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Simple Substitution Ciphers 
 

The art of writing secret messages – intelligible to those who are in possession of the key 
and unintelligible to all others – has been studied for centuries.  The usefulness of such 
messages, especially in time of war, is obvious; on the other hand, their solution may be 
a matter of great importance to those from whom the key is concealed.  But the romance 
connected with the subject, the not uncommon desire to discover a secret, and the implied 
challenge to the ingenuity of all from who it is hidden have attracted to the subject the 
attention of many to whom its utility is a matter of indifference.  
     Abraham Sinkov 
     In Mathematical Recreations & Essays 
     By W.W. Rouse Ball and H.S.M. Coxeter, c. 1938 
 
 
We begin our study of cryptology from the romantic point of view – the 
point of view of someone who has the “not uncommon desire to discover a 
secret” and someone who takes up the “implied challenged to the ingenuity” 
that is tossed down by secret writing.  The material in this section will help 
you do the Quiptoquip in the morning newspaper and it is excellent 
preparation for an appearance on the gameshow Wheel of Fortune.  (And, it 
will prepare you for our future work.) 
 
A simple substitution cipher is a method of concealment that replaces each 
letter of a plaintext message with another letter.  Here is the key to a simple 
substitution cipher: 
 

Plaintext letters: abcdefghijklmnopqrstuvwxyz 
Ciphertext letters: EKMFLGDQVZNTOWYHXUSPAIBRCJ 

 
The key gives the correspondence between a plaintext letter and its 
replacement ciphertext letter.  (It is traditional to use small letters for 
plaintext and capital letters, or small capital letters, for ciphertext.  We will 
not use small capital letters for ciphertext so that plaintext and ciphertext 
letters will line up vertically.)  Using this key, every plaintext letter a would 
be replaced by ciphertext E, every plaintext letter e by L, etc.  The plaintext 
message simple substitution cipher would become SVOHTL  
SAKSPVPAPVYW  MVHQLU. 
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The key above was generated by randomly drawing slips of paper with 
letters of the alphabet written on them from a bag that had been thoroughly 
shaken to mix up the slips.  The first letter drawn E became the substitution 
for a, the second letter drawn K became the substitution for b, etc. 
 
Encryption (or enciphering) is the process of using the key to produce 
ciphertext from plaintext.  Decryption (or deciphering) is the process of 
using the key to produce plaintext from ciphertext. 
 
To encrypt a message requires knowing two things: the method of 
encryption (in our case, simple substitution) and the key (in our case, the 
letter substitutions).  Notice that if we believed that our messages were no 
longer secure, we could leave the method unchanged (simple substitution) 
but change the key (use different letter substitutions). 
 
Here is a message to decrypt.  It has been encrypted with a simple 
substitution cipher with key: 
 

Plaintext letters: abcdefghijklmnopqrstuvwxyz 
Ciphertext letters:  HUFRCOGMTZXLKPNWYVABQSIEDJ 

 
BMC  XTP  MHBM  PNBC  NO  HLL  BMHB  BMCD  TPBCPR,  
UD  TPBCVFCBTNP  IMTFM  BMCD  RVCHK  PNB  NO. 
 
Decrypt the message.  Knowing the key, this should not be a problem.  
Although it might be useful to have the ciphertext letters in alphabetical 
order for decryption, the key is the same for encryption and decryption. 
 
 Plaintext letters: steyxdgawzmlhofnudvibrpkqj  
 Ciphertext letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ 
 
But, how would a person solve the message not knowing the key?  Solving 
the message not knowing the key is called cryptanalysis.  Cryptanalysts 
take up the “implied challenged to the ingenuity” that is tossed down by 
secret writing, and they find, when successful, satisfaction of their “not 
uncommon desire to discover a secret.” 
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Brute Force 

 
If the cryptanalyst knew that the method of encryption were simple 
substitution cipher, then the cryptanalyst could try all possible keys to solve 
the message.  Or, maybe not!   How many keys are possible?  How long 
would it take to try them all? 
 
When constructing a key for a simple substitution cipher, there are 26 
choices of letters to substitute for a, then 25 remaining letters that can be 
substituted for b, then 24 remaining letters that can be substituted for c, etc.  
This results in  
 

26 25 24 23 ... 3 2 1× × × × × × ×  = 403,291,461,126,605,635,584,000,000 
 
possible keys.  That's a lot of keys. 
 
Now, not all of these would make good choices for a key.  One of the 
choices is plaintext, and others keep many plaintext letters unchanged.  If 
many common plaintext letters remained unchanged, it would not be much 
of a challenge to cryptanalyze the ciphertext message. 
 
The security of cryptosystems often depends on forcing the cryptanalyst into 
doing a brute force attack – forcing the crypanalyst to try all possible keys – 
and “having a large keyspace” – having too many possible keys to making 
trying them all practical. 
 

Cardano [an Italian mathematician, 1501 – 1576] heads a long line 
of cryptographers in erroneously placing cryptographic faith in large 
numbers – a line that stretches right down to today.  …  Cryptanalysts 
do not solve [simple substitution ciphers] – or any cipher for that 
matter – by testing one key after another.  …  If the cryptanalyst tried 
one of these [403,291,461,126,605,635,584,000,000 possibilities] 
every second, he [or she] would need  
 

19403,291,461,126,605,635,584,000,000 1.2788 10
60 60 24 365

≈ ×
× × ×

 years] … 
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 to run through them all.  Yet most[simple substitution ciphers] are 
solved in a matter of minutes.  David Kahn, The Codebreakers: The comprehensive 
history of secret communication from ancient times to the internet, Scribner, 1996. 

 
Ok, so it is not a good idea to try to solve one of these by brute force.  
Would a computer do better?  Yes, a computer would do better.  Computers 
now provide an alternative to hand checking of possible keys, but even 
checking 1000 or 10,000 keys per second wouldn’t make a significant dent 
in the time required to check all possibilities.  Brute force attack is just not a 
good attack.  It is certainly not an elegant way of cryptanalysis.   
 
 

Discovering Patterns 
 
How are simple substitution ciphers attacked?  By finding patterns.  Every 
language has rules so that the language “makes sense.”  There are rules for 
punctuation, there are rules for combining letters, there is word length, … .  
These rules create patterns in messages that can be exploited by 
cryptanalysts.  Usually cryptograms that appear in newspapers preserve 
word length and punctuation, and they preserve letter frequencies.  For 
example, e is the most frequent letter in plaintext English.  If we used the 
key  
 

abcdefghijklmnopqrstuvwxyz 
EKMFLGDQVZNTOWYHXUSPAIBRCJ 

 
we would expect that the most frequent ciphertext letter would be L.  Now, it 
might not be, but it is likely that the most frequent ciphertext letter 
corresponds to one of the most frequent letters e, t, a, o, i, n, or s.  An 
attack on ciphertext that uses letter frequencies is called frequency analysis.  
Using letter frequencies and other patterns, cryptanalysts are usually able to 
quickly solve simple substitution ciphers. 
 

 4



 
Cryptanalysis 

 
Here is a cryptogram that was taken from a local newspaper. 
 
D  RNXHT  VHRVCK  VKKXOW  FYVF  V  OVFY    
 
GENBWKKNE'K  PWEC  BVPNEDFW  TWKKWEF  DK  GD. 
 
This puzzle is called a Cryptoquip.  The method used for encrypting it was 
simple substitution.  It obeys the traditional rule for such puzzles that no 
letter is encrypted as itself.  This is very useful information.  For example, in 
this message we know that PWEC cannot be the ciphertext for when. 
 
If you did this puzzle daily, you would become familiar with the puzzler’s 
writing style.  You would know that the plaintext message is a humorous 
statement.  Information about the writing style of the sender or the nature of 
the plaintext message is often available to cryptanalysts.  Use it. 
 
Often cryptogram puzzles give a clue – typically one plaintext/ciphertext 
correspondence is given.  We will attack this message without a clue.   
 
Even though this puzzle might not require all the effort that we will spend on 
it, we will try to establish a pattern by collecting a great deal of information 
prior to starting the cryptanalysis. 
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Here is the information that was gathered about the ciphertext 
 
D  RNXHT  VHRVCK  VKKXOW  FYVF  V  OVFY    
 
GENBWKKNE'K  PWEC  BVPNEDFW  TWKKWEF  DK  GD. 
 
Most frequent English letters:  etaoins 
 
A    K *********  U 
B **    L    V ******* 
C **    M    W ****** 
D ****   N ****   X ** 
E *****   O **    Y ** 
F *****   P **    Z 
G **    Q     
H **    R ** 
I    S 
J    T ** 
 
The five most frequent letters appear above in bold.   
 
1-letter English words:  a i 
One-letter words:  D, V 
 
Most frequently doubled letters in English:  setflmo 
Doubled letters:  K, K, K 
 
Most frequent 2-letter words in English:  an, at, as, he, be, in, is, it, on, or, to, 
of, do, go, no, so, my 

Two-letter words:  DK, GD 
 
Most frequent 3-letter words in English:  the, and, for, was, his, not, but, you, are, 
her 

Three-letter words: 
 
Most frequent initial letters in English:  tasoi 
     V    
Initial letters:  R V F O P B T D G  
 
Most frequent final letters in English:  esdnt 
     K W F 
Final letters:  T K W F Y C D 
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Here’s a cryptanalysis of the message. 
 
We begin with the one-letter words D and V.  V is more frequent than D; 
so, it is likely that V is a and D is i.  Put those in place above the letters 
of the ciphertext. 
 
Usually we would hunt for a three-letter word that could be the, but there 
are no three-letter words in this Cryptoquip. 
 
Notice the ‘K.  This suggests that K could be s.  Because K is doubled and K 
appears often as a final letter, there is additional information suggesting that 
K is s.  Put that in place.  Additional confirmation that our choice is correct 
comes from noting that DK becomes is. 
 
Notice ass_ _ _ with the final letter being high frequency.  This suggests 
that X is u and O is m and W is e.  Put those in place. 
 
Notice FYaF.  F is a high frequency initial and final letter.  This is likely to 
be that.  Put those letters in place. 
 
We have now identified all the high frequency ciphertext letters other than E.   
 
Notice math  _ _ _ _ e s s _ _ ‘s.  Doesn’t math professor’s just 
leap out?  Put those letters in place. 
 
We still do not seem to have any contradictions. 
 
Everything comes together quickly now: 
 
 f a _ o r i t e  suggests that P = v. 
 
 v e r _  suggests that C = y. 
 
 _ e s s e r t suggests that T = d. 
 
 _ o u _ d suggests that H = l. 
 

a l _ a y s suggests that R = w. 
 
Done!  Funny? 
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Exercises: 
 
1.  Cryptanalyze the following cryptoquip: 
 

TS F LDRBJ QBFGX AFVJUBJ YFTU, PDMUJ LDM BKZBNX 
ATY XD QB RVDPV FG F ADGX-DSSTNB DK? 

 
 
2. Decrypt the following message that was encrypted with a simple 
substitution cipher and the following key: 
 
 Plaintext abcdefghijklmnopqrstuvwxyz 
 Ciphertext YNFROTMKPHELQWBDJXZAUSVCGI 
 
Ciphertext message: 
 
 PWMBR  VOAXU  ZAYLL  BAKOX  ZVOQB  WPABX 
 
 

Transposition Ciphers 
 

Up to this point, the ciphers that we have used have been substitution ciphers 
– plaintext letters were replaced by other letters or numbers or symbols.  
Another type of cipher is the transposition cipher. Transposition ciphers use 
the letters of the plaintext message, but they permute the order of the letters.   
 
It should be easy to spot a transposition cipher because the letter frequencies 
should mimic the usual frequencies for English – high frequencies for a, 
e, i, n, o r, s, t. 
 
But, cryptanalysis of a transposition cipher might be difficult.  The essential 
technique is anagramming – rearranging the ciphertext letters to “make 
sense.” 
 
The key to the cipher is the pattern of rearrangement. 
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Jumble 

 
Another word game that appears in newspapers is Jumble.   Each weekday 
Jumble consists of four words with scrambled letters – two five-letter words 
and two six-letter words – and a picture which has a clever caption that is 
determined by unscrambling a subset of the letters of the four words.  The 
game is to unscramble the letters and determine the words and the caption.  
Jumble  is solved by anagramming.  Here are the four words from the May 
31, 2001, Cincinnati Enquirer Jumble, unscramble them. 
 
1a. LUGAH 
1b. YIXTS 
1c. SLIZZE 
1d. HIMSUL 
 
The first word LUGAH has five distinct letters.  There are 

 ways to arrange five distinct letters, and exactly one of 
them should result in a word.  A brute force attack would involve trying 
possible arrangements of the letters until the word were determined; it would 
take at most 120 trials.  A better scheme is to use patterns in the language to 
put together pieces of the word and arrange the pieces to form the word.  For 
example, a is a common initial letter; so, we might think of a _ _ _ _ .  
It is unlikely that u would be the final letter; so, we might have u 
surrounded by consonants.  That does not seem to work.  It is unlikely that 
either a or u are the final letters; so, they might be surrounded by the 
consonants.  Consonant-vowel-consonant-vowel-consonant seems unlikely 
for these letters.  If consonants form a digraph; it seems most likely that 
those would be gl (probably at the beginning of the word) or gh 
(probably at the end of the word).  In English, gh is much more common 
than gl.  _ _ _ g h.  l _ _ g h.   If the vowels form a digraph, it seems 
likely that it would be au.  laugh is the word. 

5 4 3 2 1 120× × × × =

 
The third word has repeated letters SLIZZE.  There are 

 ways to arrange 6 letters.  But, it is not possible to 
distinguish between the two zs.  There are  2 ways to arrange 2 letters.  If we 
could tell the two zs apart, there would be 720 ways to arrange the letters, 
but because we cannot distinguish between them and there are 2 ways to 
arrange them; the numbers of ways to arrange the 6 letters is 720/2 = 360.  e 

6 5 4 3 2 1 720× × × × × =
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is likely as a final letter:  _ _ _ _ _ e.  Rarely used letters are often easier to 
place than commonly used ones.  z combines most frequently with vowels – 
either vowel –z or z-vowel.  z rarely combines with other consonants; if it 
combines with a consonant, it is likely to combine with another z.  nz or zl 
are next most likely after zz.  So, maybe zzl ending with e.  _ zzl _ e or 
_ _ zzle.  sizzle works. 
 
 

Columnar transposition 
 
Columnar transposition is probably the most commonly studied 
transposition cipher.  We will use that method to encrypt the following 
"pilot's saying:"  
 
The nose is pointing down and the houses are getting bigger. 
 
There are 49 letters in the message.  We want to place the letters of the 
message in a rectangular array.  In this case, because we would like the 
rectangular array to have 49 cells, a 7 7×  array may be used.  We also need 
a keyword having its length the same as the number of columns – we will 
use analyst. 
 

A N A L Y S T
1 4 2 3 7 5 6
t h e n o s
i s p o i n
i n g d o w n
a n d t h e h
o u s e s a r
e g e t t i n
g b i g g e r

e
t
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The ciphertext is obtained by reading down the columns in the order of the 
numbered columns (which are alphabetically ordered). 
 

TIIAOEGEPGDSEINODTETGHSNNUGBSNWEAIEETNHRNROIOHSTG 
 
Our message exactly fit the rectangular array.  If the message does not 
completely fill the array, nulls (meaningless letters) may be added to fill it 
(this is the easier cipher to break) or not (this is harder to break because the 
columns do not all have the same length).  In the latter case, the length of the 
keyword determines the number of columns, and the number of letters in the 
message determines the number of complete and partial rows. 
 
The transposition should be applied several times if the plaintext message 
were longer than 49 letters. 
 
Remember, for encrypting, “in by rows and out by columns.”   
 
 

Decrypting the columnar transposition 
 
Here is a message that was encrypted using a rectangular array with 
keyword analyst. 
 
 TRLEELIGCIGEHALANTNCTECYENEN 
 
Because the keyword has 7 letters, we know that the rectangular array has 7 
columns.  The message has 28 letters; therefore, the array must be 4 .  
Each column must have 4 entries.   

7×

 
First, we place the letters of the keyword in alphabetical order: aalnsty.  
Then place the ciphertext letters in columns. 
 

A A L N S T Y
t e c h n t e
r l i a t e n
l i g l n c e
e g e a c y n
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Now rearrange the letters of the keyword to form analyst. 
 

A N A L Y S T
t h e c e n t
r a l i n t e
l l i g e n
e a g e n c y

c
 

 
The plaintext message is the central intelligence agency.  (Notice 
that there could be some ambiguity about which "A" column comes first.  
We have used the convention that the first "A" column will correspond to 
the first a in analyst.) 
 
Remember, decryption reverses the encryption process; so, “in by columns 
and out by rows” when decrypting. 
 
 

Cryptanalysis of the columnar transposition 
 
We will do only "the easy case;" i.e., we will assume that the columnar 
transposition uses a rectangular array that was completely filled. 
 
Here is the ciphertext: 
 
 ASAIR  ITFNM  IMTKL  SOIEE  M 
 
The “key” to cryptanalyzing the ciphertext is to determine the number of 
columns; i.e., the length of the keyword.  There are 21 letters in the 
ciphertext.  Because we know that the message completely fills the 
rectangle, this suggests either a 3 7×  or a 7 3×  array. 
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We arrange the ciphertext in columns. 
 

 Either    or  . 
A I T M T S E
S R F I K O E
A I N M L I M

A F L
S N S
A M O
I I I
R M E
I T E
T K M

 
The solution is by anagramming (making a word or portion(s) of word(s)  by 
rearranging letters) a row. 
 
The 7  arrangement seems unlikely because it has a string TKM with no 
vowels that is unlikely.  Also, the III is unlikely.  So, let us try the 3  
arrangement.  Notice that there are 

3×
7×

7 6 5 4 3 2 1 5040× × × × × × =  
arrangements of the columns.  We would like to not have to try all of them! 
 

A I T M T S E
S R F I K O E
A I N M L I M

 

 
In the first row, MATE seems to leap out.  This leaves ITS.  Perhaps, a 
slightly wrong guess – ESTIMAT- seems to be a possibility. 
 
Let us rearrange the columns. 
 

E S T I M A T
E O K R I S F
M I L I M A N

 

 
Not quite, but there are two Ts in the first row.  Let us swap those columns. 
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E S T I M A T
E O F R I S K
M I N I M A L

 

 
This works.  Notice that because we have multiple rows that are permuted 
the same way, we can use multiple anagramming for cryptanalysis. 
 
It is often worthwhile to write the ciphertext in columns, cut out the 
columns, and rearrange the columns to do the anagramming. 
 
 
Exercises: 
 
3. Use a columnar transposition cipher with a rectangular array and keyword 
mathematician to encrypt the following message: 
 

Sample the electronic environment of the east 
coast of North Korea.  Emphasis is intercepting 
coastal radars.  

 
4. The following message was encrypted with a columnar transposition 
cipher using a full rectangular array and keyword mathematics.  Decrypt 
it. 
 

RIUGS   IPNCT   MSPAL   AUNCY   SOOCH   UEYSA   
RTE 

 
5. Cryptanalyze the following message.  It was encrypted with a columnar 
transposition cipher using a full rectangular array. 
 

NTDVC   ILRDT   LFNIT   AUEEE   UEOUA   OVSEN   
CIOTN   CCSLS   ATIPN   RNVA 
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Caesar Ciphers 

 
Suetonius, the gossip columnist of ancient Rome, says that [Julius] Caesar [100? – 44 
B.C.] wrote to Cicero and other friends in a cipher in which the plaintext letters were 
replaced by letters standing three place further down the alphabet …  

David Kahn, The Codebreakers 
 

 
So, cryptology has existed for more than 2000 years.  But, what is 
cryptology?  The word cryptology is derived from two Greek words: kryptos, 
which means "hidden or secret," and logos, which means, "description."  
Cryptology means secret speech or communication. 
 
Cryptology encompasses two competing skills – concealment and solution.   
 
The concealment portion of cryptology is called cryptography.  The aim of 
cryptography is to render a message incomprehensible to the unauthorized 
reader.  Cryptography is often called “code making.” 
 
The solution portion of cryptology is called cryptanalysis.  Cryptanalysis is 
often called “code breaking.”  The word cryptanalysis was coined (c. 1920) 
by the American cryptologist William Friedman.   
 

 
 

 
 
 
 
 
 
 
 
 

 William Friedman  
Center for Cryptologic History photo 

 
Friedman (1891 – 1969) is often called the dean of modern American 
cryptologists.  He was a pioneer in the application of scientific principles to 
cryptology.  During World War II, Friedman was the director of 
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communications research for the Signal Intelligence Service (SIS).  SIS later 
became the Army Security Agency (ASA).  After World War II, Friedman 
served first as a consultant for ASA and then for the National Security 
Agency (NSA) after its birth in 1952.  Friedman and his wife Elizebeth, who 
was also a cryptologist, jointly authored the book The Shakespearean 
Ciphers Examined. 
 
 

Cryptography of Caesar Ciphers 
 

Here is the key for a simple substitution cipher: 
 

Plaintext letters:    abcdefghijklmnopqrstuvwxyz 
Ciphertext letters:  YNROTKMCPBDVXZALEWUSFQJHGI 

 
Could you remember the plaintext/ciphertext correspondences?  Probably 
not; you would probably need a written copy of the key.  But, having a 
written copy of the key could lead to problems with key security – the key 
might be lost or stolen.  It is desirable to have a key that need not be written 
down.  (Of course a person who has memorized the key might be coerced to 
give it up, but that it a different story.)   
 
Caesar’s cipher, to which reference was made in the David Kahn quote at 
the beginning of this section, was a simple substitution cipher, but it had a 
memorable key.  For Caesar’s cipher, “letters were replaced by letters 
standing three place further down the alphabet … .”  Here is the key to 
Caesar’s cipher: 
 

Plaintext letters       abcdefghijklmnopqrstuvwxyz 
Ciphertext letters    DEFGHIJKLMNOPQRSTUVWXYZABC 

 
The key can be memorized because there is a pattern to it -- the ciphertext 
alphabet is just the plaintext alphabet shifted to the right three places.  
Sender and receiver just need to remember the shift. 
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Mathematics of the Caesar Cipher 

 
The mathematical transformation that shifts the alphabet is called a 
translation.  The shift to the right of three spaces can be symbolized as   

 where p represents a plaintext letter and C represents the 
corresponding ciphertext letter.  More generally, a shift of b spaces to the 
right can be symbolized by C

C p 3= +

p b= + .  The Caesar cipher can be described 
as C = p + key. 
 
Of course, to make sense of this transformation, first, we must number the 
letters of the alphabet.  Computer scientists would probably prefer a = 
00, …, z = 25.  There are also mathematical reasons to prefer this 
numbering, but we will use the more naive  
 

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 
a  b  c  d  e  f  g  h  i  j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z 

 
Notice that we must make provision for “falling off the end of the alphabet”; 
e.g. with a shift of 3, what happens to plaintext x when we shift 3 places to 
the right?  We do “the obvious” – we wrap back to the beginning of the 
alphabet. 
 

Plaintext letters       abcdefghijklmnopqrstuvwxyz 
Ciphertext letters    DEFGHIJKLMNOPQRSTUVWXYZABC 

 
a, which is represented by 01, is mapped to 01 + 3 = 04, which represents D.  
a  D, b  E, c  F, etc.  When we come to the end of the 
plaintext alphabet, the ciphertext alphabet returns to the beginning:  w , 
which is represented by 23, is mapped to 23 + 3 = 26, which represents Z:   
w  Z; but, x, which is represented by 24, is mapped to 24 + 3 = 27, 
which wraps back to A: x  A.   y → B, and z  C.  This is called 
addition modulo 26. 

→ → →

→
→ →

 
Modular addition operates on the integers: …, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 
5, … .  The symbol  is often used to represent the integers, the “counting 
numbers” (zählen is German for to count.)  When we add modulo n, (or mod 
n) where n is a positive integer, we add “in the usual way,” and then we 
divide by n and take the remainder.  If we divide by n, the remainder after 

Z
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division can be represented by one of  0, 1, 2, …, n-1.  n is called the 
modulus. 
 
 If we divide by 5, the possible remainders are 0, 1, 2, 3, 4. 
 
 If we divide by 8, the possible remainders are 0, 1, 2, 3, 4, 5, 6, 7. 
 

If we divide by 12, the possible remainders are 0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11. 
 
If we divide we 26, the possible remainders are 0, 1, 2, … , 23, 24, 25. 
 
If we divide by 2, the possible remainders are just 0 and 1. 

 
Selecting the remainders is where the problems occur with our numbering of 
the letters of the alphabet beginning with 1.  We would like each of the 
letters of the alphabet to correspond to a remainder modulo 26:  0, 1, 2, … , 
23, 24, 25.  But, we have chosen to number the letters 1, 2, 3, … , 24, 25, 26.  
There is a way to make this work. Mathematicians say that two integers are 
congruent modulo 26 if they have the same remainder when we divide them 
by 26.  0 and 26 are congruent modulo 26, 1 and 27 are congruent modulo 
26, 2 and 28 are congruent modulo 26, 3 and 29 are congruent modulo 26, 
etc.  We treat congruence as the “modular equivalent of equals.”  Because 0 
and 26 are congruent modulo 26 we say that they are equal mod 26:  0 = 26 
mod 26. 0, 1, 2, … , 23, 24, 25 are the usual representatives of the integers 
modulo 26, but we have chosen instead to take the equivalent set of 
representatives: 1, 2, 3, … , 24, 25, 26.  In either case, each of the 26 
possible remainders is represented once.  Other sets of representatives of the 
integers modulo 26 are also possible (e.g., 0, 1, 28, -23, 4, 57, -46, 7, 8, 9, 10, 
-15, -2757, 13, 14, -11, 68, 17, 18, 19, 20, -5, 22, -3, 24, 25), but these 
representatives would not have an obvious meaning for ciphers. 
 
So, when we take plaintext w (23) and shift it by 3 (23 + 3) we get 26 = 0 
mod 26; we get 26 (Z).  When we take plaintext x (24) and shift it by 3 (24 
+ 3) we get 27 = 1 mod 26; we get 1 (A).  When we take plaintext y (25) and 
shift it by 3 (25 + 3) we get 28 = 2 mod 26; we get 2 (B).  When we take 
plaintext z (26) and shift it by 3 (26 + 3) we get 29 = 3 mod 26; we get 3 (C).  
This reflects the “wrapping back” to the beginning of the alphabet that 
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occurs in the plaintext/ciphertext correspondence – the turning around “to 
bite its tail.” 
  
Addition modulo 12 is just “clock arithmetic.”  The remainders are taken to 
be 1, 2, 3, … , 12 – the hours of the day.  When we divide by 12 and take 
remainders, we get that 13 = 1 mod 12 (13 o’clock is 1 pm), 14 = 2 mod 12 
(2 pm), … , 23 = 11 mod 12 (11 pm), and 24 = 12 mod 12 (midnight). 
 
Addition modulo 2 has remainders of 0 or 1.  Every even integer has 
remainder 0, and every odd integer has remainder 1.  Every even integer is 
represented by 0, and every odd integer is represented by 1. 
 
1, 2, 3, … , 24, 25, 26 (or 0, 1, 2, 3, … , 24, 25 or any other set of 
representatives of the remainders) under addition modulo 26 is written as 

.  0, 1, 2, … , 10, 11 under addition modulo 12 is written as .  0 and 1 
under addition modulo 2 is written as .  In general, 0, 1, 2, … , n – 1 
under addition modulo n is written as . 

26Z 12Z

2Z
nZ
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Encryption of a Message with a Caesar Cipher 

 
Let us use the Caesar cipher with additive key 5 to encrypt the plaintext 
message: 
 

The book Gadsby by Ernest Vincent Wright does not contain the letter e. 
 
Giving word length and punctuation gives the cryptanalyst too much 
information.  It is usually easy to solve simple substitution ciphers when 
word length and punctuation are given, it can be very difficult to solve 
simple substitution ciphers when word length and punctuation are not give.   
 
Word length and punctuation provide patterns that permit us to quickly make 
sense of plaintext.  Without word length and punctuation, even plaintext can 
be difficult to read.  Here is an example of plaintext without word length and 
punctuation: 
 

CARDANOALSOACHIEVEDTHEDUBIOUSRENOWNOFBEING
THEFIRSTCRYPTOLOGISTTOCITETHEENORMOUSNUMBERO
FVARIATIONSINHERENTINACRYPTOGRAPHICSYSTEMASPR
OOFOFTHEIMPOSSIBILITYOFACRYPTANALYSTSEVERREAC
HINGASOLUTIONDURINGHISLIFETIME. 

 
Usually cryptographers do not give word length and punctuation. 
 
After the invention of the telegraph in the Nineteenth Century, nearly 
instantaneous communication over long distances became possible, but 
communication by telegraph involved handing messages to operators who 
transmitted them in Morse Code.  Both the sending and receiving telegraph 
operators (and probably other telegraph employees) would have access to 
messages.  Business communications and even personal communications 
were often encrypted.  For the convenience of telegraph operators, messages 
were usually sent in blocks which allowed momentary pauses for the 
operators’ hands.  Traditionally the blocks consisted of four or five letters.  
That practice became a tradition in cryptology.  Often ciphertext messages 
are blocked in blocks of four or five letters.  (We will use five-letter blocks.) 
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Decryption of a Message Encrypted with a Caesar Cipher 

 
Certainly it would be necessary to be able to decrypt any message that has 
been encrypted.  Mathematically, what we are requiring is that every 
encryption method should have an inverse method.  We are requiring that for 
each possible key there must an inverse. 
 
What undoes addition mod 26?  Well, subtraction mod 26, but subtraction is 
just “adding the additive inverse.”  What undoes addition of 3 mod 26 is 
addition of 23 mod 26 because 3 + 23 = 26 = 0 mod 26.  If we shift to the 
right by 3 and then by 23, we have shifted to the right be 26 and returned to 
plaintext.   
 

3 mod  26 23 mod  26plaintext CIPHERTEXT plaintext+ +⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→  
 
So, the pattern should be clear 
 
 Key    Additive inverse 
 1    25 
 2    24 
 3    23 
 …    … 
 
 23     3 
 24     2 
 25     1 
 26     0 
 
 
If a message were encrypted with a Caesar cipher with additive key 5 
 

Plaintext letters       abcdefghijklmnopqrstuvwxyz 
Ciphertext letters    FGHIJKLMNOPQRSTUVWXYZABCDE 

 
then shifting ciphertext 21 letters further would yield plaintext. 

 
Ciphertext letters ABCDEFGHIJKLMONPQRSTUVWXYZ        
Plaintext letters  vwxyzabcdefghijklmnopqrstu   
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Cryptanalysis Using Brute Force 

 
Unfortunately, Caesar ciphers have a small key space, and messages 
encrypted with Caesar ciphers can be easily broken by brute force if it is 
recognized that the message has been encrypted with a Caesar cipher.   
 
How many distinct Caesar ciphers are possible?  Well, a shift of 0 would not 
make any sense; we would still have plaintext.  Shifts of 1, 2, 3, … 25 make 
sense.  But, a shift of 26 would (because the alphabet returns to the 
beginning) be the same as a shift of 0.  Similarly, a shift of 27 is the same as 
a shift of 1, a shift of 28 is the same as a shift of 2, etc.  So, there are  only 
26 possible Caesar ciphers, and one of those is a shift of 0 which would 
provide no encryption at all. 
 
Notice that with the exception of the Caesar cipher with additive key 26, 
when using a Caesar cipher, no letter substitutes for itself.  Also, if we know 
one plaintext/ciphertext correspondence we know them all because the shift 
is the same for each letter. 
 
Because of the small number of possible keys, a brute force attack is 
possible – we could try all possible keys and see which one yields plaintext.   
 
Here is a brute force ciphertext attack on a Caesar cipher.  
 
The following message is known to have been encrypted with a Caesar 
cipher: 
 
VRRQS  HRSOH  EHJDQ  VOLGL  QJWKH  DOSKD  EHWEB  
DPRXQ  WVGLI  IHUHQ  WWKDQ  WKUHH  WRGHW  HUPLQ  
HFLSK  HUHTX  LYDOH  QWV 
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Begin with VRRQS, the first five-letter block of the ciphertext.  Now 
beneath it write the five letters that would result by shifting each of the 
cipehrtext letters to the right by one.  On the next line, write the result by 
shifting each of the ciphertext letters to the right by two.  Do this for each of 
the 26 possible shifts.  This attack on a Caesar cipher is sometimes called 
“running the alphabet.” 
 
VRRQS 
WSSRT 
XTTSU 
YUUTV 
ZVVUW 
AWWVX 
BXXWY 
CYYXZ 
DZZYA 
EAAZB 
FBBAC 
GCCBD 
HDDCE 
IEEDF 
JFFEG 
KGGFH 
LHHGI 
MIIHJ 
NJJIK 
OKKJL 
PLLKM 
QMMLN 
RNNMO 
SOONP 
TPPOQ 
UQQPR 
 
Now scan the column for something that makes sense.  Notice near the 
bottom SOONP.  This line corresponds to shifting the ciphertext alphabet to 
the right 23 places.  The key inverse is 23.  The additive key is 3.  
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Cryptanalysis Using a Known Plaintext Attack 

 
Another possibility is to do a known plaintext attack.  The name is a bit 
deceiving because sometimes we only “suspect” rather than “know” a piece 
of the plaintext message.  Consider that in a message of reasonable length 
we should expect to find the word the.  If it occurs in a message encrypted 
with a Caesar cipher, it was encrypted one of the following ways: 
 
Trigraph Shift 
THE  0 
UIF  1 
VJG  2 
WKH  3 
XLI  4 
YMJ  5 
ZNK  6 
AOL  7 
BPM  8 
CQN  9 
DRO  10 
ESP  11 
FTQ  12 
GUR  13 
HVS  14 
IWT  15 
JXU  16 
KYV  17 
LZW  18 
MAX  19 
NBY  20 
OCZ  21 
PDA  22 
QEB  23 
RFC  24 
SGD  25 
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Here is a message that is known to have been encrypted with a Caesar cipher: 
 
FGWFM  FRXNS  PTAKN  WXYBT  WPJIF  XFHWD  UYTQT  
LNXYB  NYMYM  JBFWI  JUFWY  RJSY 
 
To determine the key, search through the ciphertext for a Caesar cipher 
ciphertext of the.  Because the beginning and ending of words is hidden by 
the five-letter blocks, when searching for an encrypted the, we must check 
every three consecutive letters – every trigraph:  
 
FGW GWF WFM FMF MFR FRX RXN XNS NSP SPT PTA TAK AKN 
KNW NWX WXY XYB YBT BTW TWP WPJ PJI JIF IFX FXF XFH 
FHW HWD WDU DUY UYT YTQ TQT QTL TLN LNX NXY XYB YBN 
BNY NYM MYM YMJ MJB JBF BFW FWI WIJ IJU JUF UFW FWY 
WYR YRJ RJS JSY.   
 
The trigraph in bold is the encrypted with an additive key of 5.  If we 
assume the message was encrypted with an additive key of 5, the message 
decrypts.   
 
This technique of searching for an encrypted version of a word or phrase 
was used during World War II by the British codebreakers at Bletchley Park 
who broke the German Enigma messages.  The Enigma machine had letters 
but no numbers on its keyboard; so, numbers were written out in plaintext 
messages.  It was common that the word Eins (one) would appear in a 
message.  With a lot of patience and having a catalog of the encrypted 
versions of Eins, the Enigma key might be determined. 
 
The word the when used as we have in this process is called a crib.  
Gordon Welchman, one of the cryptologists at Bletchely Park writes: 
 

Cryptologically speaking, however, one has a "crib" to a cipher text if one can 
guess the clear text from which some specific portion of the cipher text was 
obtained.  As my analysis of the Enigma traffic began to reveal certain routine 
characteristics in the preambles of individual messages, I realized that, if we 
could somehow determine to whom they were addressed, or by whom they were 
sent, we might be able to guess a portion of the clear text either at the beginning 
or the end of each of the messages, and so have cribs.  Gordon Welchamn, The Hut Six 
Story  

 
Stereotyped writing provides cribs.  In cryptography, variety breeds security. 
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Recognition of a Caesar Cipher and Its Key by Frequency Analysis 
 
A Caesar cipher is easy to break, but how do we recognize that a Caesar 
cipher was used?  It is easy to spot a Caesar cipher from frequency analysis 
of the ciphertext. 
 
Patterns occur in the letter frequencies of any language.  Here are the 
patterns for English: 
 

Frequencies for English 
 
a 1111111 
b 1 
c 111 
d 1111 
e 1111111111111 
f 111 
g 11 
h 1111 
i 1111111 
j  
k 
l 1111 
m 111 
n 11111111  
o 1111111  
p 111  
q  
r 11111111 
s 111111 
t 111111111 
u 111 
v 1 
w 11 
x 
y 11 
z 
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Abraham Sinkov (who was one of William Friedman’s cryptanalysts suring 
World War II) in his text Elementary Cryptanalysis: A Mathematical 
Approach points out the following patterns which are useful for elementary 
cryptanalysis: 
 

1. a, e, and i  are all high frequency letters (at the beginning of the 
plaintext alphabet), and they are equally spaced (four letters apart) 
with e the most frequent. 

2. n and o form a high frequency pair (near the middle of the plaintext 
alphabet). 

3. r, s, and t form a high frequency triple (about 2/3 of the way through 
the plaintext alphabet). 

4. j and k form a low frequency pair (just before the middle of the 
plaintext alphabet). 

5. u, v, w, x, y, and z form a low frequency six-letter string (at the end 
of the plaintext alphabet). 

 
 
Because a Caesar cipher just translates the letters of the plaintext alphabet to 
the right, it translates the frequency patterns we expect with plaintext.  

 27



 
Here is a ciphertext message: 

 
VRRQS  HRSOH  EHJDQ  VOLGL  QJWKH  DOSKD  EHWEB  
DPRXQ  WVGLI  IHUHQ  WWKDQ  WKUHH  WRGHW  HUPLQ  
HFLSK  HUHTX  LYDOH  QWV 

 
Here is a frequency analysis of the ciphertext: 

 
A  
B 1 
C 
D 111111 
E 111 
F 1 
G 111 
H 111111111111111 
I 11 
J 11 
K 11111 
L 111111 
M 
N    
O   1111  
P 11  
Q 11111111 
R 11111  
S 1111  
T 1 
U 1111 
V 1111 
W 111111111 
X 11 
Y 1 
Z 
 
Notice that the pattern of frequencies suggests that H = e.   It is only 
necessary to determine one correspondence between a plaintext and 
ciphertext letter to determine the key.  The frequency patterns suggest that H 
= e; so, 8 = 5 + additive key.  The additive key is 3. 
 
 
Exercises 
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6.  Encrypt the following message using a Caesar cipher with additive key 9.  
Use five-letter blocks. 
 

The telegraph made cryptography what it is today. 
 
7.  The following message was encrypted using a Caesar cipher with 
additive key 9.  Decrypt the message. 
 

KUNCL QUNHY JATRB OXACH VRUNB WXACQ XOUXW MXW 
 
 

 
8.  Use frequency analysis to cryptanalyze the following ciphertext: 
 

MAXGX   QMWTR   VKXPF   XFUXK   LHGMA   XFTWW   
HQLBZ   AMXWY   BOXGH   KMAOB   XMGTF   XLXGT   
ORTMM   TVDUH   TML 

 
 

 
9.  The following was enciphered with a Caesar cipher.  By running the 
alphabet on the first 5-letter block determine the shift and decipher the 
message. 
 

dvysk dhyad vthyr zhjoh unlpu jyfwa vsvnf hsaov 
bnoao lylhy lleht wslzv mthao lthap jphuz zabkf 
punjv klzhu kjpwo lyzao yvbno vbaop zavyf dvysk 
dhyad vthyr zaolw vpuah adopj ojpwo lyjby lhbzi 
lnhua vyljy bpath aolth apjph uzmvy aolpy wyvis 
ltzvs cpunh ipspa plz 
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10.  Search through the following ciphertext that is known to have been 
encrypted with a Caesar cipher and find an encrypted version of the word 
the.  Determine the key and recover the plaintext. 

 
IBYBC   KBSJS   BHCRO   MWGHV   SGDMK   OFHVO  
HFOUS   ROHHV   SHCDC   THVSK   CFZR 

 
 

Cryptography of the Vigenère Cipher 
 
Cryptanalysis is based upon finding the ghosts of patterns of the plaintext.  
We have seen that an important technique of doing this is frequency analysis.  
So, cryptographers try to develop ciphers that are not easily attacked by 
frequency analysis.  There are two basic ways to do this:  use more than one 
ciphertext alphabet or encrypt more than one letter in a block.  First, we will 
consider using more than one cipher text alphabet. 
 
Simple substitution ciphers, Caesar ciphers, multiplicative ciphers, and 
affine ciphers are all examples of monoalphabetic ciphers – only one 
ciphertext alphabet is used.   
 

Even if the original word lengths are concealed and the substitution 
alphabet is random, it is possible to find a solution by using frequency 
data, repetition patterns and information about the way letters 
combine with one another.  What makes the solution possible is the 
fact that a given plain language letter is always represented by the 
same cipher letter.  As a consequence, all the properties of plain 
language such as frequencies and combinations are carried over into 
the cipher and may be utilized for solution.  In effect we could say 
that all such properties are invariant except that the names of the 
letters have been changed. 
 
It would seem then that one way to obtain greater security would be to 
use more than one alphabet in enciphering a message.  The general 
system could be one that uses a number of different alphabets for 
encipherment, with an understanding between correspondents of the 
order in which the alphabets are to be used.  Sinkov, Abraham, Elementary 
Cryptanalysis: A mathematical approach, Mathematical Association of America, 1968. 
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A simple scheme would be to have two cipher alphabets and alternate 
between them during encryption.  Such a scheme is an example of a 
polyalphabetic cipher a cipher in which there is more than one ciphertext 
alphabet and a rule that describes how to use them.  For example, our 
ciphertext alphabets might be a Caesar cipher with additive key 3 and a 
Caesar cipher with additive key 5.  Our enciphering rule is that we will use 
the Caesar cipher alphabet with additive key 3 to encrypt the first plaintext 
letter, the Caesar cipher alphabet with additive key 5 to encrypt the second 
plaintext letter, the Caesar cipher alphabet with additive key 3 to encrypt the 
third plaintext letter, the Caesar cipher alphabet with additive key 5 to 
encrypt the fourth plaintext letter, etc.  Our rule is to alternate between the 
two alphabets beginning with the Caesar cipher with additive key 3. 
 
For example, we will encrypt the plaintext message Northern Kentucky 
University: 
 
 The key 
 
 a b c d e f g h i j k l m n o p q r s t u v w x y z 
 
 D E F G H I J K L M N O P Q R S T U V W X Y Z A B C 
 
 F G H I J K L M N O P Q R S T U V W X Y Z A B C D E 
 
 Plaintext and ciphertext 
 
 n o r t h e r n k e n t u c k y u n i v e r s i t y 
 Q T U Y K J U S N J Q Y X H N D X S L A H W V N W D 
 
Notice that two of the ns are encrypted with Q and two with S.  Two rs are 
encrypted with U and one with W.  Two ts are encrypted with Y and one with 
W.  Etc.  But, for example, because of the spacing of the plaintext letters, 
both of the ys are encrypted as D. 
 
For the inverse process – decryption – there are two Hs, but one has been 
substituted for plaintext c and the other for plaintext e. 
 
Because two ciphertext letters correspond to each plaintext letter, this 
scheme will tend to balance frequencies, and it is memorable. 
 
We might balance frequencies even better if we have several cipher 
alphabets and rotate among them according to some scheme to which the 
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correspondents have agreed.  We will examine a classic example of such a 
method – the Vigenère cipher.   
 

The Cryptographer: 
Blaise de Vigenère (1523 – 1596) 

 
Vigenère was not a nobleman.  The "de" in his name simply indicates 
that his family came from the village of Vigenère or Viginaire.  He 
himself was born in the village of Saint-Pourçain, about halfway 
between Paris and Marseilles, on April 15, 1523.  At 17, he was taken 
from his studies and sent to court and, five years later, to the Diet of 
Worms as a very junior secretary.  This gave him an initiation into 
diplomacy, and his subsequent travels through Europe broadened his 
experience.  At 24, he entered the service of the Duke of Nevers, to 
whose house he remained attached the rest of his life, except for 
periods at court and as a diplomat.  In 1549, at 26, he went to Rome 
on a two-year diplomatic mission. 
 
It was here that he was first thrown into contact with cryptology, and 
he seems to have steeped himself in it.  He read the books of 
Trithemius [1462 – 1516], Belaso [? - ? but known to have published 
in 1553 a booklet in which he proposed a polyalphabetic cipher], 
Cardano [1501 – 1576], and Porta [1535 – 1615], and the unpublished 
manuscript of Alberti [1404 – 1472].  He evidently conversed with the 
experts of the papal curia … .  … in 1566 he was sent again to Rome 
as secretary to King Charles IX.  Here he renewed his acquaintance 
with the cryptographic experts, and this time seems to have been 
admitted to their chambers … .  Finally in 1570, at 47, Vigenère quit 
the court for good, turned over his annuity of 1,000 livres a year to the 
poor of Paris, married the much younger Marie Varé, and devoted 
himself to writing. 
 
He turned out some 20-odd books before he died of throat cancer in 
1596.  …  [The] book which is constantly cited by workers in its field 
is his Traicté des Chiffres, which was written in 1581 … . 
 
It is a curious work.  In its more than 600 pages, it distilled not only 
much of the cryptographic lore of Vigenère's day … but a hodgepodge 
of other topics. 
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… [The] Traicté is reliable in its cryptographic information.  Vigenère 
was scrupulous in assigning credit for material from other authors and 
quoted them accurately and with comprehension. 
 
Among the numerous ciphers that Vigenère discussed … were 
polyalphabetics.  Each of his used a Trithemius-like tableau [which he 
improved by adding mixed alphabets on the sides.  He also improved 
upon the autokey system of Cardano.  Vigenère's system] works well 
and affords fair guarantees of security … . 
 
In spite of Vigenère's clear exposition of his devices, both were 
entirely forgotten and only entered the stream of cryptology late in the 
19th-Century after they were reinvented.  Writers on cryptology then 
added insult to injury by degrading Vigenère's system into one more 
elementary. 
 
This system is … more susceptible to solution than Vigenère's 
original.  Nevertheless, a legend grew up that this degenerate form of 
Vigenère's work was the indecipherable cipher par excellence, a 
legend so hardy that as late as 1917, more than a half century after it 
had been exploded, the Vigenère was touted as "impossible of 
translation" in a journal as respected as Scientific American.  Kahn, David, 
The Codebreakers: The comprehensive history of secret communication from ancient times to the 
internet, Scribner, 1996. 

 
The method we shall study below is the corrupted version of the cipher that 
now bears Vigenère 's name.  His original cipher was more secure than this. 
 
 

The Vigenère Square 
 
The Vigenère cipher is based upon a square that consists of the 26 Caesar 
cipher alphabets; this is in fact the square used by Trithemius [1462 – 1516]. 
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abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
BCDEFGHIJKLMNOPQRSTUVWXYZA 
CDEFGHIJKLMNOPQRSTUVWXYZAB 
DEFGHIJKLMNOPQRSTUVWXYZABC 
EFGHIJKLMNOPQRSTUVWXYZABCD 
FGHIJKLMNOPQRSTUVWXYZABCDE 
GHIJKLMNOPQRSTUVWXYZABCDEF 
HIJKLMNOPQRSTUVWXYZABCDEFG 
IJKLMNOPQRSTUVWXYZABCDEFGH 
JKLMNOPQRSTUVWXYZABCDEFGHI 
KLMNOPQRSTUVWXYZABCDEFGHIJ 
LMNOPQRSTUVWXYZABCDEFGHIJK 
MNOPQRSTUVWXYZABCDEFGHIJKL 
NOPQRSTUVWXYZABCDEFGHIJKLM 
OPQRSTUVWXYZABCDEFGHIJKLMN 
PQRSTUVWXYZABCDEFGHIJKLMNO 
QRSTUVWXYZABCDEFGHIJKLMNOP 
RSTUVWXYZABCDEFGHIJKLMNOPQ 
STUVWXYZABCDEFGHIJKLMNOPQR 
TUVWXYZABCDEFGHIJKLMNOPQRS 
UVWXYZABCDEFGHIJKLMNOPQRST 
VWXYZABCDEFGHIJKLMNOPQRSTU 
WXYZABCDEFGHIJKLMNOPQRSTUV 
XYZABCDEFGHIJKLMNOPQRSTUVW 
YZABCDEFGHIJKLMNOPQRSTUVWX 
ZABCDEFGHIJKLMNOPQRSTUVWXY 
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The Cipher 

 
The key to this method of encryption is a memorable word or phrase.  Let us 
use the name of the French mathematician Galois (1811 – 1832) as our key 
to encipher Northern Kentucky University. 
 
The letters of the keyword determine the alphabets used to encrypt: 
 

The first letter of the keyword is g; so, the first letter of the message is 
encrypted using row g of the table.  Plaintext n corresponds to 
ciphertext T. 
 
The second letter of the keyword is a; so, the second letter of the 
message is encrypted using row a of the table.  Row a corresponds to 
a shift of 0 – plaintext; so, plaintext o corresponds to ciphertext O. 
 
The third letter of the keyword is l; so, the third letter of the message 
is encrypted using row l of the table.  Plaintext r corresponds to 
ciphertext C. 
 
The fourth letter of the keyword is o; so, the fourth letter of the 
message is encrypted using row o of the table.  Plaintext t 
corresponds to ciphertext H. 
 
The fifth letter of the keyword is i; so, the fifth letter of the message is 
encrypted using row i of the table.  Plaintext h corresponds to 
ciphertext P. 
 
The sixth and last letter of the keyword is s; so, the sixth letter of the 
message is encrypted using row s of the table.  Plaintext e corresponds 
to ciphertext W. 
 
Now we returned to the beginning of the keyword.  The first letter of 
the keyword is g; so, the seventh letter of the message is encrypted 
using row g of the table.  Plaintext r corresponds to ciphertext X. 
 
Etc. 
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Here are the keyword, plaintext, and ciphertext messages: 
 
 g a l o i s g a l o i s g a l o i s g a l o i s g a 
 n o r t h e r n k e n t u c k y u n i v e r s i t y 
 T O C H P W X N V S V L A C V M C F O V P F A A Z Y 
 
Notice that the four ns are encrypted as T, N, V, and F.  The three rs are 
encrypted as C, X, and F.  The three ts are encrypted as H, L, and Z. 
 
But, notice that because of the spacing of the plaintext letters, the two ks are 
each encrypted with row l as V. 
 
For the inverse process – decryption – A represents u, s, and i.   V 
represents both k and v. 
 
Etc. 
 
Ideally, a different alphabet could be used to encrypt each letter of the 
plaintext message.  (Of course, there are only 26 possible shifts.) 
 
Both the sender and receiver of a message need a Vigenère square.  So, it is 
possible that someone could discover the method of encryption.  But, the 
keyword need not be written; so, the key can remain secure even if the 
method is known. 
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Rotating among the alphabets tends to equalize the frequencies of ciphertext 
letters and makes frequency analysis more challenging (but not impossible).  
The more alphabets that are used (i.e., the longer the keyword or phrase) the 
more the frequencies can be equalized.   
 
Here is a plaintext message: 
 
It is all but impossible to draw a distinction between Bletchley Park’s 
work on wartime Germany and its growing work on the Soviet Union in the 
nineteen forties.  Knowledge of wartime Germany required the tracking 
of events on the eastern front and involved learning as much as 
possible about the Soviet effort.  British intelligence began to value 
the Germans for their knowledge of the Soviet Union as soon as Ultra 
came onstream.  German messages used to send their own Sigint summaries 
about the Soviet Union back to Berlin were, in turn, intercepted by the 
British.  This “second-hand” Signit proved to be London’s best source 
on the performance of Soviet forces.  As early as nineteen forty-three 
the Joint Intelligence Committee – Britains’ highest intelligence 
authority – was able to produce detailed and accurate reports on the 
capabilities of the Soviet Air Force, based upon Luftwaffe Sigint 
material. 

 
After encrypting it with a Vigenère cipher using the keyphrase Northern 
Kentucky Univeristy, the ciphertext message is: 
 
vhzlh pcoex vfjqc qcotz xfvzt unrzl amepd mbgvg duyrv wpvlk ajrmg tyojj 
yvxhh ykpnv uzkvj utllo ewpxj tbsjb higml xwixy wahtv sknum fasrg aypsl 
ygmzr wgzmg rgbgv acrnk rhzyk pnvuz kvjut llfvj bmirn xuxnt kaevv bswwd 
xlggf galvr kwgxl pppia bvrua vomyj vwsir exmaz uuwsw uintf kabzy sruvy 
kgrif hpkor ysnjv ktzbr vgybu xvyvm txheo zytii xfnie srhyx niizk rfyit 
dfyvz frfot xbtsf yalvf yzvxn wxgia inwfg vtqhz kkhgr zosal ntoyg tmmqr 
fuxqf oxxzy jrnxb lypnr brqms nfabe vbklb qdnbm rludy sngpz wfnqx rhbzh 
ufrpu xbuyt vghjm mizfb npawe mlvtr zxrwv adfyo zdxzk pmfvg jxjse qreaw 
mkqlc gxmsm wlmmo schuh facfr lnuys lpmjr kzmic etfkt eepos slixs cnswm 
gvkil cnfcr hwevx igxyp pmlgg oliwm mfrxf buxza diyec iolwr kjqda bmcrp 
ibaez aclvz bgcrc abzpc aoxlp srnal fesxl puukz frbjt iglna rrvmh mcrne 
awuem slnbz vvhwk rfcem oitnz eobfk dgyfw axywa htvsk tpvwb bgruu uoboc 
wiplx bpyst vlpkz adqnm ytsyf 

 
(This message was encrypted with software that may be downloaded from 

http://faculty.goucher.edu/blewand/cryptomath/) 
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Here are the plaintext frequencies: 
 
a 1111111111111111111111111111111111111111111111111 
b 1111111111111111111 
c 11111111111111111111 
d 11111111111111111111 
e 11111111111111111111111111111111111111111111111111111111111111111 
 1111111111111111111111111111 
f 11111111111111111 
g 1111111111111111111 
h 1111111111111111111111111 
i 1111111111111111111111111111111111111111111111111111111111111111 
j 1 
k 1111111 
l 11111111111111111111111111 
m 11111111111111111 
n 1111111111111111111111111111111111111111111111111111111111111111 
o 11111111111111111111111111111111111111111111111111111111111 
p 1111111111 
q 1 
r 111111111111111111111111111111111111111111111111 
s 11111111111111111111111111111111111111111111111111 
t 11111111111111111111111111111111111111111111111111111111111111111 
 11111111111 
u 1111111111111111111 
v 11111111111 
w 1111111111111 
x 
y 1111111 
z 
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Here are the ciphertext frequencies: 
 
A 11111111111111111111111111111111 
B 11111111111111111111111111111111 
C 11111111111111111111 
D 111111111111 
E 1111111111111111111111 
F 11111111111111111111111111111111111 
G 11111111111111111111111111111111 
H 111111111111111111111 
I 111111111111111111111111111 
J 111111111111111111 
K 1111111111111111111111111111 
L 11111111111111111111111111111111111 
M 111111111111111111111111111111111111 
N 111111111111111111111111111111 
O 111111111111111111111 
P 1111111111111111111111111111 
Q 111111111111 
R 11111111111111111111111111111111111111111111 
S 1111111111111111111111111111 
T 1111111111111111111111111111 
U 1111111111111111111111111111 
V 1111111111111111111111111111111111111111111 
W 1111111111111111111111111111 
X 1111111111111111111111111111111111111 
Y 1111111111111111111111111111111111 
Z 1111111111111111111111111111111111 
 
 
A balanced frequency analysis is a clue that a Vigenère cipher might have 
been used. 
 
Exercises 
 
11. Here is a message encrypted with a Vigenère cipher with keyword ultra. 
 

NSXLS   HLOPT   OCGVD   NZWRY   NZGJN   WCMFC   LPTKE   
UYXCE   WEKFN   CNFRC   BTGVT   BLMTO   UWWHU   CNDCY   
LPTUE   HTZDA       

 
11a. Do a frequency analysis of the ciphertext. 
11b. Decrypt the message. 
 
12. Encrypt the following message using a Vigenère cipher with keyword 
packers.  Then do a frequency analysis of the ciphertext. 
 
While the autokey was a brilliant idea, Cardano formulated 
it defectively. 
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Cryptanalysis of the Vigenère Cipher 
 
The keyword of a Vigenère cipher describes the rotation among the Caesar 
cipher alphabets that are used.  That rotation leads to patterns that can be 
exploited by a cryptanalyst.  If we know the length of the keyword, we can 
often determine the keyword and, hence, decrypt all messages encrypted 
with that keyword. 
 
Here is a ciphertext message that has been encrypted with a Vigenère cipher. 
 
nifon aicum niswt luvet vxshk nissx wsstb husle chsnv ytsro 
cdsoy nisgx lnona chvch gnonw yndlh sfrnh npblr yowgf unoca 
cossu ouoll iuvef issoe xgosa cpbew uormh lftaf cmwak bbbdv 
cqvek muvil qbgnh ntiri ljgig atwnv yuvev iorim cpbsb hxviv 
buvet vxshk uorim mjbdb pjrut fbueg ntgof yuwmx miodm ipdek 
uuswx lfjek sewfy yssnm zscmm bpgeb huvez ysaag usaew mffvb 
wfgim qpilw bbjeu yfbef vbfrt mtwnz uorig wpbvx hjsnm zpfag 
uhsnm npglb jbqrh mttrh huwek mpfak ljjen hbbnh ooqew vzdak 
udvum yucbx yoquf vffew vzonx hjumt lfgef vmwnz uxsiz bumag 
xbbtb kvotx xumpx qswtx l 
 
Assume that, somehow, we have discovered that the keyword has length five 
(which is conveniently the same as the size of the blocks).  Then the first 
letter of each block is encrypted with the same row of the Vigenère square – 
they are encrypted with the same Caesar cipher.  Similarly, the second letter 
of each block is encrypted with the same row – the same Caesar cipher.  The 
third letters with the same Caesar cipher.  The fourth letters with the same 
Caesar cipher.  And, the fifth letters with the same Caesar cipher. 
 
Because Caesar ciphers are easily broken by frequency analysis, we can 
discover the letters of the keyword.  Here is how we can proceed. 
 
Strip off the first letters of each block and do a frequency analysis on the 
result.  They should have all been encrypted with the same Caesar cipher. 
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Alphabet number one – first letters of each block 
 
A 11 
B 11111 
C 11111111 
D  
E  
F 1 
G 1 
H 1111111 
I 1111 
J 1 
K 1 
L 11111111 
M 1111111 
N 11111111 
O 11 
P 1 
Q 111 
R  
S 11 
T 
U 111111111 
V 1111111 
W 111 
X 111 
Y 1111111111 
Z 11 
 
 
It appears that ciphertext Y corresponds to plaintext e.  (Not just because it 
is the most frequent letter but because all the high frequency letter patterns 
fit – U would correspond to a; C would correspond to i; H and I would 
correspond to n and o; and L, M, and N would correspond to r, s, and t.) 
 
Now recall that when we are encrypting using a Vigenère square plaintext a 
corresponds to the first letter of the row being used – the letter of the 
keyword being used.  So, it appears that (because U corresponds to a) the 
first letter of the keyword is u. 
 
The keyword is u _ _ _ _. 
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Alphabet number two – second letters of each block 
 
A  
B 11111111 
C  
D 11 
E 1 
F 11111111 
G 1 
H 111 
I 1111111 
J 11111 
K  
L  
M 11 
N 1111 
O 11111111 
P 1111111111 
Q 1 
R  
S 1111111 
T 111111 
U 11111111111111 
V 1 
W  
X 1111 
Y  
Z 11 
 
 
It appears that ciphertext F corresponds to plaintext e.   
 
So, it appears that (because B corresponds to a) the second letter of the 
keyword is b. 
 
The keyword is u b _ _ _. 
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Alphabet number three – third letters of each block 
 
A 11 
B 111111111 
C 111 
D 111 
E  
F 111111 
G 1111111 
H  
I 11 
J 111 
K  
L  
M 11 
N  
O 11111111 
P  
Q 111 
R 111111 
S 11111111111111111 
T 11 
U 11 
V 1111111111 
W 111111111 
X  
Y  
Z  
 
 
It appears that ciphertext S corresponds to plaintext e.   
 
So, it appears that the third letter of the keyword is o. 
 
The keyword is u b o _ _.  (Perhaps, you can already guess the 
keyword.) 
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Alphabet number four – fourth letters of each block 
 
A 1111111 
B 1 
C 11 
D 111 
E 1111111111111111111 
F 1 
G 11 
H 11 
I 11111111 
J  
K  
L 111111 
M 1111 
N 1111111111111 
O 1111 
P 1 
Q  
R 11111 
S 1111 
T 1111 
U 1111 
V 11 
W 11 
X  
Y  
Z  
 
 
It appears that ciphertext E corresponds to plaintext e.   
 
So, it appears that the third letter of the keyword is a. 
 
The keyword is u b o a _. 
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Alphabet number five – fifth letters of each block 
 
A 11 
B 1111111 
C  
D  
E 11 
F 1111111 
G 111111 
H 11111111 
I 1 
J  
K 111111111 
L 11 
M 1111111111 
N 11 
O 1 
P  
Q  
R 1 
S  
T 111111 
U 11 
V 11111 
W 111111 
X 1111111111 
Y 11 
Z 1111 
 
 
It appears that ciphertext X corresponds to plaintext e.   
 
So, it appears that the last letter of the keyword is t. 
 
The keyword is u b o a t. 
 
So, knowing just the length of the keyword, we were able to determine the 
keyword. 
 
Two methods give us information about the length of the keyword of a 
Vigenère cipher – the Kasiski test and the Friedman test.  We will discuss 
the Kasiski test. 
 
First, some history. 
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The Cryptanalysts 

 
The Vigenère cipher might first have been broken by the English 
mathematician Charles Babbage (1792 – 1871); Kahn quotes Babbage as 
saying “an indistinct glimpse of defeating it presented itself vaguely to my 
imagination.”  But, if Babbage had a solution, he never published it.  
Babbage apparently had the tendency to never be satisfied with a work and 
to continue to refine things; so, he might never have been satisfied enough 
with his solution to publish it. 
 
Friedrich Kasiski (1805 – 1881) is credited with breaking the Vigenère 
cipher in 1863.  From the Sixteenth Century until the Nineteenth Century the 
cipher was generally considered to be secure.  We will use Kasiski’s 
technique to determine the length of the keyword. 
 
In the Twentieth Century, William Frederick Friedman (1891 – 1969), the 
dean of American cryptologists, developed a statistical method to estimate 
the length of the keyword. 
 

Friedrich Kasiski 
 
“Friedrich Kasiski was born in November 1805 in a western Prussian town 
and enlisted in an East Prussian infantry regiment at the age of 17.   

 
He moved up through the ranks to become a company commander and 
retired in 1852 as a major.  Although he had become interested in cryptology 
during his military career, it was not until the 1860s that he put his ideas on 
paper.  In 1863 his 95-page text Die Geheimschriften und die Dechiffrirkunst 
(Secret Writing and the Art of Deciphering) was published.  A large part of 
its contents addressed the solution of polyalphabetic ciphers with repeating 
keywords, a problem that had tormented cryptanalysts for centuries.   
 
Disappointed by the lack of interest in his findings, Kasiski turned his 
attention to other activities including anthropology.  He took part in artifacts 
searches and excavations and wrote numerous archeological articles for 
scholarly journals.  He died in May 1881 not realizing the significance of his 
cryptanalytic findings.”  Wrixon, Fred B., Codes, Ciphers & other Cryptic & Clandestine 
Communication: Making and breaking secret messages from hieroglyphs to the internet, Black Dog & 
Leventhal Publishers. 
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The Kasiski Test (or the Kasiski Attack) 
 
Here is a message enciphered with a Vigenère cipher.  (It is taken from: 
Beutelspacher, Albrecht, Cryptology: An introduction to the Art and Science of Enciphering, Encrypting, 
Concealing, Hiding and Safeguarding Described Without any Arcane Skullduggery but not Without 
Cunning Waggery for the Delectation and Instruction of the General Public,  Mathematical Association of 
America, 1996.) 
 
 
DBZMG   AOIYS   OPVFH   OWKBW   XZPJL   VVRFG   NBKIX   
DVUIM   OPFQL   VVPUD   KPRVW   OARLW   DVLMW   AWINZ   
DAKBW   MMRLW   QIICG   PAKYU   CVZKM   ZARPS   DTRVD   
ZWEYG   ABYYE   YMGYF   YAFHL   CMWLW   LCVHL   MMGYL   
DBZIF   JNCYL   OMIAJ   JCGMA   IBVRL   OPVFW   OBVLK   
OPVUJ   ZDVLQ   XWDGG   IQEYF   BTZMZ   DVRMM   ANZWA   
ZVKFQ   GWEAL   ZFKNZ   ZZVCK   VDVLQ   BWFXU   CIEWW   
OPRMU   JZIYK   KWEXA   IOIYH   ZIKYV   GMKNW   MOIIM   
KADUQ   WMWIM   ILZHL   CMTCH   CMINW   SBRHV   OPVSO   
DTCMG   HMKCE   ZASYD   JKRNW   YIKCF   OMIPS   GAFZK   
JUVGM   GBZJD   ZWWNZ   ZVLGT   ZZFZS   GXYUT   ZBJCF   
PAVNZ   ZAVWS   IJVZG   PVUVQ   NKRHF   DVXNZ   ZKZJZ   
ZZKYP   OIEXX   MWDNZ   ZQIMH   VKZHY   DVKYD   GQXYF   
OOLYK   NMJGS   YMRML   JBYYF   PUSYJ   JNRFH   CISYL    
N 
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We begin the attack by frequency analysis. 
 
A 1111111111111111111      19  
B 11111111111111       14 
C 1111111111111111      16  
D 11111111111111111111    20 
E 11111111         8 
F 1111111111111111111      19 
G 11111111111111111111    20 
H 111111111111       12 
I 11111111111111111111111111    26 
J 1111111111111111      16 
K 1111111111111111111111111   25 
L 1111111111111111111111     22 
M 11111111111111111111111111111111   32 
N 1111111111111111      16 
O 111111111111111111      18 
P 1111111111111111      16 
Q 1111111111      10 
R 11111111111111       14 
S 11111111111       11 
T 111111         6 
U 11111111111       11 
V 1111111111111111111111111111111111   34 
W 1111111111111111111111111111    28 
X 1111111111      10 
Y 111111111111111111111111111    27 
Z 11111111111111111111111111111111111111111 41 
          491 
 
The "relatively equal" frequencies suggest multiple alphabets – a 
polyalphabetic cipher, which, for us, would suggest a Vigenère cipher. 
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Here's the idea behind the Kasiski test.  Consider a Vigenère cipher with 
keyword Galois.  (My favorite mathematician.)   
 

abcdefghijklmnopqrstuvwxyz 
GHIJKLMNOPQRSTUVWXYZABCDEF 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
LMNOPQRSTUVWXYZABCDEFGHIJK 
OPQRSTUVWXYZABCDEFGHIJKLMN 
IJKLMNOPQRSTUVWXYZABCDEFGH 
STUVWXYZABCDEFGHIJKLMNOPQR 

 
Think of a common trigraph – say, the – and assume that it appears twice 
in the plaintext message.   
 
If the is not encrypted by the same three alphabets at both locations, the 
two ciphertexts of the would be different. 
 

GALOISGALOISGALOISGALOISGALOIS...GALOISGALOISGALOIS 
the                                                                                        the 
ZHP                                     TSS 

 
But, if we are lucky and the is encrypted by the same three alphabets, we 
would see a duplicate trigraph. 
 

GALOISGALOISGALOISGALOISGALOIS...GALOISGALOISGALOIS 
the                                                                                     the 
ZHP                                    ZHP 

 
What is important to notice is that the distance between the beginnings of the 
ZHP trigraphs is a multiple of the length of the keyword.  This provides 
information about the length of the keyword. 
 
So, we search through the ciphertext for trigraphs (or strings of other 
lengths), and we look for repetitions.  Sometimes, of course, the repetitions 
are just accidental – two different strings of three letters are encrypted into 
the same three-letter string by different alphabets, but sometimes the 
repetitions correspond to the same three-letter string being encrypted by the 
same three alphabets.  These are the occurrences that we would like to 
discover. 
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Here are the trigraphs of the ciphertext with the number of repetitions shown 
in ( ): 
 
AOI ARL AWI AKB AKY ARP ABY AFH AJJ AIB ANZ AZV ALZ AIO ADU 
ASY AFZ AVN AVW 
 
BZM BWX BKI BWM BYY(2) BZI BVR BVL BTZ BWF BRH BZJ BJC 
 
CGP CVZ CMW CVH CYL CGM CKV CIE CMT CHC CMI CMG CEZ CFO CFP 
CIS 
 
DBZ(2) DVU DKP DVL(3) DAK DTR DZW DGG DVR DUG DTC DJK DZW 
DVX DNZ DVK DGQ 
 
EYG EYM EYF EAL EWW EXA EZA EXX 
 
GAO GNB GPA GAB GYF GYL GMA GGI GIQ GWE GMK GHM GAF GMG GBZ 
GTZ GXY GPV GQX GSY 
 
HOW HLC(2) HLM HZI HCM HVO HMK HFD HVK HYD HCI 
 
IYS IXD IMO INZ IIC ICG IFJ IAJ IBV IQE IEW IYK IOI IYH IKY 
IIM IMK IMI ILZ INW IKC IPS IJV IEX IMH ISY 
 
JLV JNC JJC JCG JZD JZI JKR JUV JDZ JCF JVZ JZZ JGS JBY JJN 
JNR 
 
KBW(2) KIX KPR KYU KMZ KOP KFQ KNZ KVD KKW KWE KYV KNW KAD 
KCE KRN KCF KJU KRH KZJ KYP KZH KYD KNM 
 
LVV(2) LWD LMW LWQ LCM(2) LWL LCV LMM LDB LOM LOP LKO LQX 
LZF LQB LZH LGT LYK LJB 
 
MGA MOP MWA MMR MRL MZA MGY(2) MWL MMG MIA MAI MZD MMA MAN 
MUJ MKN MOI MKA MWI MIL MTC MIN MGH MKC MIF MGB MWD MHV MJG 
MRM MLJ 
 
NBK NZD NCY NZW NWM NWS NWY NZZ(5) NKR NMJ NRF 
 
OIY OPV(4) OWK OPF OAR OMI(2) OBV OPR OIY OII ODT OIE OCL 
OLY 
 
PVF(2) PJL PFQ PUD PRV PAK PSD PVU(2) PRM PVS PSG PAV POI 
PUS 
 
QLV QII QXW QEY QGW QBW QWM QNK QIM QXY 
 
RFG RVW RLW(2)RPS RVD RLO RMM RMU RHV RNW RHF RML RFH 
 
SOP SDT SBR SOD SYD SGA SGX SIJ SYM SYJ SYL 
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TRV TZM TCH TCM TZZ TZB 
 
UIM UDK UCV UJZ(2) UCI UQW UVG UTZ UVQ USY 
 
VFH VVR VRF VUI VVP VPU VWO VLM VZK VDZ VHL VRL VFW VLK VUJ 
VLQ(2) VRM VKF VCK VDV VGM VOF VSO VGM VLG VNZ VWS VZG VUV 
VQN VXN VKZ VKY 
 
WKB WXZ WOA WDV WAW WIN WMM WQI WEY WLW WLC WOB WDG WAZ WEA 
WFX WWO WOP WEX WMO WMW WIM WSB WYI WWN WNZ WSI WDN 
 
XZP XDV XWD XUC XAI XYU XNZ XXM XMW XYF 
 
YSO YUC YGA YYE YEY YMG YFY YAF YLD YLO YFB YKK YMZ YVG YDJ 
YIK YUT YPO YDV YDG YFO YKN YMR YYF YFP YJJ YLN 
 
ZMG ZPJ ZDA ZKM ZAR ZWE ZIF ZDV(2) ZMZ ZWA ZVK ZFK ZZZ(2) 
ZZV(2) ZVC ZIY ZIK ZHL ZAS ZKJ ZJD ZWW ZVL ZZF ZFZ ZSG ZBJ 
ZZA ZAV ZGP ZZK(2) ZKZ ZJZ ZKY ZZQ ZQI ZHY 
 
Whew! 
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After identifying the repeated trigraphs, we look at their spacing. 
 

BYY  360  BYY 
DBZ  140  DBZ 
DVL  121  DVL   50  DVL 
HLC  170  HLC 
KBW   55  KBW 
LVV   20  LVV 
LCM  170  LCM 
MGY   20  MGY 
NZZ  140  NZZ   25  NZZ   25 
 NZZ   20  NZZ 
OPV  155  OPV   10  OPV  135  
 OPV 
OMI  190  OMI 
PVF  155  PVF 
PVU  224  PVU 
RLW   20  RLW 
UJZ   71  UJZ 
VLQ   50  VLQ 
ZZV  139  ZZV 
ZZK    6  ZZK 
ZDV   19  ZDV 
ZZZ  195  ZZZ 
 
Remember that we are looking for a length that is a common divisor of "all" 
of these lengths – well, not “all” because some repetitions are accidental – 
but most.  The bolded portions of the table seem to indicate that the length of 
the keyword might be five. 
 
Now we return to the ciphertext and separate it into its five alphabets.  We 
begin with the first letter and take every fifth letter after it.  Then take the 
second letter and every fifth letter after it.  Then take the third letter and 
every fifth after it.  Etc. 
 
If we determined the length of the keyword correctly, we should have 
partitioned the ciphertext into five sets of ciphertext letters each of which 
was encrypted with a Caesar cipher.  Then we proceed as we did for the first 
example of this section. 
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Let us look at each alphabet separately. 
 
Alphabet number one 
 
A 1111 
B 11 
C 111111 
D 1111111111 
E  
F 
G 111111 
H 1 
I 11111 
J 1111111 
K 111 
L 1 
M 1111 
N 1111 
O 1111111111111 
P 1111 
Q 1 
R  
S 1 
T 
U 
V 1111 
W 1 
X 11 
Y 1111 
Z 1111111111111111 
 
It appears that Z might correspond to e; that would make V correspond to a.  
The first letter of the keyword would be v.  v _ _ _ _  
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Alphabet number two 
 
A 1111111111 
B 1111111111 
C 11 
D 11 
E  
F 1 
G  
H 
I 111111 
J 1 
K 1111 
L 1 
M 1111111111111 
N 111 
O 1111 
P 1111111 
Q 111 
R  
S  
T 111 
U 11 
V 11111111111 
W 111111111 
X 1  
Y  
Z 11111 
 
It appears that M might correspond to e; that would make I correspond to a.  
The second letter of the keyword would be i.  v i _ _ _  (Guess?) 
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Alphabet number three 
 
A  
B  
C 11  
D 111 
E 111111 
F 11111 
G 111 
H  
I 1111111111 
J 11 
K 111111111111 
L 111 
M  
N 
O  
P 11 
Q  
R 1111111111111 
S 111  
T 1  
U 11 
V 11111111111111 
W 111 
X 11 
Y 111 
Z 111111111 
 
It appears that V might correspond to e; that would make R correspond to a.  
The third letter of the keyword would be r.  v i r _ _  (Guess?) 
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Alphabet number four 
 
A 11 
B 11 
C 111111 
D 
E 
F 11111 
G 1111 
H 111111 
I 11111 
J 111 
K 1 
L 111111 
M 111111111 
N 111111111 
O  
P 11 
Q 1 
R 1 
S 1 
T  
U 1111 
V 111 
W 111 
X 111 
Y 1111111111111111111 
Z 111 
 
It appears that Y might correspond to e; that would make U correspond to a.  
The fourth letter of the keyword would be u.  v i r u _  (Not many 
possibilities.) 
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Alphabet number five 
 
A 111 
B 
C 
D 11111 
E 11 
F 11111111 
G 1111111 
H 11111 
I  
J 111 
K 11111 
L 11111111111 
M 111111 
N  
O 1 
P 1 
Q 11111 
R 
S 111111 
T 11 
U 111 
V 11 
W 111111111111 
X 11 
Y 1 
Z 11111111 
 
It appears that W might correspond to e; that would make S correspond to a.  
The fifth letter of the keyword would be s.  The keyword would be  
v i r u s.  Notice that we know the keyword, but we have not yet 
deciphered the message. 
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Exercises 
 
13. Here is a message that was encrypted with a Vigenère cipher with a 
keyword of length 6. 
 

wgixf irtnx amwpz gfcln bztef roozn maour tlrno dsxjw 
xxdan zhdix nqtta hogcm rwrvj numyb gxavt mgzdt ewlqs 
wvwtm lgblk nrins ozgif bgnlm fpsqn xhvja ufgmj xyxum 
hqsxv vztea bzrpt lrijy ivnto fywew uyfse beiaw vbimm 
igwhq ceytk ppien udmiq nkmtw bnidy tgitm lcfqy fhegp 
ghewv viqbi pwsql itmtp avlzk mdmao gxmsf bgxls sokdm 
eagyz azntg zdhvx rameg qifre snood yeqts tlreg dirpt 
apirt bnqfe zwaez mzukd meavz qlitz gytln bxqvi ntkpg 
ieugz ywczu bowrl gxlmn viqwm gpsqx mpwgs amaaz fhihv 
ofehf bgfew nvjih sfmju sgywy grium rbehc zubep nukdi 
gnqtf oxumc mr 

 
13a. Find the first letter of the keyword. 
13b. Find the second letter of the keyword. 
13c. … the third letter … . 
13d. …the fourth letter … . 
13e. … the fifth letter … . 
13f. … the sixth letter … . 
13g. Find the keyword. 
13h. Decrypt the message.
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14a. Use a Kasiski test to determine the length of the keyword. 
14b. Find the keyword. 
14c. Decrypt the message. 
 
Good luck! 
 
tfrvg akceo ekiii brjgy obqgr nfbuk zimme tfyeb puwyr vqibj 
ymeyv bfwyc actpu gwvvm akout cnzxx zvnaz ojbgu tpzkg ukcrv 
punhk zlsth jqbtu fvbpn eypxn xdvcm giafv gvzly cnjgl ujunr 
enfea uyiil vttlp lhreh vafgu lzkxh nccbh xuuel vymlz kgogn 
ymoxb wbnvk exjws hnwbq amaud auoky scgom frgnz mbvor ufykz 
vivye brxhz zvgke fvkga tfvvt rthue ukkyk prstc eznoe qrgsx 
hgcwa jhhkw gnxhf zgnuc jmpzx xkprh kueku rbhvn eufio nbxwn 
fknsu lzltk cojbg umbvv bxmbn mfzhz kprxt ccene coekg ohhfv 
nyecx pgnbf coegv yujlg guekv kgntp hxvbr vquoy itbud ceogn 
xwcil vbnjw szaym iyrxs jbbuw vcmgi afvgc gke 
 
Here is a list of trigraphs that occur more than once: 
 
Trigraph   Frequency 
 

   

kpr            3 
afv            2 
bgu            2 
ceo            2 
cmg            2 
coe            2 
fvg            2 
gia            2 
gke            2 
gnx            2 
iaf            2 
ilv            2 
jbg            2 
jws            2 
kgo            2 

   lzk            2 
   mbv            2 
   mgi            2 
   oek            2 
   ogn            2 
   ojb            2 
   rvq            2 
   uek            2 
   ulz            2 
   vcm            2 
   vkg            2 
   yeb            2 
   zkg            2 
   zxx            2
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