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Abstract 
 

In this paper, we define several disclosure risk 
measures for microdata. We will analyze disclosure risk 
based on the disclosure control techniques applied to 
initial microdata. Disclosure Control is the discipline 
concerned with the modification of data containing 
confidential information about individual entities, such as 
persons, households, businesses, etc. in order to prevent 
third parties working with these data from recognizing 
entities in the data and thereby disclosing information 
about these entities. In very broad terms, disclosure risk 
is the risk that a given form of disclosure will occur if a 
masked microdataset is released. Microdata represents a 
series of records, each record containing information on 
an individual unit. The disclosure risk measures 
presented in this paper are validated in our experiments.  
 
  
1. Introduction 
 

Microdata represents a series of records, where each 
record contains information on an individual unit such as 
a person, a firm, an institution, etc. [17]. Microdata can be 
represented as a single data matrix where the rows 
correspond to the units (individual units) and the columns 
to the attributes (as name, address, income, sex, etc.). Due 
to existing regulations in various areas, microdata can be 
released for use by the third party only after the owner of 
the data has masked the data to limit the possibility of 
disclosure. Typically, names and other identifying 
information are removed from original records before 
being released for research use. We will call the final 
microdata as masked or released microdata [3].  

Disclosure Control is the discipline concerned with 
the modification of data containing confidential 
information about individual entities, such as persons, 
households, businesses, etc., in order to prevent third 
parties working with these data from recognizing entities 
in the data and thereby disclosing information about these 
entities [2, 16]. 

In very broad terms, disclosure risk is the risk that a 
given form of disclosure will be encountered if a masked 
microdata is released. Information loss is the quantity of 
information, which exists in the initial microdata and 
because of disclosure control methods does not occur in 
masked microdata [17]. 

The problem of quantifying disclosure risk is a 
difficult one because disclosure of confidential 
information usually occurs only if the intruder has some 
external information and the owner of the data cannot 
possibly know or anticipate this information. Therefore, 
we need to make assumptions about this knowledge to 
predict the disclosure risk. Unfortunately, the assumptions 
we are forced to make are sometimes not accurate with a 
given masked microdataset.   

The masked microdata is used for statistical purposes. 
Therefore, it is often the case that only a subset (called 
sampling set) of records from the initial microdata is 
released (Usually random sampling is employed.). If n is 
the number of elements in initial microdata and t is the 
released number of elements, we call sf = t / n the 
sampling factor. Appling this method of sampling reduces 
the number of records and reduces disclosure risk. This 
method also increases information loss; one might 
initially be tempted to conclude that the information loss 
is at least 1 - sf. In actuality, the loss will likely be much 
smaller, because, this masked microdata is used for 
statistical purposes, and, therefore, it is important to 
consider different statistical measures in expressing 
information loss (mean, variance, standard deviation). 
Moreover, the masked microdata can be considered useful 
only if those statistical measures are sufficiently precise. 
This property, of preserving different statistical measures 
within a given range, is called statistical integrity [7].  

The major goal of disclosure control for microdata is 
to protect the confidentiality of the identities of 
individuals from the data. Several statistical disclosure 
control techniques such as global recoding [16, 13], local 
suppression [12], microaggregation [4], sampling [15], 
simulation [1], adding noise [9], rounding [14], post 
randomization method [10], data swapping [3] etc. were 



proposed in the literature (For an excellent survey of all 
those methods see [17].). To increase confidentiality, 
more than one method is often applied in the disclosure 
control process.  

In this paper, we define a set of disclosure risk 
measures based on combinations of particular methods. 
We justify our choices and we analyze different properties 
of those measures. Our disclosure risk measures compute 
the overall disclosure risk and are not linked to a target 
individual. We choose, in the beginning, two extreme 
measures called minimal disclosure risk (DRmin) and 
maximal disclosure risk (DRmax), and we then define a 
more general measure (Dw) based on a weight matrix. The 
disclosure risk measures presented in this paper are 
validated in our experiments. We have implemented those 
measures, and we have executed different experiments on 
simulated medical data.  

There are many ways to define disclosure risk. 
Lambert defines disclosure risk and harm as matter of 
perception [11]. Those two measure the perception of an 
intruder. Also, in this paper, two types of disclosure, 
namely, identity disclosure and attribute disclosure, are 
presented. Identity disclosure refers to the identification 
of an entity (such as a person or an institution) and 
attribute disclosure refers to an intruder finding out 
something new about the target entity [11]. The results 
presented are based on probabilities that quantify the 
perception of the intruder.  

Willemborg presents a different approach [17]. The 
risk per record is estimated using various assumptions. 
This work is more of a theoretical interest. 

The most common approach deals with population 
unique [8, 15]. Greenberg and Bethleem discuss the 
probability of “population uniqueness”[8, 2]. We 
extended this measure to minimum disclosure risk 
measure, which we present later. Other measures define 
disclosure risk as proportion of sample unique records 
that are population unique [7, 15]. Eliot defines a new 
measure of disclosure risk as the proportion of correct 
matches amongst those records in the population, which 
match a sample unique masked microdata record [5]. We 
extend those discussions and present a more practical 
approach. We define a framework for microdata 
disclosure control and we make assumptions about the 
external information known by a presumptive intruder. 
Then, we discuss remove identifier, sampling and 
microaggregation methods and we define disclosure risk 
measures for any combination of those disclosure control 
methods applied in succession to a microdataset. 

The remainder of this paper is organized as follows: 
Section 2 describes the framework for microdata 
disclosure control, Section 3 discusses disclosure risk 
measure for remove identifiers method, Section 4 
discusses disclosure risk measures where sampling and 
microaggregation are applied in succession to the initial 

microdata, Section 5 shows experimental results, and 
Section 6 gives future work in the area of disclosure 
control for microdata.  
 
2. General framework for microdata 
 

The initial microdata consists of a set of n records 
with values from three types of attributes: identifier (I), 
confidential (S) and key (K) attributes. I1, I2, .., Im are 
identifier attributes such as Name and SSN that can be 
used to identify a record. Those attributes are present only 
in the initial microdata because they express information, 
which can lead to the identification of a specific entity. 
K1, K2, …, Kp are key attributes such as Zip Code and Age 
that may be known by an intruder. Key attributes are 
present in masked microdata as well as in the initial 
microdata. S1, S2, …, Sq are confidential attributes such as 
Principal Diagnosis and Annual Income that are rarely 
known by an intruder. Confidential attributes are present 
in masked microdata as well as in the initial microdata.  

We represent the initial microdata as a matrix (IM) 
with 3 partitions that correspond to different categories of 
attributes. The rows represent the entities (individual 
entities) and the columns represent the attributes. 
Therefore: 
 IM = [ ]SI K ||  (2.1)
where  I = [ iij ] of order n x m, K = [ kij ] of order n x p, 
and  S = [ sij ] of order n x q.  

The general form of the masked microdata (M) is: 
 M = [ ]'K |' S  (2.2) 
where K’ = [ k’ij ] of order t x p, and  S = [ s’ij ] of order t 
x q.  

The number of records in the masked microdata (t) 
differs from the number of records in initial microdata (n) 
due to disclosure control methods such as sampling and 
simulation. The corresponding attribute values may also 
differ due to perturbative methods (such as global 
recoding, microaggregation, data swapping and so on) 
used in disclosure control process (this is why we use 
prime notation). 

Let r be the number of records of masked microdata 
with a corresponding record in initial microdata. 
Therefore, the following relations are always true r ≤ n 
and r ≤ t.  

We define the simulated factor: 

 fs= 
t

rt −
 (2.3) 

which represents the quantity of information simulated in 
masked microdata 

The sampling factor sf is defined as: 

 sf= 
n
r

 (2.4) 



which represents the percentage of records from the initial 
microdata that are released to the public.  

So far, the classification of attributes was made based 
on the ownership view. We have a similar classification 
based on the researcher view. In this way, we can divide 
each record into two parts: known fields and unknown 
fields. This classification is at the record level. More 
detailed discussion on this topic can be found in [17].  

In an ideal scenario, the known fields will be a subset 
of identifier and key attributes, but, unfortunately, there 
are situations when some confidential fields are also 
known fields and, therefore, more disclosure can take 
place. Due to this fact, it is very difficult to have a 
disclosure control method for general case. We can make 
assumptions about intruder possible external knowledge 
and, based on those assumptions, we will define several 
disclosure risk measures for various methods. 

The first assumption we make is that the intruder does 
not know any confidential information. Still the intruder 
may have a perception of some confidential information. 
For instance, if the intruder has to choose the income for a 
physician between two possible values, $20,000 and 
$100,000, the intruder would probably guess the right. 

The second assumption is that an intruder knows all 
the key and identifier values for population. To identify 
individuals from masked microdata the intruder will 
execute a record linkage operation between external 
information dataset and masked microdata. 
 
3. Disclosure risk measures for remove 
identifiers method 
 

Based on our previous assumptions, we consider the 
following external information available to an intruder: 
 Ext =  (3.1) [ KI | ]

Due to the fact that masked microdata is obtained by 
simply removing the identifiers attributes we will call it 
initial masked microdata (IMM).  

We note that initial masked microdata is defined as a 
projection on key and confidential attributes of initial 
microdata: 
 IMM = ΠK,S(IM) (3.2) 

Disclosure risk measures the percentage of records 
that are correctly linked by an intruder knowing IMM and 
Ext.  

We make the assumption that the key attributes are 
discrete. We cluster the data from IMM based on their 
key values. Therefore, in each cluster we will include 
records with the same values for their key attributes. We 
define the following: 
 
• n – the number of entities in the population. 
• F – the number of clusters. 

• Ak – the set of elements from the k-th cluster for all k, 
1 ≤ k ≤ F. 

• Fi = | {Ak | |Ak| = i, for all k = 1, .., F } | for all i, 1 ≤ 
i ≤ n. Fi represents the number of clusters with the 
same length. 

• ni =| {x ∈ Ak | |Ak| = i, for all k = 1, .., F } | for all i, 1 
≤ i ≤ n. ni represents the number of records in clusters 
of length i. 

Based on the above notations we have the following 
relations: 
 ni = i iF⋅ ,   i=1,.., n (3.3) 
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The first measure of disclosure risk is based on the 
percentage of unique records, which is discussed by 
Fienberg  [7]. This is represented by: 

 DRmin = 
n
n1  (3.6) 

Since we made the assumption that an intruder has 
knowledge about identifier and key values, this measure 
represents the percentage of records from the population 
that can be correctly de-identified by the intruder. This is 
a minimal disclosure risk value. Any other measure we 
may define should be greater then this minimal disclosure 
risk. 

This measure has its limits. It does not consider the 
distribution of the records that are not unique. For 
example, when population size is 100, if n2 = 100 or n100 
= 100 then the value for DRmin will be 0 for both cases. 
However, in the case of n2 = 100, the probability of an 
intruder de-identify one record is 0.5, and for case n100 = 
100 the probability is 0.01. Due to this limitation for 
minimal disclosure risk, we introduce a new disclosure 
risk measure, which consider a non-unique population. 
This measure is defined as: 

 DRmax = ∑ =
=

⋅
n

i

i

n
n

i1

1
n
F  (3.7) 

When the number of distinct values increases, the 
disclosure risk also increases. This measure is the 
maximum value for measuring disclosure risk. Only when 
more external information, i.e. confidential information, is 
available the value of disclosure risk can be greater then 
DRmax. 

This measure has its limitations too. For example, 
when population size is 100, if n10 = 100 or n1 = 9, n91 = 
91 then the value for DRmax will be 0.1 for both cases. 
Those two situations are not equivalent. In the first case 
disclosure risk is intuitively lower than in the second case. 
Therefore, we introduce a weight system to increase the 
importance of unique values over the rest of records, and 



the importance of records with double occurrence for key 
values over the records with more then double occurrence 
and so on. This constitutes the basic idea for our third 
measure. 

We define a disclosure risk weight vector w = (w1, w2, 
…, wN) with the following properties: 
a) wi ∈ R+ for all i = 1, .. , n. 
b) wi ≥ wj for all i ≤ j, i,j = 1, .. , n. 

c) = n. ∑
=

n

i
iw

1

Using the disclosure risk weight vector, we define a 
new disclosure risk measure as follows: 

 DRw = ∑
=

⋅
⋅

n

i
ii Fw

wn 11

1
 (3.8) 

Lemma 3.1. 
For every disclosure risk weights vector w, the 

following relations are true:  
DRmin ≤ DRw ≤ DRmax. 
 
Proof 

To show DRmin ≤ DRw we have: 
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To show DRw ≤ DRmax we have: 
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Lemma 3.2. 
For every disclosure risk weight vector w, 0 ≤ DRw ≤ 

1. 
 
Proof  

Using lemma 3.1 and the fact that n1 and F are 
numbers between 0 and n we get: 0 ≤  DRw ≤ 1. 
 q.e.d. 
 

Please note that when w = (n, 0, 0, …, 0) disclosure 

risk measure DRw = ∑
=

⋅
⋅

n

i
ii Fw
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1  = 
n
F1  = 

n
N1 = 

DRmin. and when disclosure risk weight vector is w = (1, 
1, 1, …, 1) disclosure risk measures DRw = 
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To illustrate those measures, we consider several 
examples of initial masked microdata with characteristics 
described in Table 3.1-3.4. Given a vector w, we compute 
disclosure risk for all those initial masked microdata using 
DRw (see Table 3.5). 

 
n = 100 n1 = 10 n2 = 20 n3 = 30 n4 = 40 n4 = … n100 = 0 
F = 40 F1 = 10 F2 = 10 F3 = 10 F4 = 10 F4 = … F100 = 0 

Table 3.1. – Initial masked microdata A 
 

n = 100 n1 = 5 n2 = 40 n3 = 15 n4 = 40 n4 = … n100 = 0 
F = 40 F1 = 5 F2 = 20 F3 = 5 F4 = 10 F4 = … F100 = 0 

Table 3.2. – Initial masked microdata B 
 

n = 100 n1 = 9 n2 = … = n90 = 0 n91 = 91 n92 = … n100 = 0 
F = 10 F1 = 9 F2 = … = F90 = 0 F91 = 1 F92 = … F100 = 0 

Table 3.3. – Initial masked microdata C 
 

n = 100 n1 = … = n9 = 0 n10 = 10 n11 = … n100 = 0 
F = 10 F1 = … = F9 = 0 F10 = 10 F11 = … F100 = 0 

Table 3.4. – Initial masked microdata D 
 

W IMM A IMM B IMM C IMM D 
(n, 0, 0, …, 0) 10% 5% 9% 0% 
(1, 1, 1, …, 1) 40% 40% 10% 10% 
(2n/3, n/3, 0, …, 0) 15% 15% 9% 0% 
(n/2, n/3, n/6, 0, …, 0) 20% 20% 9% 0% 
(n/2, n/4, n/6, n/12, 0, …, 0) 20% 18.33% 9% 0% 
(n/3, n/4, n/4, n/6, 0, …, 0) 30% 28.33% 9% 0% 

Table 3.5. – Disclosure risk examples for remove identifiers method 



Please note that DRw = DRmin. when w = (n, 0, 0, …, 0) 
and DRw = DRmax  when disclosure risk weight vector is w 
= (1, 1, 1, …, 1). As one can observe from the above table, 
using only the remove identifiers method disclosure risk 
is usually high. Therefore, at least one more disclosure 
control method needs to be applied to reduce disclosure 
risk. Disclosure risk computations when exactly one 
method is performed after remove identifiers step are 
presented in [18]. 
 
4. Disclosure risk measures for sampling and 
microaggregation methods 
 

After the remove identifiers method is applied, in 
order to protect the confidentiality of the entities, usually, 
more than one disclosure control method is applied. In 
this section, we analyze disclosure risk measures when 
both sampling and microaggregation are applied, in any 
order, to the same initial microdataset.  

Sampling is the disclosure control method in which 
only a subset of records is released [15].  

Microaggregation is a disclosure technique applicable 
to quantitative attributes. It can be applied to a single 
attribute (univariate microaggregation) at a time, or to a 
group of attributes (multivariate microaggregation). We 
will briefly discuss the univariate case. 

The idea behind this method is to sort the records from 
the initial microdata with respect to an attribute A, create 
groups of consecutive values, replace those values by the 
group average. How the groups are formed is up to the 
owner of the data. Usually, the owner specifies a 
minimum size for a group. More formally, let be X = {x1, 
x2, …, xn } where xi is the value of attribute A for record i 
and let k be the minimum size of a group. A k-partition P 
= {C1, C2, …, Cm(P)} of X is a partition where the size of 
group Ci, 1 ≤ i ≤ m(P) is at least k. Let Pk be the set of all 
k-partitions of X. Optimal microaggregation  consists of 
finding a k-partition such that the sum of distances from 
each xi to the average value for each partition  

 ∑
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is minimized, where Ci is the group to which xi belongs. 
Formally, the problem is: 
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where m(P) is not part of the input [4]. 
We use the following notations: 

• n, F, Ak , ni and Fi, for all i = 1, .., n – have the same 
meaning as in the previous section. 

• f – the number of clusters with the same values for 
key attributes in MM. 

• We cluster all records from MM based on their key 
values. Mk – the set of elements from the k-th cluster 
for all k, 1 ≤ k ≤ f. 

• fi = | {Mk | |Mk| = i, for all k = 1, .., f } | for all i, 1 ≤ i 
≤ n. fi represents the number of clusters with the same 
length. 

• ti =| {x ∈ Mk | |Mk| = i, for all k = 1, .., f } | for all i, 1 
≤ i ≤ n. ti represents the number of records in clusters 
of length i. 

• C – the classification matrix. . This t x n matrix 
represents the correlation between masked microdata 
and initial masked microdata. Each element of C, cij, 
represents the number of records that appears in 
clusters of size i in the masked microdata and 
appeared in clusters of size j in the initial masked 
microdata. Mathematically, this definition can be 
expressed in the following form: For all i = 1, .., t  
and for all j = 1, .., n; cij ==| {x ∈ Mk and x ∈ Ap | 
|Mk| = i, for all k = 1, .., f and  |Ap| = j, for all p = 1, 
.., F }|. 

Relations (3.1), (3.2) and (3.3) are holding. We have 
the following extra relations: 
 ti = ifi ⋅ ,   i=1,.., t (4.3) 
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The following algorithm describes how to calculate 

elements of C, the classification matrix. 
 
Algorithm 4.1. (Classification matrix construction) 
Initialize each element from C with 0. 
For each element s from masked microdata MM do 

Count the number of occurrences of key values of s in 
masked microdata MM.Let i be this number. 

Count the number of occurrences of key values of s in 
initial microdata IM.Let j be this number.  

Increment cij by 1. 
End for. 
 

Now, we define three disclosure risk measures similar 
to the previous sections. The first two are introduced 
below: 
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DRmin represents the percentage of records from the 

population that the intruders can de-identify because c11 
represents the number of records unique in the initial 
microdata as well as in the masked microdata. This is the 
minimal disclosure risk value. DRmax takes in 
consideration the probability of correct linking for non-
unique records. 

For the third measure we define a disclosure risk 
weight matrix, W, as follows: 

 W = 
  (4.10) 
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with the following properties: 
• wjj ≥ wjj+1 ≥ …≥ wjn for all j, 1 ≤ j ≤ n 
• w1j ≤ w2j ≤ …≤ wjj for all j, 1 ≤ j ≤ t 
• w1j ≤ w2j ≤ …≤ wtj for all j, t+1 ≤ j ≤ n 
• w1j ≥ w2,j+1 ≥ …≥ wt,j+t for all j, 1 ≤ j ≤ n – t 
• w1j ≥ w2,j+1 ≥ …≥ wn-j+1,n for all j, n – t < j < n 
• wjj ≥ wj+1j ≥ …≥ wnj for all j, 1 ≤ j ≤ n 
• wj1 ≤ wj2 ≤ …≤ wjj for all j, 1 ≤ j ≤ n 
• wj1 ≥ wj+1,2 ≤ …≤ wn,n-j+1 for all j, 1 ≤ j < n 
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The last formula proposed for disclosure risk is: 

 DRW = 
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  (4.11) 
By a proper choice for a disclosure risk weight matrix, 

the owner of the data will be able to obtain a better 
approximation for disclosure risk based on the data 
characteristics. 
 
Lemma 4.1. 

For every disclosure risk weights matrix W the 
following relations are true: 
DRmin ≤ DRW ≤ DRmax  
 
Proof 

To show DRmin ≤ DRW we have: 
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= DRW.  

To show DRW ≤ DRmax we have: 
DRW  = 
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 q.e.d. 
Lemma 4.2. 

For every disclosure risk weights matrix W, 0 ≤ DRW ≤ 
1. 
 
Proof  

Using lemma 4.1 and the fact that c11 is greater then 0 
we get: 0 ≤ DRW. 

Then DRW ≤ DRmax.= 
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Please note that when c11 = n and all other weights are 
0 in disclosure risk weights matrix DRW is equal with 
DRmin. Also when all weights are equal (cij = 1 / t for all i, 
1 ≤ i ≤ t and for all j, 1 ≤ j ≤ n) in disclosure risk weights 
matrix DRW is equal with DRmax. 
 
5. Experimental results 
 

We used simulated medical record billing data to 
perform a series of tests. The data contains the following 
attributes: Age, Race, Age_Cat (in five years increments), 
Zip and Amnt_Billed. In our experiment, we used three 
sets of initial microdata; one with size 50 (called IM50), 
one with size 500 (IM500), and the last one with size 
5000 (IM5000), all with the same set of attributes. For 
each initial microdata we considered four sets of key 
attributes (please see Appendix 1 for details regarding 
those attributes): 
• KA1 = {AGE, RACE, SEX, ZIP} 



• KA2 = {AGE, RACE, SEX} 
• KA3 = {AGE_CAT, RACE, SEX, ZIP} 
• KA4 = {AGE_CAT, RACE, SEX} 

Then, for each of those 12 different scenarios, we 
applied various series of disclosure control methods, and 
we computed minimal and maximal disclosure risk. In 
this paper, we present a few scenarios, which combine 
both sampling and microaggregation. Figure 5.1 shows 
disclosure risk variations for sampling followed by 
microaggregation for Age attribute. 
 We notice that microaggregation is effective for Age 
values when the group size is large. The reason is the 
initial grouping of the Age attribute values from the initial 
microdata. Similar results were obtained when we first 
applied microaggregation for Age attribute and then 
sampling, still there are some differences. Those 
differences are depicted in Figure 5.2. 

Both minimal disclosure risk and maximal disclosure 
risk are lowered when sampling is applied first followed 
by microaggregation. This is true for any sampling factor 
as well as the one presented in Figure 5.2. The reason for 
this result is due to the fact that by applying 
microaggregation after the sampling, the group size for 
Age attribute is at least equal with microaggregation 
parameter. However when microaggregation is applied 
first, due to the sampling, the group size may be less than 
microaggregation parameter. 

 
6. Conclusions and Future Work 
 

In this paper, several disclosure risk measures were 
presented. We implemented those results and executed a 
series of tests over simulated sets of data. From the 
experiments, we drew one conclusion about the order of 
applying more than one disclosure control method for an 
initial microdata: the sampling followed by 
microaggregation performs better with respect to 
disclosure risk computations than vice versa.  
 The disclosure risk weight matrix should capture the 
specifics of the data and the goals of the data owner. The 
data owner can change priorities between different 
clusters of records. More testing must be done to develop 
automated techniques for choosing the disclosure risk 
weight matrix. In this paper, we were able to determine 
the range for disclosure risk for any weight matrix, and 
this range is independent of the disclosure risk weight 
matrix chosen. Most of the time by using the interval 
between minimal and maximal disclosure risk, the data 
owner can decide if the data is protected against 
disclosure. When more accuracy is needed, the data 
owner must choose the weight matrix for disclosure risk 
computations. 
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Figure 5.1. – Sampling, followed by microaggregation for Age when IM5000 and KA1 are used. 
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Figure 5.2. – Sampling and microaggregation for Age when IM5000 and KA1 are used. 
 



The future work in this field can be divided into three 
areas. One is to develop disclosure risk measures for other 
methods and to generalize them further, the second one is 
to express information loss in general formulas, to study 
the dependence between information loss and disclosure 
risk, and the last one is to find patterns of applying 
successively more than one disclosure control methods 
for a given initial microdata to minimize both disclosure 
risk and information loss. Practical experiments that will 
use data intrusion simulation [5] techniques  must be 
finally performed for various data sets in order to validate 
the results. 
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Appendix 1 – Number of Distinct Values for 
Key Attributes 
 

Attribute IM50 IM500 IM5000 
SEX 2 2 3 
RACE 4 7 7 
AGE 38 88 102 
AGE_CAT 16 18 19 
ZIP 44 291 771 
KA1 = {AGE, RACE, 
SEX, ZIP} 

50 498 4775 

KA2 = {AGE, RACE, 
SEX} 

48 273 650 

KA3 = {AGE_CAT, 
RACE, SEX, ZIP} 

50 493 4314 

KA4 = {AGE_CAT, 
RACE, SEX} 

39 105 167 
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