Chlorophyll Fluorescence Monitoring at Selected LTER Network Sites

Richard L. Boyce¹,²,³,⁴
Herman Sievering¹,³,⁵

¹Niwot Ridge LTER; ²Hubbard Brook LTER; ³Institute of Arctic and Alpine Research; ⁴Northern Kentucky University; ⁵University of Colorado at Denver

Quick & Dirty Intro to Chl F

• When a leaf is exposed to PAR, emits light ~680-760 nm
 – Fluorescence
 – Mainly from PSII
• This light can be used for probing state photosynthetic machinery in vivo
• For ecophysiologists, useful for quantifying effect of plant stress on photosynthesis in the field

Fate of Light absorbed by Chlorophyll

• Energy channeled to reaction center of PSII, used for photosynthesis
 – \(\Phi_P \)
• Thermal dissipation
 – \(\Phi_D \)
• Fluorescent emission
 – \(\Phi_F \)
• All quantum yields that sum to 1
 \(\Phi_P + \Phi_D + \Phi_F = 1 \)
Fate of Light absorbed by Chlorophyll

\[\Phi_p + \Phi_d + \Phi_r = 1 \]

- Because 1st two processes are regulated by plant, and all 3 are competitive, fluorescence depends on photosynthesis & dissipation

Chlorophyll Fluorescence Terminology

It's a jungle out there!!

Fluorescence Parameters

![Fluorescence Parameters Graph](image)
In Dark

• Dark-adapted leaf
 – Weak intermittent (modulated) light gives rise to F_0
 – Indicates open reaction centers, as the primary electron acceptor Q_A in PS II is fully oxidized

Fluorescence Parameters

In Dark

• Dark-adapted leaf
 – Pulse of strong (saturating) light gives rise to F_m
 – Q_A is fully reduced, all reaction centers are closed
 – So no energy can go to photosynthesis
 • Thermal dissipation processes are usually minimal in the dark
 • So most energy goes to fluorescence
In Dark

- Dark-adapted leaf
 - Since no light goes to photosynthesis,
 \(\Phi_{Dm} + \Phi_{Fm} = 1 \)
 - \(\Phi_{Dm} \) = quantum yield of thermal dissipation at saturating light pulse
 - \(\Phi_{Fm} \) = quantum yield of fluorescence at saturating light pulse

- Also assume that there's no change in relative quantum yields of dissipation & fluorescence during saturating pulse

\[
\frac{\Phi_{Dm}}{\Phi_{Fm}} = \frac{\Phi_D}{\Phi_F}
\]

- Combining this with 3-process equation:

\[
\Phi_P + \Phi_D + \Phi_F = 1
\]

- Gives the following:

\[
\Phi_{PSII} = \Phi_{Fm} - \Phi_F
\]

- (where \(\Phi_{PSII} \) is substituted for \(\Phi_P \), since originates mainly from PS II)

- In dark, \(\Phi_{PSII} = F_m \) and \(\Phi_F = F_o \), maximum quantum yield (\(\Phi_{PSII} \) or \(F_v/F_m \)) is

\[
\Phi_{PSII} = \frac{F_v}{F_m} - \frac{F_o}{F_m}
\]
In Light

- Light-adapted leaf
 - Sub-saturating light level gives rise to constant fluorescent level F (also called F_s or F_i)
 - A pulse of saturating light gives rise to F_m
 - Lower than F_m
 - Why?
 - Reaction centers are closed, but...
 - Thermal dissipation now competes with fluorescence

In Light

- Light-adapted leaf
 - Gives the following:
 \[\Phi_{PSII} = \frac{\Phi_m - \Phi} {\Phi_m} \]
 - In light, $\Phi_{PSII} = F_m$ and $\Phi = F$, actual quantum yield (\(\Phi_{PSII}\)) is
 \[\Phi_{PSII} = \frac{F_m - F} {F_m} = \frac{\Delta F} {F_m} \]
In Light

• Light-adapted leaf
 – Not all reaction centers in PS II are “open”
 – Some are reduced with excited electrons
 – The fraction that are open is given as:
 \[q_P = \frac{F_m' - F_m}{F_m' - F_o} = \frac{\Delta F}{F_m'} \]
 – \(F_o' \) measured by exposing leaf to far-red light for a few seconds, then covering with cloth

Fluorescence Parameters

In Light

• Light-adapted leaf
 – You may also calculate a ratio similar to that seen in dark-adapted foliage, the intrinsic quantum yield:
 \[\frac{F_m'}{F_m} = \frac{F_m' - F_o'}{F_m'} \]
 – This is the quantum yield you would have gotten were all the reaction centers open (they aren’t)
In Light
• Light-adapted leaf
 – Actual quantum yield, q_P and intrinsic quantum yield are all related:
 \[
 \frac{F_v}{F_m} = \frac{\Phi_{PSII}}{q_P}
 \]

Behavior of Fluorescence Parameters
• F_v/F_m (maximum quantum yield)
 – Typically ~ 0.8 in healthy, unstressed leaves
 – Decreases caused by **photoinhibition**
 • Shunting of light energy away from photochemistry caused by protective mechanisms and/or damage
 – Various stresses can cause photoinhibition
 – Usually changes slowly

Behavior of Fluorescence Parameters
• Φ_{PSII} (actual quantum yield)
 – $< F_v/F_m$
 – Decreases caused by
 • Decreases in F_v/F_m
 • Closure of reaction centers
 – Shunting of excess light energy away from photochemistry during the day
 • Generally decreases with increasing light
 – Changes quickly
 – Can be used to derive electron transport rate
 • Roughly proportional to photosynthetic rate
Behavior of Fluorescence Parameters

- F'/F_m (intrinsic quantum yield)
 - $\approx \Phi_{PSII}$
 - Decreases caused by photoprotective xanthophyll cycle
 - Shunting of excess light energy away from photochemistry during the day
 - Generally decreases with increasing light
 - Usually correlated with de-epoxidation of xanthophylls
 - Papers by Demmig-Adams & Adams claim thermal dissipation of captured light is proportional to $1 - F'/F_m$

Behavior of Fluorescence Parameters

- qP (proportion of open reaction centers)
 - Decreases from 1 (in dark) to about 0.5-0.95 in light

Uses of Fluorescence Parameters

- F/F_m (maximum quantum yield)
 - Cold temperatures/freezing stress
 - Excess light (with cold stress)
 - UV light
 - Nutrient stress
 - N, P, Ca
 - Pollutants
 - Drought (extreme)
 - Most responsive to stress?
Arctostaphylos in Summer & Winter

Zarter et al. 2006

Red Spruce & Balsam Fir at HBEF

Ca Fertilization Watershed Experiment

August 2005

Ca-treated > Control

$P = 0.002$

$P. \ rubens > A. \ balsamea$

$P = 0.004$

Uses of Fluorescence Parameters

- Φ_{PSII} (actual quantum yield)
 - Nitrogen deficiencies
 - Temperature
 - Drought
Uses of Fluorescence Parameters

• F'_v/F'_m (intrinsic quantum yield)
 – Nitrogen deficiencies
 – Foliar Uptake
 – Temperature
 – Drought

Uses of Fluorescence Parameters

• q_P (proportion of open reaction centers)
 – Nitrogen deficiencies
 – Temperature
 – Drought

Response of Chl F parameters to temperature

- Quercus ilex
- Corcuera et al. 2005
Effect of Canopy N Uptake

Proposed Work

- Pre-dawn, mid-day (high light) measurements
 - Because we don’t know which parameter will respond best to stress
- Do by ecosystem type
 - Coordinate with monitoring
 - Statistical modeling of potential stressors

Proposed Work

- Where should this be done?
 - Niwot
 - Andrews, Harvard Forest: interested
 - Elsewhere?
Proposed Work

- A good start for a longitudinal study
- But sparse!

Equipment Options

- Two instruments
 - Both use pulse amplitude modulation system
 - Both are portable and versatile enough for our uses
 - Both are relatively inexpensive

OS5-FL

- Manufactured by Opti-Sciences, Inc.
 - http://www.optisci.com/5fl.htm
- ~ $12.5 k
- Currently used by Boyce
PAM-2100

- Manufactured by Walz GmbH
- Successor to popular PAM-2000
- ~ $14k
- Currently used by Sievering

Protocols

- Types of measurements to make
 - Predawn
 - Fv/Fm
 - Mid-day
 - \(\Phi_{psii} \), \(F_p/F_m \), \(q_P \)
- When to make them
 - Once (twice?)/week during growing season
 - Once/month during dormant season
- What to make it on?
 - Dominant vegetation of ecosystem at each LTER