Fall 2006
Chris Christensen
MAT/CSC 483

Mathematical attack on RSA

If we know $\phi(n)$ and the public key (the modulus n and the encryption exponent e), then we can determine d because d is the inverse of $e \bmod n$. We can use the Extended Euclidean algorithm (in Mathematica, ExtendedGCD[integer, integer]) to determine e. Then we can read the message.

Now knowing $\phi(n)$ is mathematically equivalent to knowing p and q - the two prime factors of n. Why? Well, certainly is we know p and q we know $\phi(n)$ because $\phi(n)=(p-1)(q-1)$. Conversely, if we know n and $\phi(n)$, then

$$
n-\phi(n)+1=p q-(p-1)(q-1)+1=p q-p q+p+q-1+1=p+q .
$$

So, we know $n=p q$ and $n-\phi(n)+1=p+q$. This suggests a quadratic equation which has p and q as its roots.

$$
X^{2}-(n-\phi(n)+1) X+n=(X-p)(X-q)
$$

For example, if we know that $n=27153383$ and $\phi(n)=27142080$, then solving (by using the quadratic formula, TI-92, or Mathematica)

$$
X^{2}-11304 X+27153383=(X-7841)(X-3463)
$$

$n=7841 * 3463$.
So, knowing $\phi(n)$ and the public key (which allows us to break any message encrypted with that key) is equivalent to factoring n. There is no known efficient algorithm to factor large integers.

So, how might we factor n ?
We know that n is composite (in fact we know that it is the product of 2 large primes). One of the factors of n must be less than or equal to \sqrt{n}. The brute force attack is to try division by all positive integers less than or equal to \sqrt{n}. This is not recommended.

There is a factoring algorithm due to Fermat (1601-1665) that helps if the 2 primes are nearly the same size. Here is how it works.

Fermat factoring algorithm

The algorithm is based upon the being able to factor the difference of 2 squares.

$$
x^{2}-y^{2}=(x+y)(x-y)
$$

If $n=x^{2}-y^{2}$, then n factors: $n=(x+y)(x-y)$. But, every positive odd integer can be written as the difference of two squares. In particular for the integers that we use of RSA moduli $n=p q$,

$$
n=p q=\left(\frac{p+q}{2}\right)^{2}-\left(\frac{p-q}{2}\right)^{2}
$$

Let k be the smallest positive integer so that $k^{2}>n$, and consider $k^{2}-n$. If this is a square, we can factor n : if $k^{2}-n=h^{2}$, then $n=(k+h)(k-h)$. If $k^{2}-n$ is not a square, increase the term on the left by one and consider $(k+1)^{2}-n$. If this is a square, n factors. If $(k+1)^{2}-n$ is not a square, consider $(k+2)^{2}-n$. Etc. Eventually, we will find an h so that $(k+h)^{2}-n$ factors. That is so because $\left(\frac{n+1}{2}\right)^{2}-n=\left(\frac{n-1}{2}\right)^{2}$.
In this case, n factors as $n=n \times 1 . \quad k \leq k+h \leq \frac{n+1}{2}$.
Here is an example. $n=6699557$. $\sqrt{n} \approx 2588.35$; so, $k=2589$.
$k^{2}-n^{2}=2589^{2}-6699557=58^{2}$. So,

$$
6688557=2589^{2}-58^{2}=(2589+58)(2589-58)=2647 \times 2531
$$

Fermat's factorization algorithm works well if the factors are roughly the same size.

Here is another example. $n=26504551 . \sqrt{26504551} \approx 5148.26$; so, $k=5149$.

$$
\begin{aligned}
& 5149^{2}-26504551 \text { is not a square. } \\
& 5150^{2}-26504551 \text { is not a square. } \\
& 5151^{2}-26504551 \text { is not a square. }
\end{aligned}
$$

$$
5840^{2}-26504551=2757^{2}
$$

So, $26504551=5840^{2}-2757^{2}=(5840+2757)(5840-2757)=8597 \times 3083$.

The Pollard \boldsymbol{p} - $\mathbf{1}$ factorization algorithm

Let's just consider the case of interest - factoring $n=p q$ where p and q are large primes. This algorithm works well if either $p-1$ or $q-1$ is a product of relatively small primes. Let's assume that $p-1$ is the product of small primes.

First, we guess an r so that $p-1$ divides r. Of course, in practice we will not know p, but for the moment assume that we do know p. It might be convenient to take r to be a factorial that is large enough that $p-1$ divides r.

For example, 7001-1 = $2^{3} \times 5^{3} \times 7$; so, 15 ! Would work because 2^{3}, 5^{3}, and 7 each divide 15!. 4536-1 $=2^{3} \times 3^{4} \times 7$; so, 9 ! would work. But, $5869-1=2^{2} \times 3^{2} \times 163$; so, we would need to use at least 163!. This is what we mean by saying that we want to take $r=k$! sufficiently large so that $p-1$ divides r. But, remember that because we won't know p we are guessing that we have chosen r large enough. If r is not large enough, the algorithm will fail to find a factor. Assuming that $p-1$ divides r, we can write $r=(p-1) j$.

Also choose a positive integer a so that $1<a<p-1$. Once again, we're guessing that our a satisfies this inequality.

Say, we have r sufficiently large so that $p-1$ divides r and a so that $1<a<p-1$. Then notice that

$$
a^{r}=a^{(p-1) j}=\left(a^{p-1}\right)^{j}=1^{j}=1 \bmod p
$$

What this tells us is that p divides $a^{r}-1$, and because $n=p q, p$ divides $\operatorname{gcd}\left(a^{r}-1, \quad n\right)$. In fact, $\operatorname{gcd}\left(a^{r}-1, \quad n\right)=p$. (Unless, by chance, $a^{r}-1=0 \bmod n$. In that case we choose another a.)

So, that's the algorithm. After choosing r large enough so that $p-1$ divides r and a so that $1<a<p$, we calculate $\operatorname{gcd}\left(a^{r}-1 \bmod n, \quad n\right)$. (We have good algorithms for gcd and for modular exponentiation.) If we have chosen r and a correctly, $\operatorname{gcd}\left(a^{r}-1 \bmod n, \quad n\right)=p$.

Example: Let $n=70348807, a=2$, and $r=13!$.
PowerMod[2, 13!, 70348807]
17662502
GCD[\% - 1, 70348807]
7723

Which is one of the factors of $n=70348807.70348807=7723 \times 9109$.
If we took r too small here's what happens. Say, $r=10$!. (After the fact we can see that 7723-1 = $2 \times 3^{3} \times 11 \times 13$; so 10 ! is too small.)

PowerMod[2, 10!, 70348807]
60592434
GCD[\%-1, 70348807]
1

Factoring

RSA's public key consists of the modulus n (which we know is the product of two large primes) and the encryption exponent e. The private key is the decryption exponent d. Recall that e and d are inverses $\bmod \phi(n)$. Knowing $\phi(n)$ and n is equivalent to knowing the factors of n.

One attack on RSA is to try to factor the modulus n. If we could factor n, we could calculate $\phi(n)$ and (by using the extended Euclidean algorithm) determine d.

Here are some factoring techniques:
Trial division: Try all the primes that are $\leq \sqrt{n}$. It's not very elegant, but "in theory" it would work. The problem is that, like other brute force techniques, it's not practical.

Fermat (1601-1665) factorization: Not a bad technique if p and q are relatively equidistant from \sqrt{n}.
(1974) Pollard $p-1$ algorithm: Not bad if $p-1$ or $q-1$ is the product of small primes. (1975) Pollard ρ-algorithm: The book discusses this algorithm.
(1981) Pomerance quadratic sieve algorithm QSA: Still fast for up to around 110 decimal digits.
(c 1993) Number field sieve NFS: The most efficient; based on work of Pollard (1988).
(c 1987) Elliptic curve method ECM: H. Lenstra.
(1994) Schor's algorithm: Needs a quantum computer. The existing 7 cubit quantum computer has factored 15.

The RSA factoring challenge numbers
http://www.rsasecurity.com/rsalabs/node.asp?id=2092

