Transposition Cipher Exercises

1. Assume that you are to cryptanalyze a ciphertext that you know was encrypted with a columnar transposition cipher using a full rectangular array. For each of the following message lengths, determine what row \times column dimensions for the array are possible.

1a. 25
1b. 22
1c. 45
1d. 12
1e. 24
2. Use a columnar transposition cipher with a rectangular array and keyword mathematician to encrypt the following message:

Sample the electronic environment of the east coast of North Korea. Emphasis is intercepting coastal radars.
3. The following message was encrypted with a columnar transposition cipher using a full rectangular array and keyword mathematics. Decrypt it.
RIUGS IPNCT MSPAL AUNCY SOOCH UEYSA
RTE
4. Cryptanalyze the following message. It was encrypted with a columnar transposition cipher using a full rectangular array.

NTDVC	ILRDT	LFNIT	AUEEE	UEOUA	OVSEN
CIOTN	CCSLS	ATIPN	RNVA		

5. A message is encrypted with a transposition cipher. What should we see if we do a frequency analysis of the message?
6. For columnar transposition, would it be easier to break a ciphertext of 65 letters if a 5×13 or a 13×5 rectangle were used for the encrypting? Explain.
7. Use a railfence cipher with 3 rails - removing the rails from top to bottom - to encrypt the message
alan turing the enigma
8. Try decrypting this message that was encrypted by using a railfence cipher with two rails.
$\begin{array}{lllllll}\text { TEETN } & \text { WRTRA } & \text { HNWSE } & \text { EOEBA } & \text { TUSHR } & \text { ISHBS } & \text { KONOO } \\ \text { MCIEA } & \text { DVLPD } & \text { YRHRC } & \text { EBU } & & & \end{array}$
9. Try decrypting this message that was encrypted with a railfence cipher with four rails:

TTTPT	QDSYP	RSHII	XEDOH	EIUNS	ESLDY	TEMES
SERSE	NELSC	NEAUC	FLERE	GAMAE	BHDIH	SCUCD

10. Decrypt the following message that was encrypted with a columnar transposition with keyword welchman.

LAOAE CEDOS EEOHN NAHRE FESSV EGEGA SCJMS WDPSD OTIAS
11. Cryptanalyze the following message that was encrypted using columnar transposition.

RTAEQ DEHLR CEERQ SVMOT HDDMQ EIEFI
12. Encrypt the message

If we have war with the United States, we will have no hope of winning unless the United States fleet in Hawaiian waters can be destroyed.
using the following transposition technique.
Fill in the grid below -- row by row from left to right. Do not place a letter in a cell containing a*.

10	2	8	1	5	3	7	4	6	9
			$*$						
	$*$	$*$						$*$	
					$*$	$*$	$*$		
				$*$				$*$	

Encrypt the message by reading down column one, then down column two, etc.

What problems would we face if we tried to cryptanalyze a message encrypted with this method?
13. Upon searching a room, the following were found on scraps of paper. Use the first to cryptanalyze the second.

On the first scrap

10	2	8	1	5	3	7	4	6	9
t	h	e	t	r	a	n	s	p	o
s	i	t	i	o	n	w	a	s	t
h	e	r	e	a	l	s	t	u	m
b	l	i	n	g	b	l	o	c	k

THASR PNEOT IINAO SWTTS EELTA USRMH NLBOG CLIKB

On the second scrap
ERMND LAIEF ETATW HYHRD HUHPT UEGRO SLAOH WDELP NAD
14. Transposition ciphers are often used to re-encrypt other ciphers. Here is a ciphertext that was first encrypted by a Caesar cipher and then encrypted again by a columnar transposition cipher using a full rectangle.
Cryptanalyze it.
$\begin{array}{lllllll}\text { AMXTX } & \text { HXXVH } & \text { HBXYA } & \text { BTGXT } & \text { TXTMM } & \text { KMVMF } & \text { UKKGX } \\ \text { YFARX } & \text { MGAXD } & \text { FWKKL } & \text { KTTTZ } & \text { WUGBL } & \text { MEMRL } & \end{array}$

15a. Determine the eight routes that are obtained from the diagonal route transposition pattern.
15b. From the spiral route transposition pattern,
15c. From the orthogonal boustrophedon pattern.
15d. From the diagonal boustrophedon pattern.
15e. From the crab spiral pattern.
66. Enter the characters ABCDEFGHIKLMNOPQRSTUVWXYZ into a 5×5 array using the basic orthogonal boustophedon pattern, and remove the characters using the basic spiral pattern.
17. Construct a 6×6 turning grille that is different from the one given in the text. Describe a procedure for constructing a 6×6 turning grille. How many 6×6 turning grilles are possible?
18. Construct a 8×8 turning grille. Describe a procedure for constructing a 8×8 turning grille. How many 8×8 turning grilles are possible?

