Perspectives on Classroom-Based Research on the Teaching and Learning of Mathematics in the Context of Technology: Overview of Content and Goal

Rose Mary Zbiek

University of Iowa/
The Pennsylvania State University

30 May 2002

Introduction for session at the Research Presession at the 80th Annual Meeting of the National Council of Teachers of Mathematics, Las Vegas, Nevada, April 21, 2002

This paper was supported by the National Science Foundation under Grant No. TPE 96-18029 to The Pennsylvania State University with a major subcontract to The University of Iowa. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. Additional funding for the implementation component of this research project came from the Northern Kentucky University Center for Integrative Science and Mathematics (CINSAM).
Purpose
The purpose of this collection of papers is to explore how different data sources can further our understanding of how students learn and do mathematics with technology.

Setting
We report recent classroom experiments using technology-intensive secondary mathematics curricula and connect these events to research experiences over the past decade. The session underscores what is learned through data from complementary studies with various teaching and learning perspectives. The common context for all of the work presented here is a grades 10-12 mathematics classroom at a medium-size U.S. public comprehensive high school. This fifth-year mathematics teacher was in her first year of implementing innovative curriculum materials. In the fall, she and her students used four modules from the CAS-Intensive Mathematics (CAS-IM) Project as a “geometry” class. In the spring, she and a different group of students used three modules as a “second-year algebra” class. Figure 1 lists the modules used during each semester.

<table>
<thead>
<tr>
<th>Fall 2000</th>
<th>Spring 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Transformations and Triangles</td>
<td>II. Composition and Inverse</td>
</tr>
<tr>
<td>III. Area and Volume</td>
<td>IV. Families of Functions</td>
</tr>
<tr>
<td>V. Constraints in Geometry: Congruence and Similarity</td>
<td>IX. Symbolic Reasoning</td>
</tr>
</tbody>
</table>

Figure 1. CAS-IM modules used during each of the two semesters

Data Sources
This set of papers focuses on data gathered during the spring semester. The extended research team conducted three interviews with each of 11 students. We did two sets of small group observations, with each set spanning two consecutive days. We also did three sets of 2-consecutive-day whole-class observations. Figure 2 summarizes the number and timing of the sessions.

<table>
<thead>
<tr>
<th>Interviews</th>
<th>Small Group</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>February 13-14</td>
<td>February 8-9</td>
</tr>
<tr>
<td>March</td>
<td>March 21-22</td>
<td>March 8-9</td>
</tr>
<tr>
<td>April</td>
<td>April 18-19</td>
<td>April 2-3</td>
</tr>
<tr>
<td>May</td>
<td>May 17-18</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Timing of Data Collection Sessions
These data gathering sessions were audiotaped and videotaped. Verbatim transcripts of the sessions were annotated with information from several sources of data gathered during the sessions: handouts used, researchers’ written notes, computer work saved as files, and students’ written work. In addition, the augmented transcripts as primary data were complemented by a variety of supporting materials: the teacher’s daily log of content and activities, standardized test scores, copies of students’ workbook notebooks, and student background information (gender, mathematics course grades).

Session Contents (and Papers)

Our set of papers addresses uses of representation, purposes of technology use, and nature of the tasks we introduced and they undertook. In addition to this overview, there are seven papers. The first three are theoretical pieces that provide our underlying perspective regarding uses of representation (Zbiek, 2002a), purposes of technology use (Zbiek, 2002b), and types of mathematics tasks (Heid, Blume, Hollebrands, & Piez, 2002). In the next three papers we examine the implications of these perspectives using data from individual interviews (Zbiek & Finken, 2002), from small-group work (Blume, Heid, Hollebrands, & Piez, 2002), and whole-class discussions (Foletta, 2002). The last paper (Zbiek & Glass, 2002) extends the use of these perspectives to examine reasoning, justification and proof.

References

Meeting of the National Council of Teachers of Mathematics, Las Vegas, Nevada, April 21, 2002.

