CSC 362: Some Example Conversions
Convert 10111001 from 8-bit binary to decimal assuming the number was originally stored in

a. unsigned magnitude: 128 + 32 + 16 + 8 + 1 = 185

b. signed magnitude: leading bit represents a negative, so we have –(32 + 16 + 8 + 1) = -57

c. 1’s complement: leading bit indicates a negative number, obtain its positive version by flipping all bits to get 01000110 = 64 + 4 + 2 = 70, so the original number is -70

d. 2’s complement: again, a negative, get the positive by flipping all the bits and adding 1, or 01000111 = 64 + 4 + 2 + 1 = 71, so the original number is -71

Convert -2916 to 16 bit signed magnitude, one’s complement and two’s complement. Before starting, note that 2916 = 2048 + 512 + 256 + 64 + 32 + 4, or 0000101101100100.

a. -2916 in signed magnitude replaces the leading bit with a 1 for negative, or 1000101101100100
b. In one’s complement, we take 2916 and flip all of the bits giving us 1111010010011011

c. In two’s complement, take 2916, flip all of the bits and add 1, or just add 1 to the one’s complement number, giving 1111010010011100

What are the largest and smallest values that can be represented in 16 bit unsigned magnitude, signed magnitude, one’s complement and two’s complement?

a. For unsigned magnitude, the largest number is all 1s or 1111111111111111 = 65535 and the smallest is all 0s or 0000000000000000 which is 0.
b. For signed magnitude, we have 0111111111111111 and 1111111111111111 as the largest and smallest values which are 32767 and -32767.

c. For one’s complement, the largest value is 0111111111111111 which is 32767. The smallest value is not 1111111111111111, which is -0, but is instead 1000000000000000 which is -32767.
d. For two’s complement, the largest value is 0111111111111111 which is 32767 just as above. The smallest value is 1000000000000000. Let’s convert this to a positive number by flipping all bits and adding 1 giving us 0111111111111111 + 1 = 1000000000000000 which is -32768. Notice here that we have one more value in our representation that signed magnitude and one’s complement do not have!

Convert 13.625 to the 14-bit floating point notation: 13.625 = 8 + 4 + 1 + ½ + 1/8 = 1101.1010, now shift the decimal point to get .11011010 * 24, so we have a mantissa of 11011010 and an exponent of 4, which in bias-16 is 10100, giving us 0 10100 11011010

Convert 25.75 to 14-bit floating point notation: 25.75 = 16 + 8 + 1 + ½ + ¼ = 11001.11 = .11001110 * 25 = .11001110 * 210101 (25.75 = 0 10101 11001110 = 01010111001110

Convert -6.9 to 14-bit floating point notation: -6.9 = 4 + 2 + ½ + ¼ + 1/8 + 1/64 + 1/128 + 1/1024 + … (110.1110011001… but we only have 8 digits, so we store 110.11100 = .11011100 * 23 = .11011100 * 210011 (1 10011 11011100 = 11001111011100. If we convert this back, we wind up with -6.875, so we have a loss of precision of .025 which is a loss of about .4%.

Convert 11111111111111 from 14-bit floating point notation to decimal: 1 11111 11111111 = -.11111111 * 211111 = -.11111111 * 215 = -111111110000000.0 = -(128 + 256 + 512 + 1024 + 2048 + 4096 + 8192 + 16384) = -32640.0

Convert 10001110000000 from 14-bit floating point notation to decimal: 1 00011 10000000 = -.10000000 * 200011 = -.10000000 * 2-13 = -2-14 = -1/214 = -1/16384 = -0.00006103515625

Convert 11100010000011 from 14-bit floating point notation to decimal: 1 11000 10000011, a negative number, the exponent is 8, so we have .10000011 * 28 = 10000011.0 = 128 + 2 + 1 = 131.0, so we have -131. NOTE: this answer was corrected on 9/10/08.
Convert 10110111000000 from 14-bit floating point notation to decimal: 1 01101 11000000, negative number, exponent is -3,, so .11000000*2-3 = 0.00011 = 1/16 + 1/32 = .09375, so we have -.09375.
Convert 01011010000110 from 14-bit floating point notation to decimal: 0 10110 10000110 is a positive number with an exponent of 6, so we have .10000110 * 26 = 100001.10 = 32 + 1 + ½ = 33.5.
