rothschild & Osborn wind and tide rate with zooplankton prey
1988, Sundby &
Fossum 1990)

Member/vagrant Retentive hydrographic structures Limited dispersal of early life-history stages from
(Sinclair & Iles 1989) (e.g. gyres, tidally energetic regions) favourable distributional area (shelf, bank)

Migration triangle Residual currents Spatially separate adult feeding grounds, spawning
(Harden-Jones 1968) grounds and nursery areas between which fish

must migrate

Hydrographic containment Residual currents and seasonal Spatially separate adult feeding grounds, spawning
(migration triangle and vertical stratification grounds and nursery areas between which fish
match/mismatch) must migrate, and temporal overlap between fish
(Cushing 1995) larvae and zooplankton prey

Optimal environmental Windiness, turbulence Dome-shaped wind-recruitment relation resulting
window (Cury & Roy 1989) upwelling intensity from trade-off between food production (limiting

factor when winds weak) and turbulence (limiting
factor when winds strong) in determining larval
feeding success in areas with Ekman-type upwelling

Ocean triad (1) Enrichment processes: Upwelling, More nutrients made available to biological
(Bakun 1996) mixing, cyclonic wind stress curl productivity

(Ekman divergence), cyclonic
eddy formation

Ocean triad (2) Concentration processes: Convergent Enhanced food availability for a predator through
(Bakun 1996) frontal formation, anticyclonic wind increased concentration of food particles,

stress curl (Ekman convergence), ‘encounter-rate’ increases/decreases as a result of
lack of dispersion by turbulent- variability in micro-scale turbulence
mixing processes

Ocean triad (3) Retention processes: Lack of offshore Contribute towards keeping individual members of
(Bakun 1996) transport in (1) Ekman field (near- a population in the appropriate place during the

surface and superficial layers), various parts of the life cycle
(2) geostrophic current (intermediate 
layers), and (3) offshore dispersion
of eddy-like features (filaments) on 
the mesoscale; availability of 
enclosed gyral circulations, stability 
of current patterns to which life 
cycles are adapted

Oscillating control Timing of sea-ice retreat and water Relates decadal-scale changes in climate to alternation
(Hunt et al. 2002) temperatures during spring bloom in between bottom-up and top-down control of large,

high-latitude seas piscivorous fish recruitment in high-latitude seas

Table 1. Alternative hypotheses to explain the impacts of physical environment on early life stages of fish
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requirement, and then even the variability in the
reproduction of stocks such as Georges Bank haddock
can be explained by the MMH.

The MMH started with a simple question: why do
some fish year classes fail? Similar questions have
been posed for non-marine environments. In birds, for
example, the ‘timing in relation to prey hypothesis’
(references in Nilsson 1999) states that in seasonal
environments where the availability of prey follows
a bell-shaped temporal distribution of short duration,
birds must synchronize their breeding with season-
ally fluctuating prey populations. This hypothesis,
supported by several studies (references in Nilsson
1999), is more or less synonymous with Cushing’s
(1969) MMH.

Although the MMH is generally applicable, it is dif-
ficult to test. However, a few studies have attempted to
test the hypothesis experimentally. For instance, Got-
ceitas et al. (1996) investigated the MMH by exposing
Atlantic cod larvae to 1 of 5 different food treatments
(Fig. 2), mimicking the different mismatch possibilities.
In short, their results suggest that a mismatch and its
timing can significantly influence growth and survival
of cod larvae. Also, in birds, some experiments show
the usefulness of the MMH to describe reproductive
variation. For example, Nooker et al. (2005) artificially
delayed the laying (i.e. increased the degree of mis-
match) in tree swallows Tachycineta bicolor, resulting
in a decrease in reproductive success.

2.  TEMPORAL MATCHING AND CLIMATE
CHANGE

Global air and sea surface trends experienced
during the past century (increases of between 0.4
and 0.8°C) are expected to accelerate in the current
century (IPCC 2001, 2007), modifying the phenology
of many organisms (e.g. Wuethrich 2000). This em-

phasizes the utility of simple hypotheses such as the
MMH, which has been used in several studies address-
ing the effect of climate change on trophic interactions
between predator and prey in fish-plankton (Cushing
1990, Ottersen et al. 2001, Beaugrand et al. 2003),
insect-plant (Visser & Holleman 2001) and bird-insect
interactions (Thomas et al. 2001, Winkler et al. 2002,
Sanz et al. 2003, Visser et al. 2003).

2.1.  Phenology, synchrony and reproduction

Climate change affects the relative timing of food
requirement and food availability for various organ-
isms and by doing so influences their reproduction and
survival. Reproduction and survival of a predator de-
pend on its ability to encounter and eat a sufficient
quantity of suitable prey to avoid starvation. Differ-
ences in the temporal and spatial match between
predator and prey thus generate variability in predator
survival rates, including interannual variability. Stud-
ies of phenology provide some of the strongest evi-
dence for the effects of climate change on organisms
(Hughes 2000, Ottersen et al. 2001, Stenseth et al.
2002, Walther et al. 2002, Parmesan & Yohe 2003, Root
et al. 2003, Dunn 2004). In a survey of 677 species of
plants and animals, 62% showed trends toward earlier
phenology consistent with a warming climate (Parme-
san & Yohe 2003). A pertinent question is whether
predator populations have shifted their reproductive
timing sufficiently to match the shift of timing of their
main prey species? If not, a mismatch in phenology
will arise and the consequences may be severe, in-
cluding biodiversity loss (Stenseth & Mysterud 2002,
Visser et al. 2004).

If we accept the premise that predators have
adapted their phenology to the current climate, climate
change can be expected to weaken the synchroniza-
tion between food availability and the food require-

ments for the average predator indi-
vidual (Visser et al. 2004). This effect
can be addressed in a MMH frame-
work. In the literature there are sev-
eral studies that illustrate the climatic
disruption of the synchrony between
predator and prey, i.e. passing from a
pattern of match to one of mismatch.
For example, warmer springs disrupt
the otherwise tight and well-known
synchrony of oak bud burst Quercus
robur and winter moth Operophtera
brumata egg hatch (Visser & Holleman
2001). In the recent warm springs, the
winter moth eggs have been hatching
up to 3 wk before oak bud burst.
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Fig. 2. Experimental example of match/mismatch. Different feeding conditions
produce different Atlantic cod larval survival rates (Gotceitas et al. 1996)
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Because newly hatched moths can only survive a few
days without food, this will lead to higher mortality and
lower reproductive success.

Rising sea temperatures are affecting the recruit-
ment in bivalves, such as Macoma balthica (Philippart
et al. 2003), by advancing their spawning and thus cre-
ating a mismatch with the light-dependent phyto-
plankton bloom. Philippart et al.’s (2003) study (which
is one of the few studies on the mechanistic effect of
the MMH on a population) shows that the mortality of
M. balthica juveniles has become increasingly density-
dependent as the degree of mismatch has increased.

Rutberg (1987) suggested that birth timing and syn-
chrony, as an adaptation to climatic seasonality, should
result from the use of cues by animals that can be
reliably used to predict future nutritional and weather
conditions. As an example, interannual variation in
plant phenology induced by e.g. climatic variability
has the potential to cause variation in the timing of
parturition within populations of caribou (Post & Sten-
seth 1999, Post et al. 2003). However, because migra-
tory animals initiate their breeding migration when at
the wintering sites, they therefore cannot rely on con-
ditions at the breeding location but must use more
global cues. Migratory birds normally arrive at their
breeding grounds only shortly before they start
breeding, which constrains their ability to anticipate
the advancement of their food sources. A disjunction
between local and more global cues could pose prob-
lems as the asynchrony grows.

Indeed, temperatures (or other weather variables)
have not just simply increased with global warming.
For example, temperatures change more in some sea-
sons than in others, and differently at different loca-
tions (e.g. wintering versus breeding area) (Visser et
al. 1998, Inouye et al. 2000, Walther et al. 2002). This
means that climate change affects the cues used (the
environment of decision making) differently from the
environmental variables that affect the timing of
favourable conditions (the environment of breeding).
This could have a strong effect on the reproduction of
migratory birds. For example, with global warming,
the American robin Turdus migratorius is arriving ear-
lier at breeding sites in the high-latitude Colorado
Rocky Mountains. Because high- and low-latitude
areas are not responding similarly to climate change,
robins must now wait longer (18 d delay over 19 yr) for
snowfree ground to appear before they can reproduce
(Inouye et al. 2000). Although they can seek food at
lower elevations while waiting for the snow to melt,
resources may be limited here also, and there may
therefore come a point when these birds have insuffi-
cient food at this time of year.

Many bird species in the UK have advanced their
date of egg laying over the past 25 yr (Crick et al.

1997). This pattern is confirmed by long-term studies
of a few bird populations (Winkel & Hudde 1997,
McCleery & Perrins 1998). However, this is not the
case for all bird species. For example, while vegetation
phenology and caterpillar burst has advanced in the
Netherlands over the past decades, the date of egg
laying, i.e. hatching, in a great tit Parus major popula-
tion has not (Visser et al. 1998). In this example, cli-
matic change has caused an overall reduction in fitness
by increasing the degree of mismatch (Fig. 1b; see also
Buse et al. 1999 for the relationship between the winter
moth Operophtera brumata L. and the tits Parus major
L. and P. caeruleus L.).

In general, 2 important requirements must be met in
order to apply the MMH. Firstly, both predators and
prey must present a certain degree of seasonality
(e.g. Durant et al. 2005). Secondly, the MMH assumes
that the recruitment or survival of predators is limited
by their access to prey, i.e. bottom-up control (Cury et
al. 2003). In practice, there are many cases where one
or both of these assumptions fail. For instance, the
survival of Soay sheep lambs Ovies ovies L. was not
affected by a temporal mismatch between vegetation
peak and average birth date (Durant et al. 2005)
because the island where the studied population lives
is only weakly seasonal, and vegetation is available
all year round (though its quality does vary sub-
stantially; Crawley et al. 2004). Furthermore, many
species may be limited more by predation, i.e. top-
down control. For example, some fish are limited by
cannibalism under certain environmental conditions
(e.g. walleye pollock; Wespestad et al. 2000, Hunt
et al. 2002). Another example is the synchrony or
asynchrony between vegetation and birth date of
African ungulates, which seems to result more from
antipredator adaptations than a resource match (Sin-
clair et al. 2000).

2.2.  Timing and latitude

Timing of reproduction in temperate-zone birds is
affected by a whole range of cues (Wingfield et al.
1992). The onset of breeding in many temperate-zone
species is timed to maximize reproductive success in
the face of variable environmental conditions. Among
the environmental cues that regulate gonadal devel-
opment and reproductive function, photoperiod is the
main initial predictive factor that opens the reproduc-
tive window (time period during which reproduction is
possible, as apparent in gonadal activation; Silverin et
al. 1993, Wingfield 1993, Gwinner 1996). The strong de-
pendence of bird reproduction on photoperiod, which
is invariable for a particular latitude, makes them less
plastic to environmental change than other species
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whose reproduction depends on e.g. temperature (see
section 2, above, for examples of mismatch between
the peaks of abundance of birds and caterpillars).

Seabirds require many resources to produce eggs,
and the quality of the eggs produced may affect the
survival of chicks (Carey 1996). Obtaining resources
for egg production may be particularly difficult when
the duration of the breeding season is constrained
(Perrins 1996), implying that birds must obtain the nec-
essary resources by a certain date. Consequently, the
timing of breeding itself is often dependent upon food
availability, meaning that laying date is (by-and-large)
correlated with the natural changes in food resources
(Meijer & Drent 1999).

The MMH may be extended to include latitude, thus
better covering bird migration changes owing to cli-
mate. The earlier onset of spring has consequences for
the timing of breeding in birds, which have evolved to
match peak food availability (Lack 1968, Visser et al.
2004, Jonzén et al. 2006). We may therefore expect the
timing of breeding to track any temporal shift in food
availability caused by a trend in spring temperature
(Dunn 2004). Most passerine birds breeding in temper-
ate areas of the Northern Hemisphere are seasonal
migrants, and the timing of migration ultimately con-
strains when breeding can begin (Both & Visser 2001,
Both et al. 2006). However, short-distance migrants
that spend the winter close to the breeding grounds
may be able to adjust the timing of migration in
response to local climate change, which will be corre-
lated with the conditions on the breeding grounds.

3.  EXPANDING THE MATCH/MISMATCH 
CONCEPT

The food availability for an organism is a complex
feature that encompasses both quantity and accessibil-
ity of the food resource considered. The MMH essen-
tially deals with accessibility — temporally and spa-
tially. However, we can expect that the relationship
described by MMH may vary among years depending
on the productivity of the lower trophic level and
the spatial change.

3.1.  The role of abundance

Cushing (1982) indicated that the MMH will be mod-
ified by food abundance: ‘The production of fish larvae
in time should be matched or mismatched to that of
their food. If matched, recruitment would be high
within the limits of variation of the primary production.
If mismatched, recruitment will be low — more so if
primary production is low, but less so if it is high’. Since

then several studies developed the hypothesis without
formally stating it, e.g. Beaugrand et al. (2003).

Gotceitas el al. (1996) stressed the importance of
abundance when mimicking the MMH in the labora-
tory by changing the pattern of food provisioning
(high-low, low-high, low, high food supply) to cod lar-
vae (see Fig. 2a). Durant et al. (2005) explored the
recruitment-match/mismatch relationship in relation
to food abundance. They found that the change in
abundance of predator/prey can disrupt or amplify the
phenomenon described by the MMH (Fig. 3). In other
words, they found that the temporal synchrony and the
food abundance:food requirement ratio should be
considered conjointly when exploring the match/
mismatch relationship. Both studies address the topic
of climate change. While global warming may disrupt
the trophic synchrony (the MMH) between predator
and prey, it may at the same time increase the primary
productivity. As shown by Durant et al. (2005), this
increase in food abundance may compensate for the
increase in asynchrony. The ability to separate the
effect of a within-season temporal shift of trophic syn-
chrony (the MMH) from an annual component linked
to total food abundance on recruitment will improve
our ability to predict whether trophic cascades owing
to climate change are likely.

3.2.  Spatial match/mismatch hypothesis

Although the MMH was initially developed for a sit-
uation where temporal variability was the principal
concern, factors influencing reproductive success and
population dynamics vary in space as well as in time
(Chick & Van Den Avyle 1999). Conceptually, we can
suppose that the increase in distance between preda-
tor and prey has the same effect as an increase in tem-
poral mismatch. Indeed, an increase in the distance
between a predator and their prey will decrease the
relative abundance of the latter by reducing overlap.
Likewise, for central-place foragers such as seabirds
(fixed to 1 place for breeding and radiating from it to
forage) an increased distance to the foraging zone
decreases the food availability owing to an increase in
travel time, even though prey abundance is not
changed.

Climate affects the transport processes that in turn
influence prey dispersal and recruitment. In other
words, climate change will affect the relative location
of the coupled predator-prey and increase the degree
of spatial mismatch. For instance, striped bass Morone
saxatilis is an anadromous species with freshwater
larvae that feed on zooplankton. In order for the larvae
to grow optimally, they require a good quality of
zooplankton, which varies depending on the location
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(river, lake). Larval striped bass have a greater proba-
bility of being matched to suitable prey resources if
transported to lentic rather than to riverine or transi-
tional habitats (Chick & Van Den Avyle 1999). Spawn-
ing location, stream flow, and temperature affect larval
transport to lentic habitats (spatial match) and all 3 are
affected by climate change.

The same phenomenon can be seen in marine sys-
tems, e.g. in seabird-fish relationships. During the
breeding season, seabirds are typical central-place for-
agers, tied to a breeding site on land and foraging for
marine resources. Seabirds must regularly make forag-
ing trips of hundreds or thousands of kilometres within
a period of days (references in Durant et al. 2004a).
The distance between the breeding grounds on land
and the feeding zones at sea is a major constraint on
seabird breeding and can be affected by climate
(Weimerskirch & Cherel 1998). For example, the main
prey of breeding Atlantic puffins Fratercula arctica
nesting along the Norwegian coast is the Norwegian
spring-spawning (NSS) herring Clupea harengus
(Durant et al. 2003). This herring stock spawns at vari-
ous locations along the Norwegian coast (Sætre et al.
2002) and its larvae drift northwards with the Norwe-
gian coastal current toward the Barents Sea (Drage-
sund 1970). This current splits into 2 branches at about
63° 30’ N: an outer minor branch that follows the conti-
nental shelf break, and an inner major branch (Sætre
1999). In addition, the speed of the northward drift
varies among years (Sætre et al. 2002). Hence, the drift
pattern of the herring larvae varies from year to year
(Sætre 1999), bringing them closer or further away
from the foraging ground of the breeding puffins
(Durant et al. 2003, 2005) and thus creating a spatial
match or mismatch situation between the puffins and
their main prey. In the long-term perspective, climate
change is expected to increase the water temperature
in the Norwegian Sea (Hassol 2004), and species distri-
butions are predicted to shift to the north (Beaugrand
et al. 2002, Hassol 2004) with subsequent effects on sea-
bird populations. This change is already known to have
occurred for the Norwegian spring-spawning herring,
whose spawning grounds have shifted northwards
during the last century (Devold 1963, Holst et al. 2002).

Spatial match/mismatch is important for egg and lar-
val survival of marine fish. The sea is 3-dimensional
and resource distribution must be considered as such.
For example, the spawning sites for cod in the central
and eastern Baltic Sea are located in several deep
basins. Successful egg development in these basins
depends on physical conditions, especially oxygen
content, meaning that the suitable body of water dif-
fers among basins and years (MacKenzie et al. 2000).
This is suggesting that the spawning stock may some-
times be distributed suboptimally among basins. Also,
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cod eggs in parts of the area (the Bornholm basin) suf-
fer from high predation from clupeids (especially sprat
Sprattus sprattus), depending on the vertical overlap
between predator and prey. This overlap depends on
the presence of certain hydrographic conditions: in
periods of water stagnation, clupeids stay higher in the
water column to avoid the anoxic bottom layer, over-
lapping more with cod eggs (Köster et al. 2005). (In this
example, the ‘resource’ from the cod’s viewpoint is
predator-free space.) A spatial MMH is also relevant
for fish larvae, because both spatial and temporal dis-
tribution varies greatly for zooplankton (e.g. Betsill &
Van Den Avyle 1997, Chick & Van Den Avyle 1999).

For seabirds, one must add depth to horizontal distri-
bution of prey when studying the effect of distance to
the nest. As an example, telemetric studies showed
that the King Penguin Aptenodytes patagonica prefers
to exploit the polar front located 340 to 450 km to the
south of their breeding site, and dive to the depth of
the thermocline where prey is concentrated (Char-
rassin & Bost 2001). Climate affects the position of both
the polar front and the depth of the thermocline, thus
changing the distance to the foraging ground for the
penguin. When this distance is increased, it creates
a mismatch situation with negative impact on the
penguins’ reproductive success.

The spatial overlap between resources and predator
is thus a crucial element of successful reproduction,
and represents a very important new area of research.
Recently, a lot of attention has been given to the topics
of water mass advection (e.g. Sundby 2000), spatial
variation in survival (e.g. Ciannelli et al. 2007) and
bird migration (e.g. Jonzén 2006) in relation to climate.
These studies may be the starting point from which to
study the impact of spatial distribution of resources
on recruitment (see e.g. Ciannelli & Bailey 2005).

3.3.  An ecosystem approach

The MMH may be at play not only between tertiary
and secondary producers, like first-feeding fish larvae
and zooplankton nauplii, but also between other
neighbouring trophic levels. In pelagic ecosystems,
algae-zooplankton interactions form the basis for
energy flux to higher trophic levels (Platt et al. 2003).
In temperate marine environments, the recruitment
success of higher trophic levels is highly dependent on
synchronization with pulsed planktonic production
(Edwards & Richardson 2004). Thus, a decoupling of
such adapted predator-prey relationship, for instance
owing to climate change, is likely to be transmitted
upwards to all trophic levels, possibly causing drastic
ecological consequences (Winder & Schindler 2004).
Such climate-induced changes have taken place in

the North Sea (Edwards & Richardson 2004). The re-
sponses were found to differ throughout the seasonal
cycle and among species within the same functional
group, leading to increasing levels of mismatch as the
synchrony of peak production between successive
trophic levels began to decay. Similar disruptions in
the trophic linkages were found in the completely dif-
ferent environment of Lake Washington (USA). Here, a
long-term decline in the keystone herbivorous Daph-
nia pulicaria populations has been associated with an
expanding temporal mismatch with the spring diatom
bloom that has advanced by more than 20 d since 1962
owing to climate change (Winder & Schindler 2004). In
an Arctic marine environment, the timing of the ice
retreat affects the phytoplankton bloom both in time
and space (Hunt et al. 2002). In some years the bloom
occurs early in cold waters, and in other years late in
warmer waters. Zooplankton, the main food resource
for many pelagic fish species, is spatially coupled to
phytoplankton and affected by sea temperature. Con-
sequently, fish productivity and to some extent pisciv-
orous marine birds (Croxall et al. 2000) and mammals
are expected to depend on the timing of ice retreat.

Top predators depend on their prey, which in turn
depend on a lower trophic level such as plankton. If we
consider the whole trophic chain instead of only one
predator and its prey, we can obtain a better picture of
the ecosystem functioning and the MMH effect on it. A
recent study on seabirds showed that the timing of
reproduction of the Atlantic puffin is adjusted to food
abundance and climate variability (Durant et al.
2004b), and that this timing to some extent affects the
reproductive success (Durant et al. 2005). Durant et al.
(2005) described a very simple pattern by focusing
mainly on the puffin and its prey. However, the scope
can be broadened (Fig. 4) by adding a lower trophic
component: i.e. the plankton. The NSS herring that
forms the principal prey for Røst puffins is the same
population used by Cushing (1990) to test his MMH.
We are now in the position to explain the herring
abundance by either match or mismatch with the
plankton on the Norwegian coast and thus complete
the pattern (Fig. 4). Indeed, when looking at relation-
ships between climate and breeding, Durant et al.
(2006) showed that the main climate effect on puffin
reproduction is detected at the level of the herring-
plankton relationship.

4.  DISCUSSION AND CONCLUSIONS

The MMH was developed to explain recruitment
variation in fish. It is therefore not surprising that
the MMH has been applied most often to marine sys-
tems, whatever the levels of the trophic chain con-
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sidered. In this review we summarized examples of
MMH between phytoplankton-zooplankton, plankton-
bivalve, and plankton-fish. In terrestrial systems the
best examples of MMH are found among birds. Indeed,
an abundant literature can been found on the subject,
especially in relation to climate change. In contrast,
there is to our knowledge no such thing as a mach-mis-
match effect in, for example, lizards. Being typical gen-
eralists in what they eat, lizards do not depend on the
peak of 1 prey resource. For lizards, the ambient tem-
perature can be more significant than synchrony with 1
food resource for determining reproduction and per-
forming other activities (i.e. in order to maintain body
temperatures above the threshold required for repro-
duction). In mammals, the use of MMH is even more
difficult. Mammalian females usually accumulate body
reserves in preparation for winter. Immediately after
birth, the survival of the young partly depends on
energy from lactation. It is then through the mother,
and her use of body reserves and/or access to food, that
the environment affects the survival of the young. This
will create a buffer and make it very difficult to detect a
MMH pattern. However, the situation after weaning
may lead to match or mismatch. For example, pin-
nipeds are central-place foragers during breeding, and
post-weaning survival will depend on the food re-
sources close to the natal rookery (Rutishauser et al.
2004). Indeed, the body reserves accumulated during
the lactation period must serve both for thermoregula-
tion and energy supply until first feeding.

Table 1 summarizes alternative hypotheses to ex-
plain, for the marine environment, how physical pro-
cesses may determine the availability of food for the
growth/development/survival needs of a predator.
However, for terrestrial systems such a summary seems
more difficult. Before weaning/fledging, both terres-
trial and marine young mammals and birds are gener-
ally not free-ranging and depend on parental care.
Food availability is thus never due directly to the
increase of the chance meeting with food, as described
by e.g. the encounter-rate hypothesis. However, most of
the hypotheses described in Table 1 can still be applied.
For example, seabirds are known to concentrate their
foraging in oceanic fronts (Hunt 1990, Schneider 1990)
at the boundaries of water masses, ice edges and cur-
rents, which interact with bathymetry and may all con-
centrate prey. This is not very different from the ocean
triad hypothesis described by Bakun (1996).

As seen from the examples above, it is clear that the
degree of both temporal and spatial overlap between
the seasonal peak of predator and prey production is
crucial for the recruitment of the predator. Table 2 sum-
marizes the climate variables affecting the timing of
predator and prey for some predator-prey couplings,
and shows that the mismatch pattern results from
predator and prey having different responses to the
environment. In all cases of decoupling following cli-
mate change, the timing of predator and prey were not
affected by the same climatic variable. In cases when
the synchrony was maintained, both predator and prey
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Fig. 4. Ecosytem match/mismatch. The relationship between herring and plankton follows a match/mismatch pattern. While
the timing between reproduction of puffin at Røst and that of herring can match, plankton may have been a limiting factor for
herring reproduction at the spawning area. Adding 1 trophic level adds complexity to the system (see Fig. 3). In other words, an 

observed mismatch situation can be the result of another at a lower trophic level
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timing were following the same environmental vari-
able. In other words, the MMH will apply only to pre-
dator-prey pairs that rely on different environmental
cues for their phenology. Where the MMH applies, the
predator reproduction timing was constant, i.e. depen-
dent on environmental variables that do not change
among years (i.e. photoperiod). As a consequence, their
reproduction was fixed in time and only the prey timing
fluctuated in relation to the predator’s optimal window.

In addition to synchrony in time, food abundance plays
a major role in terms of both a quantity effect and an
increase in the encounter rate (Durant et al. 2005).
Absolute prey abundance can disrupt or amplify the
phenomenon described by the MMH. This can lead to
situations when there is a match in time and space but
the predator reproduction is unsuccessful owing to lack
of food, and to mismatch situations where the predator
reproduction is nevertheless good. The latter situation is
likely to become frequent in the near future because
global warming will in many cases increase both the oc-
currence rate of temporal mismatch and overall primary
production, hence food abundance. In contrast, we may
expect that with regard to spatial overlap (or lack of it)
between predator and prey, there is a threshold under
which the recruitment, even during periods of temporal
match, can be greatly reduced (Durant et al. 2005).

Increasingly, evidence shows that climate change is
leading to differential changes in the breeding dates
and timing of maximum food abundance. The breed-
ing date may be too late (e.g. Visser et al. 2004) or too
early (Cresswell & McCleery 2003) for the young
predator to make optimal use of the food peak. In the
future, we need to examine whether the disruption of

synchrony between predator and prey owing to cli-
mate change will be maintained. This depends on the
capacity of the species to adjust their phenology to cli-
mate change and — in the long run — on natural selec-
tion of the predator, leading to a reduction in the
degree of mismatch through changes at the population
level. We also need to know more about the conse-
quences of changes in phenology and how much the
decoupling of the predator-prey relationship is/will be
transmitted to all trophic levels. For example, severe
winters are decoupling the larvae of the crab Carcinus
maenas from its bivalve prey. This mismatch situation
for the crab accounts for enhanced bivalve recruitment
following severe winters in the coastal North Sea
(Strasser & Günther 2001). Likewise, the long-term
decline in the keystone herbivorous populations in
Lake Washington associated with an expanding tem-
poral mismatch (Winder & Schindler 2004) will cer-
tainly have crucial effects on the ecosystem.

Finally, as a consequence of climate change, in the
future we must get used to a world where our hard-
acquired knowledge on ecosystem and trophic inter-
actions — the result of years of study on a system — is
no longer accurate, or at least not reliably so.

It is important to realize that climate change will, in
any given location, affect different species — and dif-
ferent trophic levels — differently: this is the domain of
the traditional MMH. Climate change will also affect
the spatial distribution of different species differently:
this is the domain of the spatial analogue of the MMH
as presented in this review. We are convinced that the
MMH will help us to focus our ideas and observations
in relation to climate change.
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Predator–prey Variable affecting timing Source
Predator Prey

American robin–earthworm Temperature Temperature Inouye et al. (2000)
Bivalve–phytoplankton Temperature Photoperiod Philippart et al. (2003)
Cod–copepod Constant Temperature Beaugrand et al. (2003), Ottersen et al. (2006)
Fish–plankton Constant Wind, mixing etc. Cushing (1990)
Flycatcher–caterpillar Endogenous Temperature Both & Visser (2001), Sanz et al. (2003),

rhythm Both et al. (2006)
Haddock–phytoplankton Broad-scale Photoperiod Platt et al. (2003)

environmental
pressure

Threadfin shad–zooplankton Wide hatching Temperature Betsill & Van Den Avyle (1997)
Tit-caterpillar winter moth Selection pressure Temperature Visser et al. (1998), Buse et al. (1999),

Thomas et al. (2001), Visser et al. (2003)
Winter moth–oak Extreme temperature Temperature Visser & Holleman (2001)
Zooplankton–phytoplankton Temperature Photoperiod Edwards & Richardson (2004)
Caribou–vegetation General weather Snowmelt Post et al. (2003)
Daphnia–diatom Photoperiod Temperature Winder & Schindler (2004)
Crab–bivalve Winter temperature Temperature, Strasser & Günther (2001)

food abundance etc.

Table 2. Environmental variable affecting timing of predator–prey coupling
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