
 
 

 

  

Abstract—Social network sites continue to grow in number 
and size and accumulate information about their members. 
Among the data provided by members on the social sites they 
use, there are pieces of sensitive information about themselves. 
The identity and confidential information about social 
networks’ individual nodes should be protected in all situations, 
including when the data is made public or released to third 
parties for analytical tasks. A possible solution to preserve the 
privacy of individuals is to anonymize the social network data 
and / or structure, i.e. to modify social network data and 
structure such that to make several individuals in the network 
alike, data and neighborhood-wise. Several anonymity 
definitions and methods to achieve them were introduced in the 
last few years. Of course, all anonymization approaches aim to 
preserve as much as possible the data and structural content of 
the initial social network; the less the inherent informational 
content is disturbed in the anonymization process, the more 
accurate are the results obtained by exploring the anonymized 
social network. Our work aims to study an existing 
anonymization approach with respect to how it preserves the 
structural content of the initial social network; specifically, we 
study how various graph metrics (centrality measures, radius, 
diameter etc.) change between the initial and the anonymized 
social network. This study is carried out for a number of 
synthetic social network datasets. 

I. INTRODUCTION AND MOTIVATION 
HE advent of social networks in the last few years 
created an enormous amount of social network data that 

could be potentially used for many purposes: for marketing, 
research, etc. This huge amount of data has created a 
revitalized interest in social network analysis and mining [1], 
[18], [20].  

Some of the social networks gather individuals’ 
confidential information and/or confidential relationships 
between individuals. For instance, PatientsLikeMe [24], 
Rareshare [26], and Daily Strength [12] are social networks 
in the healthcare field that create communities of patients for 
various diseases. As a result, privacy in social networks has 
become a serious concern and the research in this area has 
flourished in the past few years. Not only the privacy in 
social networks has become a topic discussed by scientists, 
but also the large public has shown a vivid interest for this 
matter. Concerns about privacy with respect to various social 
networks sites such as Facebook are reported in various 
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media outlets and raise general public awareness about this 
problem [9]. Yet, the research in the social network privacy 
area is still very recent, and many problems remain to be 
solved.  

Here are a few research directions in social network 
privacy.  

Attacks in social networks are discussed in several 
research papers. In one of the early works in this field, 
Backstrom et al. described two types of attacks: active and 
passive [2]. An interesting de-anonymization experiment 
was performed by Narayanan and Shmatikov [23]. They 
showed that a third of the users who have accounts on both 
Twitter and Flickr can be re-identified in the anonymous 
Twitter graph with only a 12% error rate. An inference 
attack for released social networking data to infer 
undisclosed private information about individuals is 
presented in [21].  

To defend against privacy attacks, several privacy 
models, which can be classified as graph modification and 
clustering-based approaches, were introduced. In the graph 
modification approach category, Liu and Terzi add edges to 
the original social network so that there are at least k nodes 
with the same degree [22]. Zhou and Pei introduce a stronger 
requirement: that each vertex must have k others with the 
same k-neighborhood characteristics [31]. In order to 
achieve this property, edge deletions and additions are 
performed. Other works in this direction include [7], [17], 
[29]. Unfortunately, it is not clear how well the graph 
structure is preserved during these graph modification 
processes, and this represents a major limitation of the graph 
modification techniques. In the clustering-based 
approaches, vertices and edges are grouped together in 
clusters and super-nodes and super-edges are created. One 
clustering-based approach is briefly presented in Section 2, 
and the full presentation can be found in [5]. Other works in 
this subarea include [3], [17], [30].  

The research in social network privacy extends beyond 
the privacy attacks and defenses. Anonymization in bipartite 
graphs is studied in [8]. A relaxation of differential privacy 
[13] in the context of social networks is presented in [25]. A 
recent survey of this field can be found in [32].  

In this paper the focus is how much data utility is 
preserved in the anonymized social networks. Specifically, 
we look at how social networks characteristics such as 
radius, diameter, and centrality measures [14], [15] are 
preserved through anonymization.   

Other recent papers have also explored utility 
preservation in anonymized graphs. In our previous work, 
we introduced a measure of structural information loss that 
quantifies the probability of error when trying to reconstruct 
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the structure of the initial social network from its masked 
version [5]. In the graph modification approaches, utility 
preservation was discussed in the context of preserving the 
same average degree distribution and the same shortest paths 
length [7], [29].  

To our knowledge, no previous work has addressed how 
graph centrality measures are changed between original 
social networks and anonymized social networks, neither in 
graph modification approaches, nor in clustering-based 
approaches. Moreover, the only work that analyses some 
graph measures (degree, shortest-paths) was performed only 
for graph modification approaches such as k-isomorphism 
[7] and k-symmetry [29].   
The remaining of this paper is structured as follows. Section 
2 presents a clustering-based social network privacy model, 
in particular the concepts of edge generalization and k-
anonymous masked social network. Section 3 briefly 
describes various graph measures that we comparatively 
analyze in our experiments, for original and anonymized 
social networks. Section 4 describes our experiments, and 
presents our preliminary findings. The paper ends with 
future work directions and conclusions. 

II. SOCIAL NETWORKS ANONYMIZATION MODEL 

In this paper we use the social network anonymization 
model introduced in [5]. We briefly summarize it next. 

We consider the social network modeled as a simple 
undirected graph G = (N, E), where N is the set of nodes and 
E ⊆ N × N is the set of edges. Each node represents an 
individual entity. Each edge represents a relationship 
between two entities. Usually, the set of nodes, N, is 
described by a set of attributes that are classified into three 
categories: identifier (such as Name and SSN), quasi-
identifier (such as ZipCode and Sex), and sensitive (such as 
Primary Diagnosis and Income). In this paper, we focus only 
on social network structure and therefore we will ignore the 
node attribute values during the anonymization process. For 
details about how the node attribute values are used during 
the anonymization process refer to [5]. 

We allow only binary relationships in our model. 
Moreover, we consider all relationships as being of the same 
type and, as a result, we represent them via unlabeled 
undirected edges. We also consider this type of relationship 
to be of the same nature as all the other “traditional” quasi-
identifier attributes. We will refer to this type of relationship 
as the quasi-identifier relationship. In other words, the graph 
structure may be known to an intruder and used by matching 
it with known external structural information, therefore 
serving in attacks that might lead to identity and/or attribute 
disclosure [19].  

Using the graph structure, an intruder is able to identify 
individuals due to the uniqueness of the neighborhoods of 
various individuals. As shown in [17], when the structure of 
a random graph is known, the probability that there are two 
nodes with identical 3-radius neighborhoods is less than 2-cn, 

where n represents the number of nodes in the graph, and c 
is a constant value, c > 0; this means that the vast majority of 
the nodes can be uniquely identified based only on their 3-
radius neighborhood structure. 

To achieve anonymity for social networks, we have 
adapted the k-anonymity model [25], [28]. For social 
network data, the k-anonymity model has to impose both the 
quasi-identifier attribute and the quasi-identifier relationship 
homogeneity, for groups of at least k individuals. We have 
also reused the generalization technique for the 
generalization of node attributes’ values [25] and we 
extended it for edges. To our knowledge, the only equivalent 
methods for the generalization of a quasi-identifier 
relationship that exist in the research literature appear in 
[17], [30] and consist of collapsing clusters of nodes 
together with their component nodes’ structure. Edge 
additions or deletions are currently used, in all the other 
approaches, to ensure nodes’ indistinguishability in terms of 
their surrounding neighborhood; additions and deletions 
perturb to a large extent the graph structure and therefore 
they are not faithful to the original data. We have employed 
a generalization method for the quasi-identifier relationship 
similar to the one exposed in [17], [30], but enriched with 
extra information, that will cause less damage to the graph 
structure, i.e. a smaller structural information loss. 

Let n be the number of nodes from the set N. Using a 
grouping strategy, one can partition the nodes from this set 
into v pairwise disjoint clusters: cl1, cl2, …, clv. For 
simplicity we assume that the nodes are not labeled (i.e., do 
not have attributes), and they can be distinguished only 
based on their relationships. Our goal is that any two nodes 
from any cluster to be indistinguishable based on their 
relationships. To achieve this goal, we introduced an edge 
generalization process, with two components: edge intra-
cluster and edge inter-cluster generalization. 

Edge intra-cluster generalization. Given a cluster cl, let 
Gcl = (cl, Ecl) be the subgraph of G = (N, E) induced by cl. In 
the masked data, the cluster cl will be generalized to 
(collapsed into) a node, and the structural information we 
attach to it is the pair of values (|cl|, |Ecl|), where |cl| 
represents the cardinality of the set cl. This information 
permits assessing some structural features about this region 
of the network that will be helpful in some applications. 
From the privacy standpoint, an original node within such a 
cluster is indistinguishable from the other nodes in the 
cluster. At the same time, if more internal information was 
offered, such as the full nodes’ connectivity inside a cluster, 
the possibility of disclosure would be too high, as discussed 
in [5].  

Edge inter-cluster generalization. Given two clusters cl1 
and cl2, let Ecl1,cl2 be the set of edges having one end in each 
of the two clusters (e ∈ Ecl1,cl2 if and only if e ∈ E and e ∈ 
cl1 × cl2). In the masked data, this set of inter-cluster edges 
will be generalized to (collapsed into) a single edge and the 
structural information released for it is the value |Ecl1,cl2|. 



 
 

 

This information permits assessing some structural features 
about this region of the network that might be helpful in 
some applications and it reduces the disclosure risk. 

Given a partition of nodes for a social network G, we are 
able to create an anonymized graph by using edge intra-
cluster generalization within each cluster and edge inter-
cluster generalization between any two clusters. 

Definition 1. (anonymized social network): Given an 
initial social network, modeled as a graph G = (N, E), and a 
partition S = {cl1, cl2, … , clv} of the nodes set N,  = 
N;  = ∅; i, j = 1..v, i ≠ j; the corresponding 
anonymized  social network AG is defined as AG = (AN, 
AE), where: 
 AN  = {Cl1, Cl2, … , Clv},  Cli is a node corresponding to 

the cluster clj ∈ S  and is described by the intra-cluster 
generalization pair (|clj|, |Eclj|); 

 AE ⊆ AN  × AN ; (Cli, Clj) ∈ AE iif Cli, Clj ∈ AN  and ∃  
X ∈ clj, Y ∈ clj, such that (X, Y) ∈ E. Each generalized 
edge (Cli, Clj) ∈ AE is labeled with the inter-cluster 
generalization value |Ecli,clj|.  

By construction, all nodes from a cluster cl collapsed into 
the generalized (masked) node Cl are indistinguishable from 
each other.  

To have the k-anonymity property for a masked social 
network, we need to add one extra condition to Definition 1, 
namely that each cluster from the initial partition is of size at 
least k. The formal definition of a masked social network 
that is k-anonymous is presented below. 

Definition 2. (k-anonymous anonymized social 
network): An anonymized social network AG = (AN, AE), 
where AN = {Cl1, Cl2, … , Clv}, and Clj = [(|clj|, |Eclj|)], j = 1, 
…, v is k-anonymous iff  |clj| ≥ k for all j = 1, …, v. 

Example 1: Suppose the social network Gex depicted in 
Figure 1 is given. Two possible 3-anonymous social 
networks AGe1 and AGe2 are depicted in Figure 2. 

The algorithm used in the anonymization process, called 
the SaNGreeA (Social Network Greedy Anonymization) 
algorithm, performs a greedy clustering processing to 
generate a k-anonymous masked social network, given an 
initial social network modeled as a graph G = (N, E). 

Specifically, SaNGreeA puts together in clusters nodes 
that are as similar as possible in terms of their neighborhood 
structure. To do so, it uses a measure that quantifies the 
extent to which the neighborhoods of two nodes are similar 
with each other, i.e. the nodes manifest the same 
connectivity properties, or are connected / disconnected 
among them and with others in the same way. 

 To assess the proximity of two nodes’ neighborhoods, we 
proceed as follows. Given G = (N, E), assume that nodes in 
N have a particular order, N = {X 

1, X 

2, …, X 

r}. The 
neighborhood of each node X i can be represented as an n-

dimensional boolean vector Bi = , , , … ,  , where the 
jth component of this vector, , is 1 if there is an edge (X i, X 
j) ∈ E, and 0 otherwise, ∀j = 1, r; j ≠ i. We consider the 
value  to be undefined, and therefore not equal to 0 or 1. 
We use a classical distance measure to assess the similarity 
of vectors of this type: the symmetric binary distance [15]. 

 
 

 
 

Fig. 1  The Social Network Gex 

 
 

 
Fig. 2  The 3-anonymous social networks AGe1 and AGe2 

 
Definition 3. (distance between two nodes): The distance 

between two nodes (X i and X j) described by their associated 
n-dimensional boolean vectors Bi and Bj is: 

, | ℓ|ℓ ..  ∧ ℓ , ; ℓ ℓ |
. 

We exclude from the two vectors’ comparison their 
elements i and j, which are undefined for X i and respectively 
for X j. As a result, the total number of elements compared is 
reduced by 2.  

In the cluster formation process, our greedy approach will 
select the closest remaining node to be added to the cluster 
currently being formed. To assess the structural distance 
between a node and a cluster we use the following measure. 

Definition 4. (distance between a node and a cluster): 
The distance between a node X and a cluster cl is defined as 
the average distance between X and every node from cl: 

,
∑ ,

| |
. 

cl2={X 1,X 2,X 3}
(3, 3) 

(3, 2) 

(3, 1) 

cl1={X 4,X 7,X 8} 

cl3={X 5,X 6,X 9}

1 3 
AGe1 

cl5={X 1,X 2,X 3} (3, 3) 

(3, 0) 

(3, 3) 

cl4={X 7,X 8,X 9} 

1 3 

AGe2 

cl6={X 4,X 5,X 6} 
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Using the above introduced measures, we explain next 
how clustering is performed for a given initial social 
network G = (N, E). The clusters are created one at a time. 
To form a new cluster, a node in N with the maximum 
degree and not yet allocated to any cluster is selected as a 
seed for the new cluster. Then the algorithm gathers nodes to 
this currently processed cluster until it reaches the desired 
cardinality k. At each step, the current cluster grows with 
one node. The selected node has to be unallocated yet to any 
cluster and it will minimize the dist measure (see Definition 
4). 

It is possible, when n is not a multiple of k, that the last 
constructed cluster will contain less than k nodes. In that 
case, this cluster needs to be dispersed between the 
previously constructed groups. Each of its nodes will be 
added to the cluster that is closest to that node w.r.t. our 
previously defined distance measure. 

A version of the pseudocode of the SaNGreeA algorithm 
that includes node attributes and an additional optimization 
criterion can be found in [5]. 

III. SOCIAL NETWORK MEASURES 

A variety of social network analyses concentrate on 
determining how relationships are distributed in a social 
network between the entities participating in the network. 
These studies focus on assessing the individual nodes’ 
influence or power in the network. Several graph 
connectivity and centrality metrics exist that quantify this 
notion of nodes’ influence. Freeman suggested three 
measures for a node’s centrality, as described next [14]. 
There also are other measures of graph connectivity (radius, 
diameter) and measures that describe the influence of a node 
on its network [11]. These social network measures try to 
capture complex relations between nodes in a network.  

In our work, we plan to explore the effect that social 
network anonymization has on various measures. We 
investigate if a relationship between such connectivity and 
centrality measures exists– for the initial social network and 
for a corresponding anonymized social network. If such 
measures describing the influence of a node on its network 
transferred from an original node to its cluster / supernode, 
then network analysis in various fields (such as viral 
marketing, communication networks) could be successfully 
conducted on anonymized networks, while preserving the 
privacy of individual network nodes. Next, we briefly 
describe the social network measures analyzed in our 
experiments. 

Let G = (N, E) be an undirected graph (that represents a 
social network), where N (the cardinality of N, |N | = n) is 
the set of nodes and E ⊆ N × N is the set of edges (the 
cardinality of E, |E | = m).  

The eccentricity of the node v is the maximum distance 
from v to any node. That is, ε (v) = max{d(v, w) | w ∈ N }.  

The radius of G is the minimum eccentricity among the 
nodes of G. Therefore, radius(G) = min{ε (v) | v ∈ N}.  

The diameter of G is the maximum eccentricity among 
the nodes of G. In other words, diameter(G) = max{ε (v) | v 
∈ N }. 

The degree centrality of a node v is the number of edges 
adjacent to the node (degree) normalized to the interval [0, 
1]. Thus,  . The larger the degree centrality 
of a node v, the stronger its communication potential; the 
lower the degree centrality, the more peripheral the node is 
perceived. 

The degree centrality of G is defined as follows: 
∑ ∑

⋅
, 

where v* is the node that has the maximum degree centrality 
from all nodes from G.  

 The betweenness centrality of a node v is the sum of the 
number of shortest paths between any pair of vertices 
(except the considered node) going through the node, 
divided by the number of shortest paths between any pair of 
vertices. This sum is normalized to [0, 1]. In other 

words,
·∑

⋅
, where  is the number of 

shortest paths from s to t, and  is the number of 
shortest paths from s to t that pass through a vertex v. This 
measure expresses a node’s potential for control of 
communication. 

The betweenness centrality of G is defined as follows: 
∑

, where v* is the node that has 
the maximum betweenness centrality from all nodes from G.  

The closeness centrality of a node v is defined as the 
inverse of the average of shortest paths length between the 
node v and all other nodes from G. This sum is normalized to 
[0, 1]. In other words, ∑ ,

, where 

,  is the length of the shortest path from v to w. This 
measure gives the potential for independent communication 
of a node, or in other words, how much the node can avoid 
the potential control of others. 

The closeness centrality of G is defined as follows: 
∑

· /
, where v* is the node that has 

the maximum betweenness centrality from all nodes from G.  

For all three centrality measures of G, the denominators 
are computed based on the maximum possible sum of 
differences in node centrality for a graph of n nodes, 

∑ , where X represents degree 
(D), betweenness (B), and closeness (C). More details about 
these measures can be found in [14]. 



 
 

 

IV. EXPERIMENTS DESIGN AND RESULTS 

We designed a series of experiments that allowed us to 
explore if the proposed graph anonymization algorithm 
(SaNGreeA) preserves some of the graph properties, in 
particular centrality properties, of social networks. The 
general framework of our experiments is presented in Figure 
3. 

 

 

 

Fig. 3  General framework of the experiments. 
 

We divided our experiment into several phases. In our 
first phase, labeled Graph Generation in Figure 3, we 
implemented an R-MAT graph generator [6] and a Random 
graph generator.  

The R-MAT graph generator takes the number of nodes 
(n), the average node degree (avg_deg), and four 
probabilities as input parameters. The algorithm computes 
how many edges such a graph has, and for each edge, its 
location is determined based on the recursive algorithm that 
divides the adjacency matrix into 4 equal-sized partitions 
and the location of the edge is probabilistically selected in 
one of the 4 locations, based on the four probability 
parameters. Once a partition is found, it is again divided into 
four sub-partitions until there will be only one location left 
in the partition. If an edge was already placed on that 
location, we will repeat this procedure from the beginning 
(multiple edges between the same pair of nodes is not 
allowed in our graph model). For all our tests we used the 
following values for the four probabilities: 0.45, 0.15, 0.15, 
and 0.25. This choice seems to model better many real-world 
graphs that follow power-law degree distributions [6]. More 
details about this algorithm can be found in [6]. 

The Random graph generator creates a random undirected 
graph using the Erdos-Renyi model [4]. In this model, each 
edge is included in the graph with probability p, with the 
presence or absence of any two distinct edges in the graph 
being independent. For our generator we use two input 
parameters: number of nodes (n) and average node degree 
(avg_deg), and we estimate the probability as the avg_deg / 
n. Using this approach, the generated graph will have a 
slight different average node degree than the input 
parameter. 

 
 
 
 

We used both graph generator models with various 
parameter values to create a large number of synthetic 
graphs on which we performed our experiments. For the 
number of nodes (n) we used the following values: 10, 25, 
50, 75, 100, 250, and 500. For the average node degree 
(avg_deg) we used 2, 3, 4, 5, 8, 10, 25, 50, 75, 100, and 250. 
Of course, the average node degree is strictly less than the 
number of nodes (we are not interested in complete graphs 
in our experiments). Since most of the centrality measures 
are defined only for connected graphs, for any given 
combination of input parameters we wanted to generate a 
connected graph. To achieve this, we generated up to 10,000 
graphs and we stopped our graph generator at the first 
connected graph. In some cases (such as number of nodes = 
500, and average node degree = 2) we were not able to 
generate a connected graph. The list of all generated graphs 
with the corresponding parameter values is provided in 
Table I. The total number of generated graphs is 78. 

TABLE I 
THE LIST OF ALL GENERATED GRAPHS 

Graph  
Generator  

Model 

 
(n, avg_deg) 

R-MAT 
 

and 
 

RANDOM 

(10, 2), (10, 3), (10, 4), (10, 5) 
(25, 2), (25, 3), (25, 4), (25, 5), (25, 8), (25, 10) 
(50, 3), (50, 4), (50, 5), (50, 8), (50, 10), (50, 25) 
(75, 4), (75, 5), (75, 8), (75, 10), (75, 25) 
(100, 4), (100, 5), (100, 8), (100, 10), (100, 25), (100, 50) 
(250, 5), (250, 8), (250, 10), (250, 25), (250, 50), (250, 100) 
(500, 8), (500, 10), (500, 25), (500, 50), (500, 100), (500, 250) 

 

In the second phase of this experiment we generated 
anonymized graphs using the SaNGreeA algorithm presented 
in Section 2. For each generated graph we used various 
values for k (k as in k-anonymous social network). For n = 
10 we used k as 2 and 5; for n = 25, we used k = 2, 5 and 10, 
and for all other values of n, we used k = 2, 5, 10, 15, and 
20. In total 342 anonymized graphs were generated.  

In the third phase, we implemented all graph measures 
described in Section 3. For all 420 graphs (78 generated 
graphs and 342 anonymized graphs), we computed these 
graph measures. For an anonymized graph we did not use 
the weight of an edge between super-nodes, and we 
considered these graphs as unweighted graphs. 

In the last phase of our experiment we compared the 
original graph measures with the corresponding anonymized 
graph measures. We are still in the process of analyzing all 
these results, some preliminary findings are presented next. 

Figure 4 shows a sample of the results we obtained for 
radius and diameter. As expected, both these measures 
decrease as k increases. 
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Fig. 4  Radius and diameter values for some of the experiments. 

 

Figure 5 shows partial results with respect to centrality 
measures. For all measures we report the centrality measure 
for the anonymized graph divided to the centrality measure 
for the original graph. The reference value for the original 
graph is 1 for all three measures. We illustrate these results 
for four distinct original graphs (2 Random graphs, one with 
500 nodes and average node degree 8, and the second one 
with 100 nodes and average node degree 4, and 2 RMAT 
graphs with the same number of nodes and average node 
degrees). For each original graph we created 5 k-anonymous 
graphs, k ∈ {2, 5, 10, 15, 20}. 

The degree centrality, illustrated in Figure 5 (a), increases 
as k increases to 5 (for the smaller graphs) or 10 (for the 
larger graphs) and then decreases. This is due to how 
SaNGreeA algorithm creates clusters. For smaller k values, it 
creates supernodes from nodes highly connected between 
them and loosely connected to other nodes, which results in 
lower connectivity between supernodes; this means that the 
anonymized graph becomes sparser than the original graph. 
However, when k increases, there are not enough similarly 
connected nodes that could become alone a supernode; as a 
result, nodes with different connectivity properties are 
merged into supernodes and the anonymized graph gets 
closer to the complete graph. We notice the initial increase 
for degree centrality is steeper for Random graphs than 
RMAT. This is expected since an original Random graph 
has a uniform distribution of node degrees. 

The betweenness centrality showed in Figure 5 (b) usually 
decreases for the anonymized graphs. Again, this is because 
the anonymized graph gets closer to the complete graph as k 
increases, and therefore there are many short paths of length 
1. The small increase between k = 2 and k = 5 is, at the first 
view, unexpected. This is due to the fact that for small k 
values, the anonymized graph still has variety in supernodes’ 
connectivity, and some of the supernodes gain more control 
over the shortest paths that exist in the anonymized graph; 

these nodes have a high betweenness centrality. 
The closeness centrality decreases for anonymized graphs 

when the value of k increases as shown in Figure 5 (c). This 
is again due to the anonymized graph getting closer to the 
complete graph. 

Overall our experiments show a weak correlation between 
the anonymization level (the k value) of a graph and the 
centrality measures: same changes are observed for graphs 
of different sizes and with different network properties. 

  

 

 

Fig. 5  Centrality measures values for some of the experiments. 

V. CONCLUSIONS 

In this paper we studied a clustering-based anonymization 
approach with respect to how it preserves the structural 
content of the initial social network; specifically, we looked 
at how various graph metrics (centrality measures, radius, 
diameter etc.) change between the initial and the 
anonymized social network. Our results showed that there 
are similarities in how various centrality measures are 
modified from an original graph to its anonymized versions 
even if we change the graph size and network properties. We 
plan to study how other anonymization models behave with 
respect to centrality measures. 
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