
CSC 260L: Java Programming Lab 3

Programming Exercise 3:
User Input

Purpose: How to get information from the user.

Converting from one type to another.

Background readings from textbook: Liang,

Programming Style: 1.9

Casting: 2.15 (also 4.4.10)

Software Development Process: 2.16

Reading input from the Console: 2.3

Due date for section 001: Monday, February 1 by 10 am

Due date for section 002: Wednesday, February 3 by 10 am

Overview

Most applications will require input either from the user (via keyboard) or from stored data on files.

In programs 1 and 2, we “hard coded” the input as literal values but this does not provide the program

with any flexibility. Instead, we need to know how to obtain user input. In Java, user input is handled

through objects (instances of classes). It used to be more of a hassle in that you had to set up all kinds

of things to do input and then input was only acceptable as Strings so that if you wanted to treat input

as a number or character or other, you had to convert it with a type of casting statement. The most

recent versions of Java have included a new class called the Scanner. With the Scanner, things are

far easier. In this assignment, we will use the Scanner to get input and use various forms of

conversions to change data types including casts like we did in lab 2 but also using other approaches.

Part 1: Java Examples

1. Request information from the user.

To use the Scanner class import the package java.util.Scanner at the top of your program. Notice

how we precede the actual input (input.next();) with an output statement. The output statement is

called a prompting message, or a prompt for short. Our prompt uses a println statement. This will

cause the user’s typed input to appear on a separate line. If we want to have the user’s input appear

on the same line as the prompt, we use a print statement instead. We might want to convert our

prompt to be System.out.print(“Enter your name ”); The added spaces make

Scanner input = new Scanner (System.in);

System.out.println("Enter your name.");

String fullName = input.next();

New Scanner() creates an object of the Scanner type. System.in makes the program obtain the

input from the console (keyboard). Scanner represents a stream of data for input.

CSC 260L: Java Programming Lab 3

sure that there is some blank space between our message and their input. With the use of println, we

get the following:
Enter your name
Richard

Using a print statement with no blank spaces after name, we get the following:
Enter your nameRichard

Using the above print statement, we get the following:
Enter your name Richard

It’s a stylistic choice about whether to use print or println, but if you use print, make sure you have

blank spaces between the prompt and the input.

2. Request double data from the user and convert what they type to a double value.

The statement input.next(); tells the input variable (which is an instance of a Scanner) to

execute its next method. The next method obtains whatever String was input and returns it. Here,

we want to store the result as a double, not as a String. So we are required to convert it. We convert

Strings to other types using the notation shown above (Double.parseDouble for a double,

Int.parseInt for an int). However, the Scanner class can accept non-String types. We can use

input.nextInt(); to get an int and input.nextDouble(); to get a double. Our revised

code looks like the following.

3. In the last lab, we used an explicit cast to convert an int value to a double. We can also work

things the other way. Here, we are explicitly converting a double to an int. The cast simply

chops off any fractional portion, so 33125.58 becomes 33125.

We can round a floating point value to the nearest integer by being a little more clever.

We can also accomplish this using the round method through the Math class by doing

Math.round(salary); (the Math class is covered in section 4.2 if you want to explore it).

4. Use close to close the input stream in order to indicate that there is no more input.

System.out.println("Enter the price per gallon.");

String pricePerGallonStr = input.next();

double gallonPrice = Double.parseDouble(pricePerGallonStr);

System.out.println("Enter the price per gallon.");

double gallonPrice = input.nextDouble();

double salary = 33125.58;

int dollars = (int) salary;

double salary = 33125.58;

int dollars = (int) (salary + 0.5);

input.close();

CSC 260L: Java Programming Lab 3

Part 2: Common Pitfalls

1.

2.

3.

Part 3: A Simple Program

What follows is a simple program that obtains different types of input, uses some of the input for a

computation and then outputs the results. Create a new project called Program3a, enter this program,

save, compile and debug it (if you have syntax errors). This is practice for the program you will do

as your assignment below (Parts 4-6).

Run the program inputting Cincinnati, Columbus, 115 and .065. Your output should be $7.

Part 4: Problem

You will write a similar program to the above, but call it Program3b. Here, you will compute a car’s

gas mileage and the amount you spend per mile traveled. In particular, ask the user for the following.

 their first name (or their full name) (String),

System.out.println("What is your name? ");

input.next();

double weight = 14.3;

int ounces = weight * 16;

Logic error!

You must assign the value resulting

from input.next(); to a variable

otherwise the input value cannot be

used!

Syntax error!

You cannot assign a double value to an

int variable without an explicit cast.

String numberStr = "153";

int value = 14 * numberStr;
Syntax error!

A number represented by a string is not

numeric; convert it to a numeric data type

before using arithmetic on it.

import java.util.Scanner;

public class Program3a {
 public static void main(String[] args) {
 Scanner in=new Scanner(System.in);
 String city1, city2;
 int distance;
 double costPerMile;
 int dollarAmount;
 System.out.print("Enter the starting city: ");
 city1=in.next();
 System.out.print("Enter the ending city: ");
 city2=in.next();
 System.out.print("Enter distance in miles between cities: ");
 distance=in.nextInt();
 System.out.print("Enter the cost of travel per mile: ");
 costPerMile=in.nextDouble();
 dollarAmount=(int)(distance*costPerMile);
 System.out.println("\n\nThe cost of traveling from " +

city1 + " to " + city2 + " is $" + dollarAmount);
 }
}

CSC 260L: Java Programming Lab 3

 the price per gallon of gasoline paid at the time of the last fill-up (double),

 the total amount paid for the fill-up (double),

 an initial odometer reading (int),

 a final odometer reading (int).

After inputting these values, compute the total miles drive, the number of gallons of gas used (total

amount for fill-up / price per gallon), and the miles per gallon that the car achieved (total miles /

number of gallons). Note that number of gallons and miles per gallon will both be doubles. Print this

information using System.out.println statements. Below is a sample of the input and the output when

running this program.

Write this program (make sure you comment the code as you write it). When you have your program

written, save and compile it. If it does not compile, fix your syntax errors. Once it does compile, run

it on the above input to see if you get the same output. If you get incorrect output, look through your

code and try to fix whatever logical errors you might have.

The output is not particularly readable. Let's force the output to look nicer in two ways. First, we will

output the number of gallons used as an int. Do this by changing your numberOfGallons variable

(whatever you called it) to an int and casting the value you compute for this variable to an int, similar

to how we did this with dollarAmount in the previous program. Second, import DecimalFormat (from

java.text), create a variable of type DecimalFormat called df with a format of ##.# and then change

the System.out.println statement to format the mpg value using your df.format. Refer back to program

2 if you are unsure how to do this.

Part 5: Test Your Program and Submit it

Run your program 4 times, once each on the following data. Collect all of the input and output (copy

and paste it) and either paste it into a separate text file, or as a comment at the bottom of your source

code. Print out the source code and input/output and hand it in to your instructor or email it (as one

or two files depending on whether you save the input/output to a separate file) to your instructor.

NOTE: do not submit Program3a.

Name Price per gallon Price for fill up Initial odometer Final odometer

Your name 2.84 20.25 6144 6279

Frank 1.72 31.40 21975 22496

Ruth 3.75 22.87 89108 89183

Gail 2.05 20.50 65380 65691

