
MARIE (chapter 4) sample problems

Provide the full RTN for a new MARIE instruction, Inc X. This instruction fetches datum X from

memory, increments it and stores it back to memory.

 Fetch: MAR  PC

 MBR  M[MAR] // divided into two steps

 IR  MBR

 PC  PC + 1

 Decode: Decode IR[15..12] // reversed the order of these two steps

 MAR  IR[11..0]

 Get op: MBR  M[MAR]

 Execute: AC  MBR + 1 // increment X

 MBR  AC // move X+1 back to MBR

 M[MAR]  MBR // store back to memory location X

Provide the full RTN for a new MARIE instruction, JZ X. This instruction sets the AC to see if it

is currently 0 and if so, branches to memory location X.

 Fetch: MAR  PC

 MBR  M[MAR]

 IR  MBR

 PC  PC + 1

 Decode: Decode IR[15..12]

 MAR  IR[11..0] // this step is not needed

 Get op: not needed

 Execute: If AC = 0 then PC  IR[11..0] // if we do the above step of

 // MAR  IR[11..0], we could do PC  MAR here

We decide to expand MARIE to have 4 registers R0, R1, R2, R3, instead of using the AC. Our

instructions now must include the register being referenced as in Load R1, X or Add R3, Y. What

impact will this change have on all of MARIE? Be as complete as possible (note: there are two

ways you could go with this answer).

 Both answers are based on the fact that to denote the register, we need 2 bits.

Answer 1: We add 2 bits to our instruction so that all instructions are now 18 bits long.

This will require that the word size expand from 16 bits to 18 bits so that memory is now

4Kx18 instead of 4Kx16. It will require an 18 bit data bus and 18 bit sized registers for the

MBR, IR and the 4 data registers. It will also require expanding the ALU to operate on 18

bits.

Answer 2: We remove 2 bits from the operand specification meaning that instead of 12

bits for a memory address, we only use 10. This causes our address space to shrink from

4K to 1K. We would also reduce the address bus from 12 bits to 10 and the MAR and PC

from 12 bits to 10.

Provide the MARIE code for the corresponding pseudocode below (written in a Java-like format

except for input and output).

 input(x, y, z);

 if(x>y&&y>z)

 output(x);

 else if(y!=z) output(y);

 else output(0);

 Input

 Store X

 Input

 Store Y

 Input

 Store Z

 Load X

 Subt Y

 Skipcond 10

 Jump elseif

 Load Y

 Subt Z

 Skipcond 10

 Jump elseif

 Load X

 Output

 Jump done

elseif: Load Y

 Subt Z

 Skipcond 01 // true if y==z

 Jump outy // we reach here if the above condition is false, thus we want to output y

 Load #0

 Output

 Jump done

outy: Load Y

 Output

done: …

Write MARIE code to compute z = x / y. Assume its ok to destroy the contents of x in doing so.

 Clear

 Store z

top: Load x

 Subt y

 Skipcond 10 // having subtracted y from x, is x still positive?

 Jump done

 Store x // if so, we continue

 Load z

 Add #1

 Store z

 Jump top

done: … // note: z is the quotient and x is the remainder

Write the following pseudocode into MARIE code:

 Input x

 While(x>=y)

 If(x%2==0) y++;

 Input x

 Output y

NOTE: assume we have a subroutine called mod2 which computes x%2 and sets the variable temp

to 1 if the result is equal to 0.

 Input

 Store x

top: Load x

 Subt y

 Skipcond 00 // we do not have a test for >=, so I’m using <

 Jump body // if x >= y, we go here, so we jump to the load body

 Jump done // otherwise we skip to here and we want to skip the loop body

 Clear

 Store temp

 Jns mod2

 Load temp

 Subt #1 // does temp == 1?

 Skipcond 01

 Jump bottom // since temp != 1, x%2 != 0, go to the bottom of the loop body

 Load y

 Add #1

 Store y

bottom: Input

 Store x

 Jump top

done: Load y

 Output

Hand-compile into hexadecimal the program in example 4.3 on page 253. NOTE: Skipcond 400

should be Skipcond 01.

 100 Load X 110C

 101 Subt Y 410D

 102 Skipcond 01 8400

 103 Jump Else 9108

 104 Load X 110C

 105 Add X 310C

 106 Store X 210C

 107 Jump Endif 910B

 108 Load Y 110D

 109 Subt X 410C

 10A Store Y 210D

 10B Halt 7000

