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Polygraphic Substitution Ciphers: The Hill Cipher, 11

The Hill cipher

The Hill cipher was introduced in 1929 by Hunter College mathematician Lester
Hill. Some things to recognize about the Hill cipher:

1. The Hill cipher is a multiplicative cipher.
Multiplicative simple substitution cipher
CT =key*pt mod 26

where there are only 12 possibilities for the key: 1,3, 5,7, 9, 11, 15, 17, 19,
21, 23, and 25. These are the only multipliers that can be used because they
are the only integers that have inverses modulo 26.

Polygraphic substitution Hill cipher.
| CT]=[key |[ pt ] mod26

where the key is an #xnmatrix, the plaintext and ciphertext matrices are
nx1 matrices, and there must be some conditions on the key so that
enciphering — multiplication by the key -- has an inverse.

2. Polygraphic ciphers, ciphers that encipher blocks of plaintext, like the Hili
cipher, make frequency analysis more difficult. For simple substitution ciphers,
there are only 26 frequency categories — one for each letter of the alphabet.
Digraphic ciphers diffuse frequency data over 26 =676 categories, trigraphic
ciphers diffuse frequency data over 26° =17,576 categories, ... .



n | number of n-grams
4 456,976
5 11,881,376

Modern block ciphers typically encipher a minimum of 16 characters in a block.

3. The Hill cipher is a block cipher — every letter in the ciphertext block depends
on each letter of the plaintext block. Notice in the digraphic case of the Hill cipher
if one plaintext letter changes then it is likely that both ciphertext letters change.

For example,
3 78h  |3x8+7x5| | 7|G
5 12(|Sle  |5x8+12x5] 22|V
but _
3 710[9]i _ [3x9+7x5]| _ [10]J
5 12)|5]e  [5x9+12x5] |1 ]A
" Each of the output numbers depends on both of the input numbers.

4. The Hill cipher is a substitution cipher. For the digraphic Hill cipher, the
substitutions can be displayed in an 26x26 array. Such an array is often called an
S-box, a substitution box. Rather than calculating each digraph substitution “on
the fly” the substitutions can be calculated ahead of time and stored in a lookup
table. Searching a small table is much faster than calculating each substitution as

needed. On the following page is the S-box that results from using E 172} as the

key. Such a box might be called an 2x2 S-box because input is a two-letter block
and output is a two-letter block.
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Decryption: Conditions on the Key

Just like for the multiplicative ciphers, we cannot use all matrices as keys because
we cannot undo the multiplication for all matrices.

To go from plaintext to ciphertext we multiply by the key:
3 71 8lh 711G
mod26
5 124 5]e 221V
Now we want to undo this; we want to find a matrix so that
? 0?7 7 8
=| |mod26
? 7] 22 5

7?9

- H

1.e, we want to find a matrix [9 _ ?:| so that

R R

? 243 7 8 :
We want to leave unchanged.
7 745 12 5

I



Matrix Inverse

7
The matrix we are looking for is called the inverse of |i5 12:| and is denoted

3 77"
5 121

1 d —b
b| _ _
It is easy to verify that {a } .| ad—be ad—be :
¢ d —c a
ad —bc ad-bc
] d —b
bl b _ —be | b 1 0 '
The product “ ¢ _|ad—bc ad—be 4 = which
¢c d| |c d —c a c d 0 1

ad —bc ad-bc

is called the identity matrix because the effect of multiplying a matrix by it is'to
leave the other matrix unchanged. (It is like multiplying a number by 1.)

) ) ) b .
Notice that to calculate the inverse of the matrix [a d} we must be able to divide
c

by ad — bc; i.e., we must have a multiplicative inverse for ad — bc. Because we are
working modulo 26, that means that ad — bc mustbe one of 1, 3,5,7,9, 11, 15,17,
19, 21, 23, or 25. Otherwise, the multiplication cannot be undone; encryption
cannot be undone. '



Determinant

ad - bc is called the determinant of {a

b
}. Notice that the determinant of a
c

2x2 matrix is just the product down the upper left to lower right diagonal minus
the product down the upper right to lower left diagonal. For a matrix to have an
inverse modulo 26, the determinant of the matrix must be 1,3,5,7,9, 11,15, 17,
19, 21, 23, or 25 modulo 26. To be able to undo multiplication by a matrix modulo
26, the determinant of the matrix mustbe 1,3,5,7,9, 11, 15,17, 19, 21, 23, or 25
modulo 26. For a matrix to be a key for a Hill cipher, the determinant of the
matrix mustbe 1,3, 5,7,9, 11, 15, 17, 19, 21, 23, or 25 modulo 26.

3 7 '
The determinant of {5 12} is 3x12-7x5=1=1mod26. So, the inverse of

3 77,
1S5
5 12
3 77" T12 =77 T12 19
= = mod?26.
5 12 5 3| [21 3

This is a special case because the determinant is 1.

Here is an example of finding the inverse of a 2x 2 matrix when the determinant is
not 1:

9 4
Thedeterrninanto’f[5 7} 1S 9x7—-4x5=63-20=43=17mod26.



Because 17 has a multiplicative inverse modulo 26, this matrix has an
inverse. The inverse of the matrix is

7 A
1717 mod 26 .
o2
17 17

Dividing by 17 modulo 26 is the same as multiplying by the multiplicative inverse
of 17 modulo 26. Recall that the multiplicative inverse of 17 is 23 modulo 26. So,
the inverse of the matrix is

7 -4
17 17 Tx23 —4x23

17 17 mod26 = . 8 mod 26
-5 9 | -5x23  9x23

17 17

161 -92 5 12
mod?26 = mod 26
-115 207 . 15 25

Calculating the determinant of an nx» matrix with » > 2 is more difficult. The
pattern used for a 2x2 matrix is a very special case. Usually calculators and
computer algebra systems are able to calculate determinants.

Similarly, calculating the inverse of an nxn matrix with » > 2 differs from
calculating the inverse of a 2x2 matrix. Again, usually calculators and computer
algebra systems are able to calculate inverses.



Decryption

Encrypting the plaintext message

Herbert Yardley wrote The American Black Chamber

3 7
using the key [5 12} results in the ciphertext

GVPIKGAJYMRHHMMSCCYEGVPEKGVCWQLXXOBMEZAKKG

12 19

We use the inverse of the key {2 |3 } to decrypt GV, which is the first digraph of

the ciphertext.

12 191 7 |G 8 |h
= mod 26
21 3 || 22|V 5|e

In a similar manner, we can decrypt the remainder of the ciphertext.



Key Construction

So, it is necessary that the determinant of the key be one of' 1, 3, 5, 7,9, 11, 15, 17,
19, 21, or 23 modulo 26.

How likely is that to happen for a 2 x 2 matrix?

There are 26" = 456,976 2 x2matrices with entries 1, 2, 3, ..., 26. The number
that have inverses is 157,248. So, the probability of “drawing one at random” is

157248 ~0.34
456976

about 1 in 3 have inverses.

Therefore, a reasonable way to generate a key is to generate a random 2 x 2 matrix
and test whether it has an inverse and repeat this process until a valid key 1s found.

Random matrices can be generated by calculator
randmat(2, 2)
and then check the determinant
mod(det(ans(1)), 26)
or using Mathematica
Randomlnteger[{1, 26}, {2, 2}]
and then check the determinant

Mod[Det[%], 26].



Number of trials | Probability that all are NOT invertible
1 0.67
2 0.44
3 (.296
4 0.198
5 0.132
6 0.088
7 0.059
8 - 0.039
9 0.026

10 0.017
11 0.011
12 0.008

It is likely in just a few trials that a key with an inverse can be found.

Known plaintext attack

It can be difficult to cryptanalyze a Hill cipher using a ciphertext only attack, but it
is easy to break using a known plaintext attack. A known plaintext attack means
that we know a bit of ciphertext and the corresponding plaintext — a crib. This is
not an unusual situation. Often messages have stereotypical beginnings (e.g., fo ...,
dear ...) or stereotypical endings (e.g, sfop) or sometimes it is possible (knowing
the sender and receiver or knowing what is likely to be the content of the message)
to guess a portion of a message.

For a 2x 2 Hill cipher, if we know two ciphertext digraphs and the corresponding
plaintext digraphs, we can easily determine the key or the key inverse. Assume
that we know that the plaintext of our ciphertext message that begins WBVE is

inma. Because WB corresponds to in {e i }[223} = {194} , and because VE
g



corresponds to ma {e i }[2 52} = F 13} . This results in two sets of linear
g N

congruences modulo 26:

23e¢ + 2f = 9
2e + 5f = 13

and

2Bg + 2h = 14
2g + 5h = 1

We solve the systems modulo 26 using Mathematica.

Solve[23e + 2f == 9 & & 22¢ + 5f = 13, {e, f}, Modulus -> 26]

{{e->1,£>19})
Solve[23g + 2h == 14 && 22g + 5h ==1, {g, h}, Modulus -> 26]

{{g->20,h->11}}

1 1
Again (with a lot less assuming) we find that the key inverse is { 20 lﬂ .



Two More Examples of a Known Plaintext Attack

Here are two examples of cryptanalyzing a Hill cipher with a known plaintext
attack. Each example is done by hand — without using Mathematica. In example
one, there is no need to reduce the modulus; in example two the modulus must be
reduced.

Example one

Ciphertext: FAGQQ ILABQ VLICY QULAU STYTO JSDJJ PODFS
ZNLUH KMOW :

We are assuming, that this message was encrypted using a 2 x 2 Hill cipher and that
we have a crib. We believe that the message begins “a crib.”

ac 11
[1,3]|[18, 9]
[6,1]1]7,17]

FA GQ



We could either solve for the key or the key inverse. To solve for the key, we
would solve '

and

To solve for the key inverse, we would solve

and

E ﬁm {193 }

We will solve for the key.



{a b}{l} = [?:l represents two linear equations modulo 26:

a +3b = 6
¢ +3d = 1
a b|il8 7
and = represents
c d||l 9 17
180 +9b = 7
18¢ +9d = 17

Now we solve the following linear congruences mod 26.

a +3b = 6 c +3d = 1
- and
18a +946 = 7 18 +94 = 17

. . +3b = 6
We will solve the pair of congruences { ¢ . first.

18a +9b =



To eliminate an unknown, multiply congruence 1 by 3

{ 3a 496 = 18

18a +9 = 7

and subtract congruence 2 from congruence 1.
—15a = 11

Modulo 26, -151s 11.
l1a = 11

Divide by 11 to obtain a.
a=1

Now substitute this in congruence 1.
1+3b=6
3b=5

The multiplicative inverse of 3 is 9 modulo 26.
b=9x3b=9%x5=45=19mod 26

So, the key looks like

3]



I
—

+3d
Now solve the system ‘
18¢ 494 = 17

3¢ 49d = 3
18 +9d 17

15¢ =14
¢=T%x15¢=7%14 =98 = 20mod 26
20+3d =1

3d =-19=Tmod 26

d=9%3d =9x7=63=11mod 26

The key is [1 19}.
20 11



Example two

We are assuming that we have a ciphertext message was that encrypted using a
2 x 2 Hill cipher and that we have a crib.

We believe that ciphertext UKJN corresponds to plaintext word.

WO rd
[23, 15] | [18, 4]
[21, 11] | [10, 14]

UK IN

The two systems of congruences are:

11
14

{23(1 +15b

21 23¢ +15d
and
18 +4b

10 18¢ +4d

il
i

We will solve the system on the left.

To eliminate an unknown, multiply congmeﬁce number 1 by 4 and congruence
number 2 by 15 both modulo 26.

l4a +8b = "6
10a +80 = 20

Subtract the second congruence from the first.
4a=-14=12mod 26

This congruence corresponds to the equation 44 =12+ 26k, 4a is 12 plus a multiple
of 26. Notice that 2 divides the coefﬁcient_of a, the constant 12, and the modulus
26. We reduce the modulus by dividing by 2.

2a=6+13k
-and we have a congruence modulo 13.

2a=6modl13



This congruence does not have a common factor among the coefficient, the
constant, and the modulus.

Here are the multiplicative inverses of the integers modulo 13:

Number 1234567 891011 12

Multiplicative inverse 17910811 2 53 4 6 12

To find @, multiply 2a =6mod13 by the multiplicative inverse of 2, which is 7.
a=7x2a=Tx6=42=3modl3

So, a is 3 modulo 13. But, there are two integers mod 26 that are 3 mod 13,
namely, 3 and 3 + 13 = 16. So, there are two possible values for a.

Ha=3,
18x3=45=10
54+4b=10
2+4b=10
4b = 8mod 26
2b=4mod13
h=Tx2b=Tx4=26=2mod13

So, b5=2 or b=2+13 = 15 modulo 16.



Ifa=16,
18x16+45=10
288+45=10
2+45=10
which yields the same solutions for 5.

Here are the 4 possible solutions for a and b.

a=3 b=2
a=3 b=15
a=16 b=2
a=16 b=15

23¢  +15d 11

Now solve )
18¢ +4d = 14

140 +8» = 18
10a +86 = 2

4¢ =16mod 26
2¢=8mod13
c=Tx2c=14c=7x8=56=4mod13

So,c=4orc=4+ 13 =17 modulo 26.



Ifc=4,
18x4+4d =14
20+4d =14
4d =—6=20mod 26
2d =10mod13
d=Tx2d=Tx10=5mod13

So,d=5o0rd=5 +13 =18 modulo 26.

Ife=17,
18x17+4d =14
20+4d =14

and we are led to the same solutions for d.

c=4 d=5
c=4 d=18
c=17 d=5
c=17 d=18

There are 16 possible 2x2 matrices that could be the key.



3 2] [3 2
17 5 17 18

[ —

(S

—_

Lh
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1

L
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Ln
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i

—

3 15 5
{4 5} 4 18] [17 5, |17 18}
16 2] [16 27 [16 2] [16 2
[4 5] [4 18} [17 SJ 17 18]
16 15| [16 15] [16 15] [16 15
[4 5} {4 _18} [17 5} 17 18}

First, calculate the determinant of each. Any matrix that does not have an
invertible determinant modulo 26 (i.e., the determinant is notone of 1,3, 5,7, 9,
11,15,17,19, 21, 23, 25 modulo 26) can be climinated. Then try to decipher the
messages with each of the remaining messages. The matrix that yields plaintext is
the key.

To break a Hill cipher with a 2x 2 key requires determining four entries — the four
entries of the key or the four entries of the key inverse. We can do that if we know
the correspondence between plaintext and ciphertext for two (independent)
digraphs because the correspondences will permit us to set up two systems of
congruences — cach system has two congruences of two unknowns.

To break a Hill cipher with a »x n key requires determining »” entries — the »’
entries of the key or the n”entries of the key inverse. We can do that if we know
the correspondence between plaintext and ciphertext for # n-graphs because the
correspondences will permit us to set up » systems of congruences — each system
has n congruences of # unknowns.

The reason that we can solve these systems of congrliences is because they are
linear. The solutions of linear systems of equations of congruences is well-
understood. The technique used to solve systems of linear equations Gaussian
elimination is a very efficient algorithm.



Re-encryption

Encrypting with a Hill cipher and re-encrypting with another key of the same size
does not improve security.

For example, if we encrypted digraphs with a Hill cipher using the key E 172}

(which has determinant 1 modulo 26) and then encrypted that ciphertext using a

Hill cipher with key E ﬂ (which has determinant 17 modulo 26), the result

would be the same as encrypting once with the key
9 4|3 7 47 111 (21 7 '
= = 26.
[5 7}[5 12} {50 119} [24 15} modulo 26
Because “the determinant of a product is the product of the determinants” (even

modulo 26), the determinant of [21 is17x1=17mod ulo 26; so, it is a valid

24 15}

Hill cipher key.

The point is, you have only one shot at using a Hill cipher — re-encrypting does not
improve security. '



Other Hill Ciphers

Hill’s papers contain techniques that are much more secure than the technique that
we have called the Hill cipher. Hill’s papers include ciphers that are nonlinear.

One technique used by Hill is to do a (nonlinear) simple substitution cipher — a
permutation -- prior to the matrix multiplication. Hill uses the following
substitutions:

a‘bcdefghijklmnopqrstuvwxyz

52322010158 41825016137 31 196 122421171422119

For example, th becomes 24 4 and then

M

V (22) L (12).



Another technique used by Hill is similar to what we did when we went from the
multiplicative cipher (C = mp) to the affine cipher (C = mp + b) by adding a shift.
For example,

3 71| 8ih . 6| [13|M
5 12[S]e |20 [16]P°
Hill’s 1929 and 1931 papers include other generalizations of the Hill cipher.

Involutory Keys

Hill ciphers have two keys: one key is used for encryption and a second key (the
key inverse) is used for decryption. (This is true for all of the ciphers that we have
studied; however, the relationship between the key and key inverse seems less
obvious for the Hill cipher.) Of course, anyone who knows some elementary linear
algebra can construct the key inverse from the key, but the encryption and
decryption keys are not the same — except in certain cases. Hill, in his second
paper, discusses using involutory matrices (matrices that are self-inverse) as keys.

0 1 25 |
4 22 4 |isinvolutory.
3 22 4

Using involutory keys would make encryption and decryption completely
symmetric, but this significantly restricts the number of keys.



The Hill Cipher

Hill’s cipher is overtly an algebraic cipher — it might have been the first. And,
Hill’s cipher generalizes to any dimension and, therefore, moved cryptography
beyond encrypting digraphs to encrypting blocks.

It appears that the weakness of Hill’s cipher — that it is linear and, therefore,
subject to a known plaintext attack -- was known early. So, the only known use of
Hill’s cipher was to encrypt Navy radio station call signs.



Ciphertext Attack

Here is a ciphertext that is known to be enciphered with a Hill cipher.

whvec

itxwb mphsr hytyw gmqgdg

yntgb pbpkl azfgy ikkru drzcp

vikwwo
xgbpz

zbpyn ezsbg jfynz yvmeo
cufve lvsjg lklls vefyt

egxyf vyncta zdkyi eenin zkygh
aaaci fueqg ywbuu urozm vigmy
zctiu ghfgu aekds ayice tkrus
onmdk

The first thing to be determined would be the size of the blocks. If the key were an
nxn matrix, then » must divide the number of letters in the ciphertext. This
ciphertext has 180 letters. There are many possibilities for r, but let us assume that
it was encrypted using a 2x 2 key. (That’s a really good assumption.)

Because such a key encrypts digraphs, we might begin by looking at digraph
frequencies. ‘



Here are the digraphs that appear more than once and their frequencies:

Digraph Frequency

bp
yn
ct
tg
ty
oz
ve
wh
yi
zC
aa
a2z
ci
dk
ab
gh
agm
gy
hy
kl
kr
ky
nz
ru
uu
vt
yv
Yw

B b0 NN R RN NN DN RN NN WWLWWW W WWwh &

If we’re lucky the most common plaintext digraph th will correspond to (one of)
the most common ciphertext digraph(s). BP and YN each appear 4 times in the

ciphertext. Let’s assume that ciphertext BP corresponds to plaintext th. (Another
really good assumption.)

We could try to determine the key or the key inverse. Because we are trying to
determine the plaintext, let’s try to directly determine the key mverse. We want to

e

, g
B(2)P(16) corresponds to t(20)h(8), then

5 ol 5]

This corresponds to two linear equations:

find a 2x2 matrix { {; } that is the inverse of the key. If we are correct that



2¢ + 16f = 20
2¢ + 16h = 8

Because this Hill cipher (we assume) encrypts digraphs, the key inverse is a 2x2
matrix. The key inverse has 22 =4 entries e, 7, g, and 4 that must be determined.
We would like to have four equations — two involving e and fand two involving g
and A.

If we knew another plaintext/ciphertext digraph correspondence, we would have
the other two equations that we need. Perhaps, the next most common ciphertext
digraph YN corresponds to the next most common plaintext digraph he. (But, it
doesn’t.)

We could try assuming that YN corresponds to another common digraph, but here
is another technique. '

The most common letter that follows plaintext th is e. We might examine the
digraphs that follow BP in the ciphertext and assume that the next ciphertext
digraph corresponds to plaintext ¢ . We notice that we have

BP KL, BP BP, BP YN, and BP ZC. If we are correct that BP corresponds to th,
the second pair of digraphs corresponds to plaintext th th. In each of the other
cases, we will assume that the two ciphertext digraphs correspond to th e .
Making this assumption, we should be correct more than half the time.

So, if KL correspondsto e , e S _° which yields the equation
— g h|12| |*
.

#

lle+12f=5. If YN correspondstoe , {e f} [25} :{ which yields the
g

hil14

equation 25¢+14f =5. If ZC corresponds to e _, [e £ } 236} r[i} which yields
g _

the equation 26e+3f =5.

Each of these can be solved simultaneously with,12e+16 /= 20 which was

- obtained by assuming that BP corresponds to th. All of the solving, however, is to
be done modulo 26. We may use whatever techniques we know for solving
systems of linear equations provided that we divide only when division is possible
—we can divide by only 1,3,5,7,9, 11, 15,17, 19, 21, 23, and 25. We will use
Mathematica to solve the equations.



Solve[2e+16f==20& & 11e+12f—5, {e,f},Modulus ->26]

{{e->1f>6+13 C[1]}}

Solve[2e+16f==20& &25e+14f==5,{c,f},Modulus -> 26]

{{e->1,£>6+13 C[1]}}

Solve[2e+16F=—=20& &26e+3{==5,{e,f} ,Modulus -> 26|

{{e->1+13 C[1].£->19}}

Each system of congruences has two solutions modulo 26. e=1and /=19 is
common to all of the pairs of solutions. That would happen if in each of these
three cases th were followed by ¢ . Let us assume that is the case. (That’s another
really good assumption.) We could later try the other possibilities if needed.

So, we believe that the key inverse is Ll’) 1]19 } :



We have one more congruence: 2g+164=8mod26. It is possible to solve a
congruence of the form ax+ by =cmodrn provided that the greatest common

divisor of a, b, and » also divides ¢. In our case, the greatest common divisor of
a=2, b=16, and n=26 is 2 which does divide ¢=8. It is necessary to reduce the
modulus; remove the factor of 2 to get g+8A=4mod13. Then rearrange the terms

to get g =4—-8hmodl3. Modulo 13, the possible values of #are 0, 1, 2, 3,4, 5, 6,
7,8,9,10, 11, and 12.

For example, if 2 =3, g= 6 mod 13. But, we are ultimately interested in what
happens modulo 26. 6 and 6 + 13 = 19 are congruent mod 13, but they are not
congruent mod 26. So, each solution mod 13 becomes two solutions mod 26.

h gmod 13 gmod 26
0 4 4,17
1 9 9,2
2 1 1,10
3 6 6,19
4 1 11,24
5 3 3,22
6 8 8,21
7 0 0,13
8 5 5,18
9 10 10, 23
10 2 2,15
11 7 7,20

12 12 12,25



The determinant of the key inverse mustbe one of 1, 3,5, 7,9, 11, 15, 17, 19, 21,

19} and calculate

23, or 25 mod 26. So, try each of these pairs of g and 4 in {; ;

the determinant mod 26. Again, we use Mathematica.

In[8]:= Mod[Det[{{1, 19}, {4, 0}}], 26]

Out[8]=2



Modbet[{{1, 19}, {17, 0}}], 26]

15

Mod[Det[{{1, 19}, {9, 1}}], 26]

12

Mod[Det[{{1, 19}, {22, 1}}], 26]

25

Mod[Det[{{1, 19}, {1, 2}}], 26]

9

Mod[Det[{{1, 19}, {10, 2}}], 26]

20

Mod[Det[{{1, 19}, {6, 3}}], 26]

19

Mod|[Det[{{1, 19}, {19, 3}}], 20]

6

Mod[Det[{{1, 19}, {11, 4}}], 26]

3



Mod|[Det[{{1, 19}, {24, 4}}], 26]

16

Mod[Det[{{1, 19}, {3, 5}}], 26]

0

Mod[Det[{{1, 19}, {22, 5}}], 26]

3

Mod|Det[{{1, 19}, {8, 6}}], 26]

10

Mod([Det[{{1, 19}, {21, 6}}], 26]

23

Mod{Det[{{1, 19}, {0, 7}}], 26]

7

Mod[Det[{{1, 19}, {13, 7}}], 26]

20

Mod[Det[{{1, 19}, {5, 8}}], 26]

17



Mod[Det[{{1, 19}, {18, 8}}], 26]

4

Mod[Det[{{1, 19}, {10, 9}}], 26]

1

Mod[Det[{{1, 19}, {23, 93}, 26]

14

Mod[Det|{{1, 19}, {2, 10}}], 26]

24

Mod[Det[{{1, 19}, {15, 10}}], 26]

11

Mod[Det[{{1, 19}, {7, 113}, 26]

8

Mod[Det[{{1, 19}, {20, 11}}], 26]

21

Mod]Det[{{1, 19}, {12, 12}}], 26]

18

Mod[Det{{{1, 19}, {25, 12}}], 26]

5



The possible key inverses are 1 19],{1 19}{1 19’ 1 19}{1 19}

17 0722 1|1 2] |6 3] |11 54
1 191 1 19] [t 191 [1 197 [1 19771 191 [1 19 and
22 57|21 6|0 7] |5 8] [10 9] |15 10 {20 11)
"1 19]
25 12f

We have reduced the problem to checking 13 possible key inverses. We try to

decrypt the ciphertext with each possible inverse. [ 210 lﬂ is the correct key

inverse.



