
Fall 2006
Chris Christensen
MAT/CSC 483

Mathematical attack on RSA

If we know and the public key (the modulus n and the encryption exponent e), then
we can determine d because d is the inverse of e mod n. We can use the Extended
Euclidean algorithm (in Mathematica, ExtendedGCD[integer, integer]) to determine e.
Then we can read the message.

()nφ

Now knowing is mathematically equivalent to knowing p and q – the two prime
factors of n. Why? Well, certainly is we know p and q we know

()nφ
()nφ because

()nφ = (p – 1)(q – 1). Conversely, if we know n and ()nφ , then

n - + 1 = pq - (p – 1)(q – 1) + 1 = pq – pq + p + q – 1 + 1 = p + q. ()nφ

So, we know n = pq and n - + 1 = p + q. This suggests a quadratic equation which
has p and q as its roots.

()nφ

()() ()()2 1X n n X n X p X qφ− − + + = − −

For example, if we know that n = 27153383 and ()nφ = 27142080, then solving (by
using the quadratic formula, TI-92, or Mathematica)

()()2 11304 27153383 7841 3463X X X X− + = − −

n = 7841*3463.

So, knowing and the public key (which allows us to break any message encrypted
with that key) is equivalent to factoring n. There is no known efficient algorithm to
factor large integers.

()nφ

So, how might we factor n?

We know that n is composite (in fact we know that it is the product of 2 large primes).
One of the factors of n must be less than or equal to n . The brute force attack is to try

division by all positive integers less than or equal to n . This is not recommended.

There is a factoring algorithm due to Fermat (1601 – 1665) that helps if the 2 primes are
nearly the same size. Here is how it works.

Fermat factoring algorithm

The algorithm is based upon the being able to factor the difference of 2 squares.

()()2 2x y x y x y− = + −

If , then n factors: 2n x y= − 2 ()()n x y x y= + − . But, every positive odd integer can be
written as the difference of two squares. In particular for the integers that we use of RSA
moduli n = pq,

2 2

2 2
p q p q

n pq
+ −

= = −⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

n n

Let k be the smallest positive integer so that , and consider 2k > 2k − . If this is a
square, we can factor n: if , then 2 2k n h− = ()()n k h k h= + − . If is not a

square, increase the term on the left by one and consider ()

2k − n

n21k + − . If this is a square,

n factors. If () is not a square, consider (21k + − n n)22k + − . Etc. Eventually, we

will find an h so that (factors. That is so because)2k h n+ −
2 21 1

2 2
n n

n
+ −

− =⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

.

In this case, n factors as . 1n n= ×
1

2
n

k k h
+

≤ + ≤ .

Here is an example. n = 6699557. 2588.35n ≈ ; so, k = 2589.

. So, 2 2 2 22589 6699557 58k n− = − =

()()2 26688557 2589 58 2589 58 2589 58 2647 2531= − = + − = ×

Fermat’s factorization algorithm works well if the factors are roughly the same size.

Here is another example. n = 26504551. 26504551 5148.26≈ ; so, k = 5149.

 is not a square. 25149 26504551−
 is not a square. 25150 26504551−
 is not a square. 25151 26504551−

 .
 .
 .

 2 25840 26504551 2757− =

So, ()()2 226504551 5840 2757 5840 2757 5840 2757 8597 3083= − = + − = × .

The Pollard p – 1 factorization algorithm

Let’s just consider the case of interest – factoring n = pq where p and q are large primes.
This algorithm works well if either p – 1 or q – 1 is a product of relatively small primes.
Let’s assume that p – 1 is the product of small primes.

First, we guess an r so that p – 1 divides r. Of course, in practice we will not know p, but
for the moment assume that we do know p. It might be convenient to take r to be a
factorial that is large enough that p – 1 divides r.

For example, ; so, 15! Would work because , , and 7 each divide
15!. ; so, 9! would work. But, ; so, we would
need to use at least 163!. This is what we mean by saying that we want to take r = k!
sufficiently large so that p – 1 divides r. But, remember that because we won’t know p
we are guessing that we have chosen r large enough. If r is not large enough, the
algorithm will fail to find a factor. Assuming that p – 1 divides r, we can write

3 37001 1 2 5 7− = × × 32 35
3 44536 1 2 3 7− = × × 2 25869 1 2 3 163− = × ×

 r = (p – 1) j.

Also choose a positive integer a so that 1 < a < p-1. Once again, we’re guessing that our
a satisfies this inequality.

Say, we have r sufficiently large so that p – 1 divides r and a so that 1 < a < p – 1. Then
notice that

() ()1 1 1 1mod
jp jr p ja a a− −= = = = p

What this tells us is that p divides 1ra − , and because n = pq, p divides .

In fact,

()gcd 1,ra n−

()gcd 1,ra n− = p n

)n

p

. (Unless, by chance, . In that case we choose
another a.)

1 0 modra − =

So, that’s the algorithm. After choosing r large enough so that p – 1 divides r and a so
that 1 < a < p, we calculate . (We have good algorithms for gcd
and for modular exponentiation.) If we have chosen r and a
correctly, .

(gcd 1mod ,ra n−

()gcd 1mod ,ra n n− =

Example: Let n = 70348807, a = 2, and r = 13!.

PowerMod[2, 13!, 70348807]

17662502

GCD[% - 1, 70348807]

7723

Which is one of the factors of n = 70348807. 70348807 7723 9109= × .

If we took r too small here’s what happens. Say, r = 10!. (After the fact we can see that

; so 10! is too small.) 37723 - 1 = 2 3 11 13× × ×

PowerMod[2, 10!, 70348807]

60592434

GCD[% - 1, 70348807]

1

Factoring

RSA’s public key consists of the modulus n (which we know is the product of two large
primes) and the encryption exponent e. The private key is the decryption exponent d.
Recall that e and d are inverses mod ()nφ . Knowing ()nφ and n is equivalent to
knowing the factors of n.

One attack on RSA is to try to factor the modulus n. If we could factor n, we could
calculate and (by using the extended Euclidean algorithm) determine d. ()nφ

Here are some factoring techniques:

Trial division: Try all the primes that are n≤ . It’s not very elegant, but “in theory” it
would work. The problem is that, like other brute force techniques, it’s not practical.

Fermat (1601 – 1665) factorization: Not a bad technique if p and q are relatively
equidistant from n .

(1974) Pollard p-1 algorithm: Not bad if p – 1 or q– 1 is the product of small primes.

(1975) Pollard ρ -algorithm: The book discusses this algorithm.

(1981) Pomerance quadratic sieve algorithm QSA: Still fast for up to around 110
decimal digits.

(c 1993) Number field sieve NFS: The most efficient; based on work of Pollard (1988).

(c 1987) Elliptic curve method ECM: H. Lenstra.

(1994) Schor’s algorithm: Needs a quantum computer. The existing 7 cubit quantum
computer has factored 15.

The RSA factoring challenge numbers
http://www.rsasecurity.com/rsalabs/node.asp?id=2092

http://www.rsasecurity.com/rsalabs/node.asp?id=2092

