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Extracting useful knowledge from social network datasets is a challenging problem. While
large online social networks such as Facebook and LinkedIn are well known and gather
millions of users, small social networks are today becoming increasingly common. Many
corporations already use existing social networks to connect to their customers. Seeing
the increasing usage of small social networks, such companies will likely start to cre-
ate in-house online social networks where they will own the data shared by customers.
The trustworthiness of these online social networks is essentially important for decision
making of those companies. In this paper, our goal is to assess the trustworthiness of
local social network data by referencing external social networks. To add to the diffi-
culty of this problem, privacy concerns that exist for many social network datasets have
restricted the ability to analyze these networks and consequently to maximize the knowl-
edge that can be extracted from them. This paper addresses this issue by introducing
the problem of data trustworthiness in social networks when repositories of anonymized
social networks exist that can be used to assess such trustworthiness. Three trust score
computation models (absolute, relative, and weighted) that can be instantiated for spe-
cific anonymization models are defined and algorithms to calculate these trust scores
are developed. Using both real and synthetic social networks, the usefulness of the trust
score computation is validated through a series of experiments.
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1. Introduction

Social networks have been studied by various research communities for more than
50 years.1 However, the advent of the online social networks and the wide adop-
tion of such networks by our society have significantly increased the importance
of obtaining useful information from these networks. Extracting useful knowledge
from social network datasets proves to be a difficult problem and social network
mining is currently identified as one of the most challenging problems in data min-
ing research.2 To add to the difficulty of this problem, privacy concerns exist for
many social network datasets. Such concerns have resulted in limited accessibility
to social network datasets and thus in reducing the quantity and quality of the
knowledge that could be extracted from these datasets. Such knowledge may have
important applications, such as disease spreading models in epidemiology, emer-
gency management, protection from cyber-attacks, etc.

While large online social networks such as Facebook and LinkedIn are well
known and gather millions of users, small social networks are today becoming
increasingly common. Currently, such small niche social networks such as GoFISHn
and GoHUNTn are considered as the new trend in online social network usage.3

Many corporations already use existing social networks to connect to their cus-
tomers. Seeing the increasing usage of small social networks, such companies will
likely start to create in-house online social networks where they will own the data
shared by customers. Nowadays, for many services (insurance, airline miles, travel
sites, etc.), users have individual accounts on company websites. However, there is
no network structure connecting accounts of different users, and therefore the rela-
tionships that may exist among such users are not efficiently used by the company.
The benefits that can be obtained from adding relationships among customers are
significant and include increased possibilities to expand the customer base, increased
usage of provided services by the current customers, better marketing opportuni-
ties, and so on. Future breakthroughs in social network mining will also expand
these opportunities.

Of course, adding relations between their customers has its challenges. A first
challenge is to update the existing software and hardware for this new model.
Fortunately, such challenge is easily solved once a company allocates the necessary
resources. A second challenge is that users must have an incentive to connect among
themselves in a company-owned social network. This is not a trivial problem and
will likely be a difficult challenge to address. However, by using financial incentives,
the users will start to connect to their friends or acquaintances in order to get better
deals. For instance, an insurance company may use incentives such as 10% savings
on their car insurance costs if a customer registers on his/her social networks site
and recommends a minimum number of friends. Next, the amount of savings can be
increased based on how many of his/her friends will buy insurance from the same
company. Such incentives could also be used to motivate a user to complete his/her
profile, and this would allow the insurance company to have a wealth of information
about its users that could potentially be used to increase its business. Even more
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complex models can be created for airline or phone companies. It is also worth
noting, that such company-owned social networks are already used by telecommu-
nication companies since they can connect customers based on existing phone calls.

It can be easily seen that such local social networks have many benefits for
the organizations that own them. However, the users’ main motivation for joining
and providing the required information is to get the desired service at a discount
price or any other incentive associated with the use of this company-owned social
networking site. Therefore, it is expected that users will be less likely to provide
only accurate information in their profiles (due to privacy concerns or because of
other advantages that could be obtained by partially faking profile information).
An example of a possible advantage that could be obtained is as follows. A user
can report his marital status as single although he is married. The reason of such
reporting is that his wife may be under 25 years old and adding her in the profile may
result in the insurance agency include her in the insurance policy and therefore in
increasing the auto insurance rate. Other examples include misreporting of address,
age, and so on. However, due to incentives and since relationships are approved by
both participants, links in such social network will likely to be accurate.

This possibility of faking part of profile data will diminish the utility of the
data. The organizations that own such data will benefit from it if they can assess
the trustworthiness of such data and if they can identify possible fake information.
Unfortunately, due to privacy regulations, large social network datasets that could
potentially be used to verify local information are not available in clear due to pri-
vacy concerns. However, we can expect that anonymized social network datasets be
available, perhaps upon payment, and they can be used to determine the trustwor-
thiness of local data. The existence of significant amount of work in data privacy
and in particular social network privacy and anonymity would make it possible to
disclose this data in anonymized form.

To summarize, in our framework, one company will create and maintain a local
social network (usually of its customers). The company also has access to one
or more anonymized social network datasets that contain the nodes (customers)
present in its local social network. Based on these anonymized networks, the com-
pany will compute a trust score of its customers and based on these score values
will decide to make additional verifications regarding the validity of the reported
data or take other actions.

The main contributions of this paper are as follows:

• To introduce the problem of data trustworthiness in social networks when
repositories of anonymized social networks exist. To our knowledge there is no
prior work that addresses data trustworthiness in social networks.

• To present three trust score computation models (absolute, relative, and
weighted) that can be instantiated for specific anonymization models.

• To introduce algorithms to calculate the trust score for nodes (customers) from
the local social network for two existing social network anonymization models.
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• To illustrate the validity of our trust score computation through experiments.
We used both real and synthetic social networks in our experiments.

The remaining of the paper is structured as follows. Section 2 discusses related
work. Sections 3 and 4 define the problem and introduce the notion of trust score for
customer profile information, respectively. Section 5 summarizes the social network
anonymization model introduced by Campan and Truta4 and presents an algorithm
for computing the trust score when such an anonymized social network is available.
Section 6 discusses the social network anonymization model by Liu and Terzi.5

A similar algorithm to compute the trust score is also introduced in this section.
Experimental results on real and synthetic social network datasets are reported in
Sec. 7. Section 8 concludes the paper and outlines future research directions.

2. Related Work

Computing trust for social networks based on external anonymized networks to our
knowledge has not yet been investigated. The closest areas to our work are social
network privacy and trust (reputation) in social networks. Other areas that are
of interest include graph isomorphism/approximate graph matching and modeling
social networks with node attributes.

Social network privacy is a growing area by itself and there are a large num-
ber of papers in this field. Many recent studies including the two anonymization
models used in this paper focus on protecting vertex identities in published social
networks.4–11 Cheng et al.6 identify two kinds of information, which describe node
information and link information, as main types of sensitive information. They show
that the problem to protect such information is NP-hard and propose a solution
based on k-isomorphism. Tai et al.8 formulate a new privacy approach for protecting
the community identity of each individual in published social networks. To ensure
privacy for community identities, they propose k-structural diversity which requires
that, for each vertex, there are other vertices with the same degree locating in atleast
k − 1 other communities. Wu et al.9 propose the k-symmetry model to achieve pri-
vacy for social network. Their main idea is to modify the network so that for each
vertex v, there exist atleast k−1 other vertices such that each of them is an image of
v under some automorphism of the modified network. Zhou et al.11 study one type
of privacy attacks in social networks: neighborhood attacks, in which the adver-
sary has the knowledge of neighborhood information of the victim. Most of these
approaches focus on a k-anonymity like approach, while others use a randomization
approach.10 A different privacy model is proposed by Gehrke et al.12 defined as an
extension of differential privacy.13 The focus of such model is on releasing informa-
tion about the structure of the social network instead of an anonymized network.
De-anonymizing users in social networks is also analyzed in several papers.7,14,15

Backstrom et al. introduce passive and active attacks for de-anonymization of social
networks.14 Narayanan and Smatikov propose an algorithm that using the social
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network topologies aims at de-anonymizing the social network.15 Hay et al.7 use
structural queries such as subgraph and hub fingerprint queries to de-anonymize
social networks.

Trust in social networks is in general considered at two levels: global and local.16

At the global level, the trustworthiness of each node is computed based upon com-
plete graph information, while at the local level, trust is computed with respect
to the perspective of each specific user. Local trust models include a reputation
system based on maximum flows,17 a system based on weighted paths,18 and a
system based on spreading activation.16 Global trust is in general computed based
on social ties and high trust is typically associated with influential/authoritative
nodes in the network. Methods such as Katz’s index,19 PageRank,20 and HITS21

are used to find such relevant nodes in a social network. Some recently developed
websites22,23 also use the same idea of reputation systems to detect and remove
fake profiles from social networks. To our knowledge, there is no global trust com-
putation approach for a local social network that is owned by an organization as in
the problem that we address in this paper.

Graph isomorphism and exact subgraph matching are well-known NP-
problems.24,25 While improvements to the original backtracking algorithm proposed
by Ullman25 exist, they are not efficient for large networks. Cordella et al.26 pro-
pose a deterministic matching method for verifying both isomorphism and subgraph
isomorphism. A state space representation (SSR) of the matching process is used
and a set of five feasibility rules for pruning the search tree are introduced in their
paper. The main improvement introduced in their work is that the data structures
employed during the exploration of the search space are organized in such a way
to significantly reduce memory requirements. However, the algorithm proposed is
only suitable for matching graphs with thousands of nodes and edges, which is much
smaller compared to the size of online social networks. A more efficient approximate
graph matching methods exist.27,28 Gori et al.27 proposed a graph matching algo-
rithm which uses the random walk model to compute topological features that can
be used to reconstruct the mapping between corresponding nodes in the isomor-
phic graphs. The features and the matching can be computed efficiently. Pedarsani
et al.28 study the problem of finding the correct mapping between the node sets
of two structurally similar graphs. Using ideas from graph sampling in modeling
evolution of networks, they proposed a probabilistic model for deriving two sampled
versions of an underlying graph as “noisy” versions of the networks to be matched.
They prove that using the simplest matching criterion based only on network topol-
ogy, a perfect matching between the nodes can be established with high probability
as the network size grows large, under simple conditions for the sampling process.
Unfortunately, they try to minimize node mismatches27 or edge mismatches28 and
they are not applicable to our trust score computation.

Modeling social networks with node attributes is a very new field in social net-
work.29,30 Mislove et al. use node attribute values as well as the entire graph struc-
ture to predict the attribute’s values of the remaining nodes.29 Kim and Leskovec
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present a multiplicative attribute graph model that considers nodes with categorical
attributes and models the probability of edges forming between different nodes.30

Zheleva et al.31 attempt to predict the private attributes of users in real-world
datasets. In addition to using general relational classification, they introduce a
group based classification by taking advantage of specific types of attributes in each
of the social networks. Heatherly et al.32 propose two learning models based on node
properties and friendship links. In addition, they explore the efiect of removing node
properties and links in preventing sensitive information leakage. These approaches
have the potential of being used to generate synthetic social network with user’s
profiles that follow the same properties as the real-world networks.

3. Problem Definition

We assume that a company has created its own social network. Since this network
is usually obtained from its own customers that willingly share their data with the
company, we call such a company data owner. We use the term local social network
to refer to the company-owned network. We model this local social network as a
graph G = (N , E), where N is the set of nodes and E ⊆ N × N is the set of edges.
Each node represents an individual entity such as a customer and each edge repre-
sents an existing relation between two nodes. Each node has an associated profile
represented by a set of attributes. This set of attribute contains identifier, quasi-
identifier, and occasionally sensitive attributes4 that are supposed to be known by
the data owner. We assume that all relationships in this local social network are
binary. Moreover, we assume all relationships to be of the same type and, as a
result, we represent them via unlabeled undirected edges. We use X or Y to repre-
sent individual nodes, and Xi, i = 1, . . . , n, to represent all the nodes in N , where
n = |N |. We use the notation X.A to refer to the attribute A′s value for the node X .

We assume that the owner of the local social network has access to one or
more anonymized social networks. An anonymized social network is provided by
an external organization (such as Facebook or LinkedIn) that protects the identity
and the sensitive information in the social network data by using an anonymization
process. We will discuss two existing social network anonymization models in Secs. 5
and 6. We assume that there are s such anonymized social networks available. We
represent these networks as AGj = (AN j , AEj) (j = 1, s). Each such anonymized
social network is created by the external organization, owner of the social network,
from an original graph. We label the corresponding original graphs as Gj = (N j , Ej).
It is worth noting that these graphs are large compared to the local social network.

We initially assume that each anonymized social network contains all nodes from
N . Moreover, we assume that all edges from the local social network are present
in the underlying social networks from which the anonymized social networks were
created. In other words, N ⊆ N j and E ⊆ Ej , for all j = 1, . . . , s. While both of
those assumptions seem to restrict the usefulness of this model, they help us to fully
define the problem while focusing on the trustworthiness of the local social network.
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In addition to the above assumptions, we initially consider that the anonymized
social networks are fully trusted (no fake information was provided to them by the
corresponding users). We relax this assumption in Sec. 7 by introducing trust scores
associated with nodes of these anonymized networks.

Since individuals from the local social network G are present in each anonymized
social networks AGj , the set of attributes from N and the set of attributes from
AN j are not disjoint. However, due to anonymization, all identifier attributes are
removed from AN j . Also, the sensitive attributes are not shared between N and
AN j (due to privacy concerns and/or regulations the sensitive data that might be
owned by the owner of the local social network is not available to the external
organization that creates the anonymized networks). Based on these assumptions,
only a subset of quasi-identifier attributes is common.

We also assume that the owner of the local social network trusts the validity of
some of the attributes shared with the anonymized networks, while consider other
attributes less reliable.

The data owner wants to determine a trust score of nodes information with
respect to those non-trusted attributes and to perform additional verification if
this score is low. As we discuss later, the data owner will compare the trust scores
for all nodes and will select a percentage of the lowest scores for this additional
verification. Without limiting the applicability of our approach, we assume that
we have only one target attribute, labeled B, which may contain misreported/non-
trusted information. When more attributes are non-trusted, we can compute the
trust score for one attribute at a time. In order to assess the trustworthiness of
values for this attribute B, the attribute must exist in each anonymized social
networks (otherwise the anonymized social network is not useful and will not be
considered). We denote the other trusted attributes existing in both the anonymized
social network and the local social network with A1, A2, . . . , Aq, where q is the
number of shared attributes. Note that this set depends on the selected anonymized
social network; in other words, the set of common attributes is specific for each
anonymized social network and changes for each selected anonymized social network
(the number q also changes). Since in our analysis we use only one anonymized social
network at the time (see Fig. 1), for simplicity, we use the same notation for each
set of common attributes between local and anonymized social network.

4. Trust Scores

We use the notation TS(X.B) (trust score) to denote the trustworthiness for
the attribute B′s value for the node X . For this measure we use all available s

anonymized social networks. To obtain this measure, we use the intermediary trust
scores that we compute for each anonymized social network. We use the notation
TSj(X.B) (j = 1, . . . , s) when AGj is used in this intermediary measure.

We compute such an intermediary trust score, TSj(X.B), by matching a node
X from the local social network to nodes from an anonymized social network. We
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Fig. 1. Trust score computation framework.

consider in this matching, the node attribute’s information (that is, the values of
attributes B, A1, . . . , Aq) and the graph structure. The approach used to compute
such score is not unique. For instance, we can consider the trust score as the per-
centage of nodes from the anonymized social network that could potentially be X .
We refer to this approach as absolute trust score. A second approach first computes
how many nodes from the anonymized network can be X when only the trusted
attributes A1, . . . , Aq and the graph structure are used. We then find the subset
of those nodes that match the value of the B attribute as well (note that a non-
generalized value will match its ancestors on the value generalization hierarchy).
The number of those nodes divided by the number of nodes that matches X based
only on trusted values and graph structure is our second measure of trust. We refer
to this measure as relative trust score.

Our last approach to compute an intermediary trust score includes a weight that
depends on how the values of attribute B are published in the anonymized social
network. In most anonymized networks, generalization33,34 is used to anonymize the
quasi-identifier attributes, and in this case we would like to differentiate between
cases when a specific value (such as the exact name of a city) or a generalized
value (such as the name of the country) is used. We thus extend the relative trust
score computation approach by assigning a higher weight to matches of X with
anonymized nodes that contain more specific information for B. More precisely,
the weight associated with a specific value is 1, and the weight decreases when the
amount of generalization increases. For example, considering the attribute city, the
weight associated with a single value like Chicago is 1 and the weight associated with
a generalized value like Illinois is 1/10 assuming that there are 10 cities in Illinois
in the value generalization hierarchy used for this attribute. We assume each weight
to be a strictly positive value. We refer to this approach as weighted trust score.

Before we formally represent these three measures in Definitions 1–3, we intro-
duce the following notations:

• nj : the number of nodes in the anonymized graph AGj .
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• matched B(X, AGj): the number of nodes in AGj that can potentially be X . All
attributes (B, A1, . . . , Aq) and the graph structure are used in this determination.

• matched No B(X, AGj): the number of nodes in AGj that can potentially be X .
Only trusted attributes (A1, . . . , Aq) and the graph structure are used in this
determination.

• matched weighted B(X, AGj): each node in AGj that can potentially be X will
contribute with a weight in the interval (0, 1]. This weight is based on the
amount of generalization for the attribute B′s value in the anonymized graph
(see previous paragraphs for a discussion of weights). All such weights are
added for the final result. All attributes (B, A1, . . . , Aq) and the graph struc-
ture are used in this determination. It can be easily noticed that for any X ,
matched weighted B(X, AGj) ≤ matched B(X, AGj).

Definition 1 (Intermediary Absolute Trust Score). The intermediary absolute
trust score for a node X with respect to an anonymized network AGj , denoted
by ATS j(X.B), is defined as:

ATSj(X.B) =
matched B(X, AGj)

nj
.

Definition 2 (Intermediary Relative Trust Score). The intermediary relative trust
score for a node X with respect to an anonymized network AGj , denoted by
RTS j(X.B), is defined as:

RTSj(X.B) =
matched B(X, AGj)

matched No B(X, AGj)
.

Definition 3 (Intermediary Weighted Trust Score). The intermediary weighted
trust score for a node X with respect to an anonymized network AGj , denoted by
WTS j(X.B), is defined as:

WTSj(X.B) =
matched weighted B(X, AGj)

matched No B(X, AGj)
.

The techniques for computing those three intermediary trust score measures
depend on the specific techniques used for the social network anonymization, and
we defer their presentation to Secs. 5 and 6.

The range for any such intermediary trust score measure is between 0 and 1.
The value of 0 is obtained when X does not match any node from the anonymized
social network. The value of 1 is obtained in different situations depending on the
used intermediary trust score measure. For the absolute trust score, the value of
1 means that all nodes in the anonymized network can potentially be X . For the
relative trust score, a value of 1 is obtained when the use of the B attribute value
will not limit the number of matches the node X has in the anonymized graph.
For the weighted trust score, the value of 1 is obtained when the relative trust
score measure is 1 and the attribute B has specific values (non-generalized) in each
matched node in the anonymized social network.
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Definition 4 (Trust Score). The trust score for a node X with respect to a non-
trusted quasi-identifier attribute B value is defined as the average of intermediary
trust score values computed for all anonymized social networks if all such values
are strictly greater than zero and 0 if one such intermediary value is 0. Let s be the
number of available anonymized social networks; the trust score is defined as:

TS(X.B) =




0, if ∃ j ∈ 1, . . . , s such that TSj(X.B) = 0

avg
j=1,...,s

TSj(X.B), otherwise.

In Definition 4, we can use any intermediary trust score measure (absolute, relative,
and weighted) and consequently we will obtain three different measures for the total
trust score. We use ATS (X.B), RTS (X.B), and WTS (X.B) to denote those three
total trust score measures.

The following properties hold.

Property 1. ATS (X.B), RTS (X.B), and WTS (X.B) take values in the interval
[0, 1] for all nodes X .

Proof. Since all intermediary trust score values are between 0 and 1, their average
is also between 0 and 1.

Property 2. If any trust score measure is 0 for a given node X , then the other
two trust score values are also 0. In other words,

(a) If ATS (X.B) is equal to 0, then RTS (X.B) and WTS (X.B) are 0.
(b) If RTS (X.B) is equal to 0, then ATS (X.B) and WTS (X.B) are 0.
(c) If WTS (X.B) is equal to 0, then ATS (X.B) and RTS (X.B) are 0.

Proof. (a) This follows directly from the definitions of trust scores. If ATS (X.B)
is 0 then atleast in one anonymized network AGj , ATS j(X.B) is 0. Then based on
Definition 1, matched B(X, AGj) is 0. Since the same numerator is used for the inter-
mediary relative trust score, RTS j(X.B) is also 0, and consequently RTS (X.B) = 0.
We also know that matched weighted B(X, AGj) ≤ matched B(X, AGj), and, there-
fore, matched weighted B(X, AGj) is 0. Based on this and Definitions 3 and 4,
WTS (X.B) = 0. The proofs for (b) and (c) are similar.

Property 3. For any node X , ATS (X.B) ≤ RTS(X.B).

Proof. We already know (Property 2) that if one trust score is 0 the other one is
also 0; in this case Property 3 holds. For each anonymized social network

AGj , j = 1, . . . , s,

ATSj(X.B) =
matched B(X, AGj)

nj
≤ matched B(X, AGj)

matched No B(X, AGj)

= RTSj(X.B)
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(matched No B(X, AGj) will be at most equal to the number of nodes from AGj(nj)).
By computing the average of intermediary trust scores we get ATS (X.B) ≤
RTS(X.B).

Property 4. For any node X , WTS (X.B) ≤ RTS(X.B).

Proof. Because of Property 2, we know that if one trust score is 0, the other one
is also 0. In this case, Property 4 holds. For any anonymized social network

AGj , j = 1, . . . , s,

WTSj(X.B) =
matched weighted B(X, AGj)

matched No B(X, AGj)

≤ matched B(X, AGj)
matched No B(X, AGj)

= RTSj(X.B).

By computing the average of intermediary trust scores, we get WTS (X.B) ≤
RTS(X.B).

The data owner computes the trust score for local nodes, either for all nodes or
for a subset that it has already identified through other means as being less trusted
with respect to their self-reported B attribute value. Of particular importance are
nodes with a trust score of 0. Based on our problem assumptions, such nodes have
fake values for the attribute B. The data owner can extract the set of possible
values for the attribute B that such a node X may have from each anonymized
social network. This is executed by considering all B attribute values from all the
nodes from each anonymized network that match a node X when only trusted
attributes A1, . . . , Aq and the graph structure are used. Therefore a set of possible
values for attribute B is obtained for each anonymized network. The last step
in this procedure is to intersect all these sets of possible values. Again, due to
the assumption that the underlying graphs contain only valid information, the set
of possible B attribute values obtained by such intersection will never be empty.
For those nodes that have a positive trust score, the data owner is in general not
certain of the correctness of the B attribute value. The strategy for those nodes is
to sort them based on trust score values and to consider a predefined number (or
percentage) of nodes that have the lowest trust score values for a human analysis.
These nodes have definitely a higher risk of misreported information. In Sec. 7, we
apply this strategy for each of the three trust score measures and we experimentally
compare which trust score provides the most accurate results.

The weighted trust score measure has an interesting property. If the intermedi-
ary weighted trust score for a node X and an anonymized network AGj is 1, then
matched No B(X, AGj) is equal to matched weighted B(X, AGj). This means that
the set of nodes from AGj that matches X is the same whether the attribute B value
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of the node X is used or not. Moreover for each node from this set, the correspond-
ing attribute B value must be identical to the attribute B value of node X because
if this value would be generalized the weight associated with the computation of
matched weighted B(X, AGj) would be strictly less than 1 and the intermediary
weighted trust score could not be 1. This means that the data owner knows with
absolute certainty that the attribute B value for node X is correct, and thus node
X is fully trustworthy. It is easy to notice that the other two trust measures do not
have this interesting property. This observation leads us to the updated version of
weighted trust score definition (see Definition 5).

Definition 5 (Weighted Trust Score). The weighted trust score for a node X with
respect to a non-trusted quasi-identifier attribute B value is defined as follows:

WTS(X.B)

=




0, if ∃ j in 1, . . . , s such that WTSj(X.B) = 0
1, if ∃ j in 1, . . . , s such that WTSj(X.B) = 1

avg
j=1,...,s

WTSj(X.B), otherwise.

5. Trust Scores for k-Anonymous Clustered Social Network

5.1. Anonymization model

As our approach depends on the specific anonymization approach used, we first
succinctly present the social network anonymization model introduced in Ref. 4.

Consider an initial social network to be anonymized. Using a grouping strategy,
one can partition the nodes from this network into pairwise disjoint clusters. The
goal is to make sure that any two nodes from any cluster are indistinguishable based
on their relationships and quasi-identifier attributes values. To achieve such goal,
Campan and Truta developed intra-cluster and inter-cluster edge generalization
techniques that were used for generalizing the social network structure. They also
used generalization33,34 for quasi-identifier attributes values and each cluster will
have its profile replaced by the generalization information of that cluster (the mini-
mal covering tuple for that cluster). This generalization information is defined next.

Definition 6 (Generalization Information of a Cluster). Let cl = {X1, X2, . . . , Xu}
be a cluster of tuples corresponding to nodes selected from IN , QN be the set
of numerical quasi-identifier attributes, and Q C be the set of categorical quasi-
identifier attributes. The generalization information of cl w.r.t. quasi-identifier
attribute set Q I = Q N ∪Q C is the “tuple” gen(cl), having the schema Q I , where:

• For each categorical attribute C ∈ QI , gen(cl)[C] is equal to the lowest common
ancestor in HCj of {X1.C, . . . , Xu.C}. We denote by HC the hierarchies (domain
and value) associated with the categorical quasi-identifier attribute C.

1441004-12



2nd Reading

June 9, 2014 14:16 WSPC/S0218-8430 111-IJCIS 1441004

Privacy-Preserving Assessment of Social Network Data Trustworthiness

• For each numerical attribute N ∈ QI , gen(cl)[N ] is equal to the interval
[min{X1.N, . . . , Xu.N}, max{X1.N, . . . , Xu.N}].

For a cluster cl, its generalization information gen(cl) is the tuple having as value for
each quasi-identifier attribute, numerical or categorical, the most specific common
generalized value for all that attribute values from cl tuples. In an anonymized
graph, each tuple from cluster cl will have its quasi-identifier attributes values
replaced by gen(cl).

The notion of k-anonymous anonymized social network is fully specified in the
following two definitions.

Definition 7 (Anonymized Social Network). Given an initial social network, mod-
eled as a graph IG = (IN , IE), and a partition S = {cl1, cl2, . . . , clv} of the nodes
set IN ,

⋃v
j=1 clj = IN ; cli ∩ clj = Ø; i, j ∈ {1, 2, . . . , v}, i �= j; the corresponding

anonymized social network AG is defined as AG = (AN , AE), where:

• AN = {Cl1,Cl2, . . . ,Clv}, Cl j is a node corresponding to the cluster cl j ∈ S and
is described by the “tuple” gen (cl j) (the generalization information of cl j , w.r.t.
quasi-identifiers) and the intra-cluster generalization pair (|clj |, |IEclj |);

• AE ⊆ AN × AN ; (Cli,Clj) ∈ AE if Cl i, Cl j ∈ AN and ∃X ∈ clj , Y ∈ clj , such
that (X, Y ) ∈ IE . Each edge (Cl i, Cl j) ∈ AE is labeled with the inter-cluster
generalization value |IEcli,clj |.

By construction, all nodes from a cluster cl collapsed into the generalized node Cl
are indistinguishable from each other.

In order to satisfy the k-anonymity property for an anonymized social network
each cluster from partition S must have the size at least k.

Definition 8 (K-Anonymous Social Network). An anonymized social network
AG = (AN , AE), where AN = {Cl1,Cl2, . . . ,Clv}, and Cl j = [(|clj |, |IEclj |)],
j = 1, . . . , v is k-anonymous if |clj | ≥ k for all j = 1, . . . , v.

Campan and Truta developed a social network anonymization algorithm called
Sangreea, which creates one cluster at a time. In each new formed cluster, nodes
are included that are as similar as possible, both in terms of their quasi-identifier
attribute values, and in terms of their neighborhood structure. For complete details
of this algorithm please refer to Ref. 4.

Next, we present an example of application of this anonymization model. This
example will be continued in Sec. 5.2 and Sec. 6 to illustrate the trust score
computation.

Example 1. Consider the social network IG1 in Fig. 2. IG1 contains nine nodes,
described by the quasi-identifier attribute: sex, age, and city. The age quasi-
identifier is numerical, sex and city are categorical. The attribute sex can take
two values (M and F ) and these values can be generalized only to person (P ).
For this dataset, the attribute city takes only four values (Chicago, Detroit, Miami,
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Sex Age City

X1 M 20 Detroit
X2 F 25 Detroit
X3 F 30 Detroit
X4 M 24 Chicago
X5 M 32 Chicago
X6 F 35 Miami
X7 F 33 Seattle

X8 F 40 Detroit
X9 F 45 Detroit

Fig. 2. The social network IG1.

4

9

cl3 = {X7, X8, X9}

cl2 = {X4, X5, X6}

cl1 = {X1, X2, X3}

[ F, 33 – 45, US ]

(3, 0)

[ P, 20 – 30, Detroit ]

(3, 3)

[ P, 24 – 35, US ]

(3, 1)

Fig. 3. The three-anonymous social network AG1.

34

5

cl3 = {X3, X8, X9}

cl2 = {X2, X6, X7}

cl1 = {X1, X4, X5}

[ F, 30 – 45, Detroit ]

(3, 1)

[ M, 20 – 32, Midwest ]

(3, 3)

[ F, 25 – 35, US ]

(3, 1)

Fig. 4. The three-anonymous social network AG2.

and Seattle). The cities Chicago and Detroit have the value Midwest as their direct
ancestor in the value generalization hierarchy. Miami, Seattle, and Midwest have
US as their ancestor.

In Figs. 3 and 4, two three-anonymous social networks, AG1 and AG2, are illus-
trated. For generating the anonymized network in Fig. 3, the structure was con-
sidered more important in the determination of clusters, while for the anonymized
network in Fig. 4, the quasi-identifiers attribute values were given priority. In each
cluster, we represent the generalization information of that cluster, followed by
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a pair of numbers that represent the number of nodes and the number of intra-
cluster edges. Outside each cluster, we represent the set of original nodes that were
clustered together. The edges’ weight represents the number of edges between nodes
from the two connected clusters.

5.2. Intermediary trust scores computations

In this section, we present a method to compute the intermediary trust scores when
the k-anonymous clustered model is used for anonymizing the social networks. We
explain our approach through the following example which continues Example 1
from the previous section.

Example 1 — Cont. Suppose that the data owner has a local social network G1

shown in Fig. 5. The data owner has access to both k-anonymous social networks
AG1 and AG2 in Figs. 3 and 4. The data owner fully trusts the values of the age and
sex attributes, and wants to assess the trustworthiness of the city attribute. Note
that all assumptions made in Sec. 3 are satisfied. Suppose now that three nodes in
G1 contain fake information for the attribute city. These fake values are underlined
and italicized in Fig. 5. The data owner does not have access to IG1, and nodes
labels are used just for illustration purposes.

In order to compute the trust scores, the first step is to match each node from
the local graph to clusters from each anonymized graph. We perform two types of
matches. First, we use the graph structure and the sex and age attributes values.
Second, we also add the non-trusted attribute city to this match process. Algorithms
for these procedures are detailed later in this section. After these matches, we can
directly compute the intermediary absolute and relative trust scores according to
Definitions 1 and 2. For the weighted trust score, we define a set of weights as
follows: for a single value in a cluster the weight is 1; for Midwest, the weight is
1/2 (there are two possible values, Detroit or Chicago); for US the weight is 1/4
(again, due to four possible city values). Now we have all the tools to compute
the intermediary trust scores. Tables 1 and 2 show the intermediary trust score
computations with respect to AG1 and AG2 respectively. Table 3 shows the results
of the combined trust scores computed according to Definitions 4 (for absolute and
relative trust scores) and 5 (for weighted trust score).

X
9

X
5

X
4

X
3

X
2

X
1 Sex Age City

X1 M 20 Chicago

X2 F 25 Detroit

X3 F 30 Miami

X4 M 24 Chicago

X5 M 32 Chicago

X9 F 45 Seattle

Fig. 5. The local social network G1.
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Table 1. The intermediary trust scores for AG1.

Clusters Clusters matched B matched matched ATS1 RTS1 WTS1

Matched Matched No B weighted B
Using City no City

X1 Ø cl1 0 3 0 0 0 0
X2 cl1 cl1 3 3 3 1/3 1 1
X3 cl2 cl1, cl2 3 6 3/4 1/3 1/2 1/8
X4 cl2 cl1, cl2 3 6 3/4 1/3 1/2 1/8
X5 cl2 cl2 3 3 3/4 1/3 1 1/4
X9 cl3 cl3 3 3 3/4 1/3 1 1/4

Table 2. The intermediary trust scores for AG2.

Clusters Clusters matched B matched matched ATS2 RTS2 WTS2

Matched Matched No B weighted B
Using City no City

X1 cl1 cl1 3 3 3/2 1/3 1 1/2
X2 cl2 cl2 3 3 3/4 1/3 1 1/4
X3 cl2 cl2, cl3 3 6 3/4 1/3 1/2 1/8
X4 cl1 cl1 3 3 3/2 1/3 1 1/2
X5 cl1 cl1 3 3 3/2 1/3 1 1/2
X9 Ø cl3 0 3 0 0 0 0

Table 3. The trust scores for nodes from G1.

ATS RTS WTS

X1 0 0 0
X2 1/3 1 5/8
X3 1/3 1/2 1/8

X4 1/3 3/4 5/16
X5 1/3 1 3/4
X9 0 0 0

For two nodes (X1 and X9) the trust score is 0; based on this trust score the
data owner is able to determine that the city attribute values reported by these two
nodes are not correct. However, for X3, the trust scores values are positive, and the
data owner does not know for certain if the values are correct or not. The data owner
will use the strict positive values as follows. It will order them increasingly and will
consider the ones with smaller values for additional verification. This additional
analysis will involve human intervention. The data owner may select a specified
percentage of values for this additional verification, or may consider a trust score
value as a threshold. It is important to notice that the trust score values are relative
to each other and the availability of more anonymized networks as well as the qual-
ity of those anonymized networks have a major impact on the values of those trust
scores. In our example, the weighted and relative trust scores for X3 are the lowest
among all the strictly positive values, thus this node will be the first to be investi-
gated by the data owner. We assess the accuracy of all trust score measures in Sec. 7.

We now introduce an algorithm for matched No B(X, AG) that we used in our
trust score computations.
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In parts B and C of the above algorithm in order to select only matching clusters
based on possible degree of their nodes (function check degree) we use the following
property.

Property 5. Given an anonymized social network AG , the degree of a node X that
belongs to a cluster cl j with |clj| ≥ 2 is bounded by [min deg(X), max deg(X)]
where:

min deg(X) = max
(

0, |IEclj | −
(|clj | − 1) · (|clj | − 2)

2

)

+
∑

i,j=1,v
i�=j

max(0, |IEcliclj | − (|clj | − 1) · |cli|),

max deg(X) = min((|clj | − 1), |IEclj |) +
∑

i,j=1··· v
i�=j

min(|cli|, |IEcliclj |).

Proof. The maximum possible degree for a node X within a cluster cl j is the
smaller value of the number of nodes in this cluster minus 1 and the number of
internal edges, plus the sum of all maximum possible external edges connected
to this node. Given a cluster cl i which has external edges to cl j , the number of
maximum possible external edges connected to X is the smaller value of the number
of nodes in cl i and external degree |IE cliclj |. To determine the minimum possible
degree of a node, we take two steps. In the first step, we consider the structure within
the cluster only. First, we try to assign the internal edges as many as possible to
other nodes; the maximum number of edges we can assign to other nodes is

(|clj | − 1) · (|clj | − 2)
2

.

The number of internal edges minus the maximum number of edges that we can
assign to other nodes is the number of edges we have to assign to X . However,
the degree cannot be less than 0. In the second step, we also consider the external
structure. Given a cluster cl i, the maximum number of external edges we can assign
to other nodes is

(|clj | − 1) · |cli|.
The number of external edges to cl i minus the maximum number of edges that

we can assign to other nodes is the number of edges we have to assign to X . However,
the degree of a node cannot be less than 0.

Note that for a cluster formed by a single node, the number of edges is already
known since all inter-cluster edges are connected to the only node in the cluster,
and it is equal to

∑
i=1··· v;i�=j |IEcliclj |. However, in a k-anonymized graph such

clusters do not exist since the size of a cluster must be at least k.
In the Compute Matched No B algorithm we consider a node X from the local

graph that matches a cluster from the anonymized graph. Since the local graph is a
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subgraph of the original graph from which the anonymized graph was created, the
degree of X in the local graph is less than or equal to the degree of X in the original
graph. Therefore the min deg(X) from Property 5 may not be a lower bound of
X and we use value 0 instead in the function check degree. On the other hand,
max deg(X) from Property 5 is used in this function.

Using the Compute Matched No B algorithm we may slightly overestimate the
number of matches. It is possible that a node will not match a cluster because of
a mismatch between one of the nodes located at a distance 2 or more. One way
we address this problem is to consider all possible graphs (also known as possible
worlds7) that can be generated from AG and then for each such graph and the
given local graph to compute the number of subgraphs with the same structure
and profile as the local graphs that are found in the generated graph. This is the
well-known subgraph isomorphism problem which was proven to be NP-complete.24

While this overestimate may slightly change the values of trust scores, it is impor-
tant to notice that the trust score will just increase. Thus, any trust score of 0 is fully
reliable.

The algorithms for computing matched B(X, AG) and matched weighted B(X,

AG) are similar. For matched B(X, AG), for each cluster cl from CL3 found by
Compute matched No B(X, AG) we test if node X belongs to gen(cl) using the B

attribute. The function returns the number of nodes that are contained only in the
clusters that satisfy this test. For matched weighted B(X, AG), in addition to this
new test we also weigh each node based on the amount of generalization for the
attribute B in the containing cluster.

The weight associated with a node will be always in the interval (0, 1]. The value
of 1 is obtained when the value of the B attribute from the node is identical to the
B attribute value from the matching cluster. In other words, this value was not
generalized in that cluster. The data owner can define such weights on the value
generalization hierarchy for the attribute B (and if such a hierarchy does not exist
the data owner can create one for this purpose35). There are just two properties
that these weights must follow. First, all the leaf values must have a weight of 1,
and second, each parent node must have a lower weight than that of all its children.
To simplify the selection of weights, in our experiments, we chose an automated
approach to generate weights that satisfy these properties. With each node in the
value generalization hierarchy, we associate the value 1/no contained values, where
no contained values are all values that are descendants of that node.

The running time for part A in Compute matched No B(X , AG) is proportional
to the number of clusters, 	|N |/k
, in the anonymized graph AG . For part B, the
running time is the same. Thus the complexity of parts A and B is O(|N |). For part
C, in the worst case, the number of neighbors that are checked for a given node
X is |N | − 1 and the number of clusters is 	|N |/k
. The complexity of part C is
O(|N |2) and the overall complexity of this algorithm is O(|N |2).
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6. Trust Scores for k-Degree Anonymous Social Network

6.1. Anonymization model

The second anonymization model we use for our trust computation model for social
networks is the k-degree anonymous social network model.5 Its definition is below.

Definition 9 (k-degree anonymity). A graph G = (N , E) is k-degree anonymous
if for every node X ∈ N there exist atleast k − 1 other nodes that have the same
degree as X .

An algorithm that creates a k-degree anonymous graph is also presented in
Ref. 5. Given a graph G = (N , E), this algorithm attempts to output a k-anonymous
graph G ′ = (N , E ′) such that (a) the L1-norm of the difference of their degree
sequence is minimized and (b) the symmetric difference of their sets of edges is also
minimized.

To be more specific, the algorithm consists of two main steps. For an input
graph G = (N , E) with degree sequence d, and an integer k, starting from d, it
first constructs a new degree sequence d′ such that the L1-norm distance between
d and d′ is minimized. Second, it tries to construct a graph G ′ = (N , E ′) such
that the difference between their sets of edges is minimized. If only the addition of
edges is allowed, G ′ will be a supergraph of G and what the algorithm attempts to
minimized is |E ′\E | = |E ′| − |E |.

Since nodes in the social network graph considered in our paper are also associ-
ated with attribute values, we need to generalize these values before publishing the
graph in order to protect the privacy of individual nodes. Here we use the groups
induced by such an algorithm to generalize the attribute values. Specifically, for
each group of size less than 2k, we simply generalize the attribute values. If a group
is of size g > 2k, it will be partitioned sequentially into �g/k�− 1 subgroups of size
k and a last subgroup of size g − k(�g/k� − 1). Subsequently, the attribute values
in each subgroup described above are generalized accordingly.

6.2. Intermediary trust scores computations

In this section, we present a method to compute the intermediary trust scores when
the k-degree anonymous model is used.

We start by continuing Example 1 from Sec. 5.2.

Example 1 — Cont. Assume that the data owner has the local social network
G1 given in Fig. 5. Suppose that the data owner has access to the three-anonymous
social network AG3 in Fig. 6. The data owner fully trusts the values of age and sex
attributes, and wants to assess the trustworthiness of the attribute city. All other
assumptions remain the same as in the example from Sec. 5.2. The graph in Fig. 6 is
a three-degree anonymous network of the social network in Fig. 2 which is produced
using Liu and Terzi’s algorithm where only edge additions are allowed. Several edges
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Sex Age City

X1 P 20-30 Detroit

X2 P 20-30 Detroit

X3 P 20-30 Detroit

X4 P 24-35 US

X5 P 24-35 US

X6 P 24-35 US

X7 F 33-45 US

X8 F 33-45 US

X9 F 33-45 US
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Fig. 6. The three-anonymous social network AG3.

are added to the anonymized graph (see Fig. 6) in order to meet the three-degree
anonymity. Also, the quasi identifier attribute values must be generalized in each
group to the most specific common values.

In order to compute the trust scores, the first step is to match each node from the
local graph to nodes from the anonymized graph. We perform two types of matches.
First, we use the graph structure and the sex and age attributes values. Second,
we also add the non-trusted attribute city to this match process. Algorithms for
both procedures will be detailed later in this section. After the matches, we can
directly compute intermediary absolute, and relative trust scores using Definitions
1 and 2. We define the weights as in the example from Sec. 5.2. Table 4 shows the
intermediary trust score computations for AG3.

If we have more than one anonymized graph (note that these graphs can be
obtained by different anonymization models), the combined procedure is similar to
the one presented in Sec. 5.2.

We compute matched No B(X, AG) for this model as shown in the below algo-
rithm. The algorithms to compute the other two values, matched B(X, AG) and
matched weighted B(X, AG) are similar.

Table 4. The intermediary trust scores for AG3.

Nodes Nodes matched B matched matched ATS RTS WTS
Matched Matched No B weighted B

Using City No City

X1 Ø X1, X2, X3 0 3 0 0 0 0
X2 X1, X2, X3 X1, X2, X3 3 3 3 1/3 1 1
X3 X4, X5 X1, X2, X3, X4, X5 2 5 1/2 2/9 2/5 1/10
X4 X4, X5 X1, X2, X3, X4, X5 2 5 1/2 2/9 2/5 1/10
X5 X4, X5, X6 X4, X5, X6 3 3 3/4 1/3 1 1/4
X9 X7, X8, X9 X7, X8, X9 3 3 3/4 1/3 1 1/4
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The running time for part A in Compute Matched No B Liu (X, AG) is propor-
tional to the number of groups, 	|N |/k
, in the anonymized graph AG . For part B,
the complexity in the worst case is the size of AG . Thus the complexity of parts A
and B is O(|N |). For part C, in the worst case, the number of neighbors that are
checked for a given node Xi is |N | − 1. Thus, the complexity of part C is O(|N |2)
and the overall complexity is O(|N |2).

7. Partially Trusted Anonymized Social Networks

Until now, when computing matched B(X, AGj), we assumed that the anonymized
social networks were fully trusted. This assumption can be relaxed by assigning
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a trust score to each anonymized social network node. If an anonymized social
network is not fully trustworthy, the owner of the anonymized social network can
assign a pre-computed trust score to each anonymized social network node, labeled
as X ·TS. If a clustered-based anonymization model is adopted, e.g. the one we
adopted in Sec. 5, a trust score, computed as the average trust score within each
cluster, is assigned to each cluster. We label the average trust score assigned to
each cluster as cl ·TS. We modify Compute Matched No B(X, AG) as follows:
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Algorithm Compute Matched No B Liu(X, AG) can be modified in a similar way.

8. Experimental Results

In this section, we evaluate the effectiveness and efficiency of our trust model and
algorithms. The language used for the experiment implementation is JAVA. The
experiments were performed on an Intel(R) Core2 2.66GHz workstation with 4GB
memory, running Windows 7. We used two datasets in the experiments: the syn-
thetic AB datasets (for Albert-Barabasi); and the Enron datasets, which is an
email network from Enron Corporation.36 For each dataset, we selected 5,000 and
10,000 nodes as our initial datasets. To generate the synthetic dataset, we used the
Albert-Barabasi model37 to generate a random graph that follows the power-law
distribution. For the Enron datasets the numbers of edges are 67,283 (for 5,000
nodes) and 110,615 (for 10,000 nodes). For the AB datasets the numbers of edges
are 97,503 and 197,248 (for 5,000 and 10,000 nodes, respectively).

To fit the need of our experiments, we extended the synthetic and real datasets
by introducing the following attributes: age, sex, marital status, and city. We use
a simple program to generate the attribute values for the synthetic and real social
networks described above. To do this, we randomly select a single node and assign
to this node values for all four attributes. Next, we run the breath first search
(BFS) algorithm starting from this source node. Each time when a new node v is
first discovered by BFS, we generate its age and city according to its parent u.
For the age attribute, we define six possible intervals: [18, 27], [28, 37], [38, 47],
[48, 57], [58, 67], and [68, 77]. We consider the probability that v is within the
same age interval as its parent u to be 0.7. The probability that v is in any other
interval used by our algorithm is 0.3/5. After the age interval of node v is decided,
its actual age will be a randomly chosen integer within that interval. For gender
attribute, a node is assigned the Male value with probability 0.5 and the Female
value with probability 0.5. To generate the values of marital status attribute for a
node v, if v is of age greater than or equal to 70, with probability 0.5, its marital
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Table 5. Hierarchy structure of the city attribute.

City East MA Boston
FL Tampa, Miami

Midwest MI Detroit
IL Chicago
IN Lafayette, Indianapolis, Bloomington
OH Cincinnati, Columbus, Cleveland
KY Lexington, Louisville, Frankfort, Newport

Mountain CO Aspen

West CA Sacramento, Riverside
WA Seattle, Redmond

status will be Widowed, and with probability 0.5, its marital status will be randomly
generated as one of one of the following values: Divorced, Never-married, Separated,
Married-civ-spouse, Married-spouse-absent, Married-AF-spouse. If v is of age less
than 70, then v’s marital status will be generated as one of the values above with
equal probability. For the city attribute, we consider 20 values as shown in Table 5.
Similarly, the probability that v is in the same city as its parent u is 0.7. The
probability that v is in any other 19 cities is 0.3/19.

For each experiment, from an original dataset (Enron or AB ; each with size
5,000 or 10,000) we generate one local dataset and one or more remote datasets.
The local dataset is generated by taking 20% of the synthetic dataset/real dataset
and modifying some of the records in them to create fake/incorrect values. In our
experiments, the city attribute is the only attribute that contains fake values. In
other words, it is the non-trusted attribute. The distance between two leaf nodes is
defined as the height of their lowest common ancestor. For example, the distance
between Tampa and Miami is 1, since their lowest common ancestor is FL and its
height is 1. For the same reason, the distance between Boston and Tampa is 2 and
distance between Miami and Detroit is 3. To generate the incorrect values, we take
a portion (referred as p% in Table 6) of nodes in the local dataset and modify them
according to a parameter (m) that controls distances. Among the candidates that
share same distance between the original values, we randomly pick one.

For remote datasets, we first take the same portion (20%) of the original dataset
as the local dataset without injecting any fake values. Then, we randomly pick
remaining nodes in the original dataset until the size of the remote datasets reaches
80% of the original ones. Using this approach, the remote datasets always contain
the corresponding local dataset nodes and structure.

Table 6. Experiment parameters.

p 10%, 20%, 30%, 40%, 50%
m 1, 2, 3
k 3, 5, 10, 15, 20
s 5000, 10,000
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Table 6 lists the parameters used in the experiments. p controls the percentage
of fake values injected into the local dataset. m is the magnitude parameter of the
fake values. For instance, when m = 3, all distances between fake values and their
original ones are 3. When a city attribute value does not have a sibling node with
m = 1 or 2 (e.g. Boston and Aspen), we will not modify its value and skip that
node. k is the k-anonymity parameter for generating anonymization graphs. s is the
number of nodes in the original dataset. In all our experiments when a parameter
value is not specified, the one denoted in boldface in Table 6 is used.

In our experiments we use two quantities to measure the effectiveness of our
trust computation algorithms: (1) the ratio of average score of unmodified nodes
(real) to the average score of modified nodes (fake), denoted as Score Ratio in the
figure; and (2) the Recall that is the percentage of modified nodes that have been
classified as “fake”. To classify the local nodes, we simply rank the nodes with
respect to their ATS, RTS, and WTS and choose either p% or 1.5p% nodes with
the lowest trust scores as possible fake nodes. The data owner will then perform an
additional investigation regarding these nodes to determine which of the determined
nodes have fake values for the target attribute. For example, if p = 10% and size
of the local dataset is 1000, we will classify 100 or 150 nodes with the lowest trust
scores as fake nodes. It is worth noting that when no trust score is used and we do
a random sampling to choose those 100 or 150 nodes, only p% (10 or 15 if p = 10%)
of nodes have fake values.

Due to space limitation, all figures we reported below are based on Enron dataset
with size 5,000. We observe almost identical trends in the experimental results on
Enron dataset with size 10,000 and on synthetic AB datasets with sizes 5,000 and
10,000.

In the experiments reported in Fig. 7, one k-anonymous clustered social network
(see Sec. 5) is used with the local graph to compute the trust scores. We observe
the effects of changing p on the score ratio and the recall. We notice that the WTS
score ratio is the highest among the three score ratios regardless of the p value. As
for the recall, we observe that all three scores are effective and, among them, WTS
performs the best. Both ATS and RTS have more than 70% recall and WTS has
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Fig. 7. One k-anonymous clustered social network, change p, m = 3, s = 5,000, Enron dataset.
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Fig. 8. One k-anonymous clustered social network, change m, p = 20%, s = 5,000, Enron dataset.

more than 80% recall when p = 10% and it increases when p grows. When p = 10%,
our approach can increase the recall by more than seven times when ATS or RTS
are used and more than eight times when WTS is used, which demonstrates that
our methods are very effective.

In the experiments reported in Fig. 8, one k-anonymous clustered social network
is used and p is set to 20%. We can see the effects of changing m on the score ratio
and the recall. When m increases, all the score ratios increase, which is as expected
because the larger the magnitude of error we inject into a node, the more easily this
fake node will be detected. For the recall, it is obvious that recall increases with m

and that WTS performs the best among those three scores. We can also observe
that even for m = 1, the recall values are over 40% (ATS ), 50% (RTS ) and 60%
(WTS ) (the baseline recall is 20%).

In the experiments reported in Fig. 9, we test how different k values impact the
trust score computation results. One k-anonymous clustered social network with
different k values is used. Both score ratio and recall decrease when k increases.
This is due to the fact that larger k values increase information loss. We can also
observe that WTS is more affected by k values. This is because WTS takes attribute
weights into consideration. When the data is more generalized, it is more difficult
for WTS to distinguish fake values from real ones, since the weight associated with
each generalized values is very small.
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Fig. 9. One k-anonymous clustered social network, change k, p = 20%, m = 3, s = 5,000, Enron
dataset.
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Fig. 10. One k-degree anonymous social network, change p, m = 3, s = 5,000, Enron dataset.

In the experiments reported in Fig. 10, one k-degree anonymous social network
(see Sec. 6) is used with the local graph to compute the trust scores for local nodes.
Among those three different score measures, WTS score ratio and recall are always
the highest and RTS is close to WTS. ATS performs a lot worse in this scenario. In
most cases, its recall is close to the value of p%, which means that it is not better
than a random sampling. On the other hand, RTS and WTS are able to increase the
recall by more than 20% in all cases. It is important to notice that the score ratios
and recalls are much lower than those in the experiments that use k-anonymous
clustered social networks (Figs. 7–9). This is due to the anonymization procedure;
the k-degree anonymous social network approach does not consider the attribute
values in the graph generation process and this leads to more coarse generalization.

In the experiments reported in Fig. 11, one k-degree anonymous social network
is used and p is set to 20%. We can see the effects of changing m on the score ratio
and the recall. When m increases, all the score ratios increases, which is as expected
because the larger the magnitude of error we inject into a node, the more easily this
fake node will be detected. For the recall, it is obvious that recall increases with m

and that WTS performs the best among those three scores when m = 2, 3. We can
also observe that for m = 3, the recall values are over 40% for RTS and WTS (the
baseline recall is 20%).

In the experiments reported in Fig. 12, we test how different k values impact
the trust score computation results for k-degree anonymous social networks. One
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Fig. 11. One k-degree anonymous social network, change m, p = 20%, s = 5,000, Enron dataset.
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Fig. 12. One k-degree anonymous social network, change k, p = 20%, m = 3, s = 5,000, Enron
dataset.

k-degree anonymous social network with different k values is used. Both score ratio
and recall decrease when k increases. This is due to the fact that larger k values
increase information loss. We can also observe that WTS is more affected by k

values. This is because WTS takes attribute weights into consideration. When the
data is more generalized, it is more difficult for WTS to distinguish fake values from
real ones, since the weight associated with each generalized values is very small.

In the experiments reported in Fig. 13, one k-degree anonymous social network
is used together with one k-anonymous clustered social networks with different k

values. We can observe that both score ratio and recall increase as k decreases. As
expected, with smaller k, more information is preserved in the anonymized graphs.
We can also observe that WTS does not perform as well as RTS. This is due to
the same reason as for the results from the experiments reported in Fig. 9, that is,
that WTS is more sensitive to the value of k.

In the experiments reported in Fig. 14, we test the running time of our trust-
worthiness computation algorithms for both privacy models (k-anonymous clustered
social networks and k-degree anonymous social networks), different values of k, and
dataset sizes with 5,000 (1,000 local nodes and 4,000 remote nodes) and 10,000
nodes (2,000 local nodes and 8,000 remote nodes). We observe that the running
time first increases with k and this is because when k grows, it introduces more
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Fig. 13. One k-degree anonymous social network with a k-anonymous clustered social network,
s = 5,000, Enron dataset.
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Fig. 14. Running time.

neighbors. However, when k reaches a threshold, the running time becomes sta-
ble and it starts to decrease slightly since the number of neighbors is no longer
increasing. We also observe that the trustworthiness computation algorithm for
k-anonymous clustered social network runs much faster than the trustworthiness
computation algorithm for k-degree anonymous social network. This is due to the
fact that k-anonymous clustered social network contains less nodes and does not
add more edges to the network. It is worth mentioning that both algorithms are
much more efficient than the anonymization algorithms used to create anonymized
social networks. For example, when k = 20, the k-degree anonymization algorithm
needs 31,883 s (∼ 8.85h) and the clustered-based anonymization algorithm needs
5,197 s (∼ 1.44 h) to anonymize a 8,000 nodes social network while it only takes
the Compute Matched No B algorithm less than 100 s and the Compute Matched
No B Liu algorithm 900 s to compute the trust scores.

9. Conclusions and Future Work

In this paper, we have shown the importance of taking into account privacy when
computing trustworthiness of social network data in applications such as deciding
insurance rate. We have proposed three trust score computation models (absolute,
relative, and weighted) and algorithms for computing them based on two differ-
ent anonymization models. An extensive experimental evaluation on both real and
synthetic data has demonstrated the effectiveness and efficiency of our approach.

In future work, we plan to investigate how to extend our techniques to multiple
non-trusted attributes and unknown non-trusted attribute. We also plan to develop
new approaches similar to attributes prediction29 to see whether attribute values
of a local node match our prediction. However, our goal is to create prediction
models based on remote anonymized datasets and use those models to determine
the trustworthiness of local datasets, which is more challenging.
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