
Fall 2006 
Chris Christensen 
MAT/CSC 483 
 
Mathematical attack on RSA 
 
If we know  and the public key (the modulus n and the encryption exponent e), then 
we can determine d because d is the inverse of e mod n.  We can use the Extended 
Euclidean algorithm (in Mathematica, ExtendedGCD[integer, integer]) to determine e.  
Then we can read the message. 

( )nφ

 
Now knowing  is mathematically equivalent to knowing p and q – the two prime 
factors of n.  Why?  Well, certainly is we know p and q we know 

( )nφ
( )nφ  because  

( )nφ  = (p – 1)(q – 1).  Conversely, if we know n and ( )nφ , then  
 

n -  + 1 = pq - (p – 1)(q – 1) + 1 = pq – pq + p + q – 1 + 1 = p + q. ( )nφ
 
So, we know n = pq and n -  + 1 = p + q.  This suggests a quadratic equation which 
has p and q as its roots. 

( )nφ

 
( )( ) ( )( )2 1X n n X n X p X qφ− − + + = − −  

 
For example, if we know that n = 27153383 and ( )nφ  = 27142080, then solving (by 
using the quadratic formula, TI-92, or Mathematica) 
 

( )( )2 11304 27153383 7841 3463X X X X− + = − −  
 
n = 7841*3463. 
 
So, knowing  and the public key (which allows us to break any message encrypted 
with that key) is equivalent to factoring n.  There is no known efficient algorithm to 
factor large integers. 

( )nφ

 
So, how might we factor n? 
 
We know that n is composite (in fact we know that it is the product of 2 large primes).  
One of the factors of n must be less than or equal to n .  The brute force attack is to try 

division by all positive integers less than or equal to n .  This is not recommended. 
 
There is a factoring algorithm due to Fermat (1601 – 1665) that helps if the 2 primes are 
nearly the same size.  Here is how it works. 
 



Fermat factoring algorithm 
 
The algorithm is based upon the being able to factor the difference of 2 squares. 
 

( )( )2 2x y x y x y− = + −  
 
If , then n factors: 2n x y= − 2 ( )( )n x y x y= + − .  But, every positive odd integer can be 
written as the difference of two squares.  In particular for the integers that we use of RSA 
moduli n = pq,   
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Let k be the smallest positive integer so that , and consider 2k > 2k − .  If this is a 
square, we can factor n:  if , then 2 2k n h− = ( )( )n k h k h= + − .  If  is not a 

square, increase the term on the left by one and consider ( )

2k − n

n21k + − .  If this is a square, 

n factors.  If ( )  is not a square, consider (21k + − n n)22k + − .  Etc.  Eventually, we 

will find an h so that (  factors.  That is so because )2k h n+ −
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In this case, n factors as .  1n n= ×
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Here is an example. n = 6699557.  2588.35n ≈ ; so, k = 2589.  

.  So,  2 2 2 22589 6699557 58k n− = − =
 

( )( )2 26688557 2589 58 2589 58 2589 58 2647 2531= − = + − = ×  
 
Fermat’s factorization algorithm works well if the factors are roughly the same size. 



 
Here is another example.  n = 26504551.  26504551 5148.26≈ ; so, k = 5149.   
 
  is not a square. 25149 26504551−
  is not a square. 25150 26504551−
  is not a square. 25151 26504551−
 
  . 
  . 
  . 
 
  2 25840 26504551 2757− =
 
So, ( )( )2 226504551 5840 2757 5840 2757 5840 2757 8597 3083= − = + − = × . 
 
The Pollard p – 1 factorization algorithm 
 
Let’s just consider the case of interest – factoring n = pq where p and q are large primes.  
This algorithm works well if either p – 1 or q – 1 is a product of relatively small primes.  
Let’s assume that p – 1 is the product of small primes. 
 
First, we guess an r so that p – 1 divides r.  Of course, in practice we will not know p, but 
for the moment assume that we do know p.  It might be convenient to take r to be a 
factorial that is large enough that p – 1 divides r.  
 
For example, ; so, 15! Would work because , , and 7 each divide 
15!.  ; so, 9! would work.  But, ; so, we would 
need to use at least 163!.  This is what we mean by saying that we want to take r = k! 
sufficiently large so that p – 1 divides r.  But, remember that because we won’t know p 
we are guessing that we have chosen r large enough.  If r is not large enough, the 
algorithm will fail to find a factor.  Assuming that p – 1 divides r, we can write 

3 37001 1 2 5 7− = × × 32 35
3 44536 1 2 3 7− = × × 2 25869 1 2 3 163− = × ×

 r = (p – 1) j. 
 
Also choose a positive integer a so that 1 < a < p-1.  Once again, we’re guessing that our 
a satisfies this inequality. 
 
Say, we have r sufficiently large so that p – 1 divides r and a so that 1 < a < p – 1.  Then 
notice that   
 

( ) ( )1 1 1 1mod
jp jr p ja a a− −= = = = p  

 



What this tells us is that p divides 1ra − , and because n = pq, p divides .  

In fact, 

( )gcd 1,ra n−

( )gcd 1,ra n− = p n

)n

p

.  (Unless, by chance, .  In that case we choose 
another a.)   

1 0 modra − =

 
So, that’s the algorithm.  After choosing r large enough so that p – 1 divides r and a so 
that 1 < a < p, we calculate .  (We have good algorithms for gcd 
and for modular exponentiation.)  If we have chosen r and a 
correctly, . 

(gcd 1mod ,ra n−

( )gcd 1mod ,ra n n− =

 
Example:  Let n = 70348807, a = 2, and r = 13!. 
 
PowerMod[2, 13!, 70348807] 
 
17662502 
 
GCD[% - 1, 70348807] 
 
7723 
 
Which is one of the factors of n = 70348807.  70348807 7723 9109= × . 
 
If we took r too small here’s what happens.  Say, r = 10!.  (After the fact we can see that 

; so 10! is too small.) 37723 - 1 = 2 3 11 13× × ×
 
PowerMod[2, 10!, 70348807] 
 
60592434 
 
GCD[% - 1, 70348807] 
 
1 



 
Factoring 
 
RSA’s public key consists of the modulus n (which we know is the product of two large 
primes) and the encryption exponent e.  The private key is the decryption exponent d.  
Recall that e and d are inverses mod ( )nφ .  Knowing ( )nφ  and n is equivalent to 
knowing the factors of n. 
 
One attack on RSA is to try to factor the modulus n.  If we could factor n, we could 
calculate  and (by using the extended Euclidean algorithm) determine d. ( )nφ
 
Here are some factoring techniques: 
 
Trial division:  Try all the primes that are n≤ .  It’s not very elegant, but “in theory” it 
would work.  The problem is that, like other brute force techniques, it’s not practical. 
 
Fermat (1601 – 1665) factorization:  Not a bad technique if p and q are relatively 
equidistant from n . 
 
(1974) Pollard  p-1 algorithm:  Not bad if p – 1 or q– 1 is the product of small primes. 
 
(1975) Pollard ρ -algorithm:  The book discusses this algorithm. 
 
(1981) Pomerance quadratic sieve algorithm QSA:  Still fast for up to around 110 
decimal digits. 
 
(c 1993) Number field sieve NFS:  The most efficient; based on work of Pollard (1988). 
 
(c 1987) Elliptic curve method ECM:  H. Lenstra. 
 
(1994) Schor’s algorithm:  Needs a quantum computer.  The existing 7 cubit quantum 
computer has factored 15. 
 
The RSA factoring challenge numbers 
http://www.rsasecurity.com/rsalabs/node.asp?id=2092
 

http://www.rsasecurity.com/rsalabs/node.asp?id=2092

