
 
 

 

  

Abstract — The proliferation of social networks, where 
individuals share private information, has caused, in the last 
few years, a growth in the volume of sensitive data being 
stored in these networks. As users subscribe to more services 
and connect more with their friends, families, and colleagues, 
the desire to both protect the privacy of the network users and 
the temptation to extract, analyze, and use this information 
from the networks have increased. Previous research has 
looked at anonymizing social network graphs to ensure their 
k-anonymity in order to protect their nodes against identity 
disclosure. In this paper we introduce an extension to this k-
anonymity model that adds the ability to protect against 
attribute disclosure. This new model has similar privacy 
features with the existing p-sensitive k-anonymity model for 
microdata. We also present a new algorithm for enforcing p-
sensitive k-anonymity on social network data based on a 
greedy clustering approach. To our knowledge, no previous 
research has been done to deal with preventing against 
disclosing attribute information that is associated to social 
networks nodes.  
 
 Keywords: privacy, social networks, k-anonymity, clustering, 
greedy algorithm. 

I. INTRODUCTION 
The use of social network sites on the Internet, such as 

Facebook or MySpace, continues to grow at an exponential 
rate. The opening of Facebook to non-college membership 
caused a 500% growth in enrollment in one year [14]. In 
2005, before Facebook became a public network, Gross 
and Acquisti analyzed the profiles of Carnegie Mellon 
University students and identified privacy implications in 
the data being stored in this social network [7]. The main 
privacy concerns reported by Gross and Acquisti were the 
potential for stalking and re-identification of users based on 
demographics or images of faces and the possibility of 
identity theft [7].  

Obviously, there is a need to protect the privacy of 
individuals in social networks. Since social networking has 
become mainstream only in the last few years, the research 
in social networks privacy is also very recent, and many 
questions are still to be answered. Only a few researchers 
have explored this integrative field of privacy in social 
networks from a computing perspective.  
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A. Related Work 
Most of the existing work had focused on protecting the 

nodes’ identities in a social network [4], [8], [12], [22]. 
There is a strong similarity between ensuring this type of 
privacy for social network nodes and preventing against 
identity disclosure in flat microdata [10]. Therefore, k-
anonymity, the most popular model that guarantees identity 
protection in microdata [16], [18], has been extended from 
its primary form to also work for social network data [4]. 
With that end in view, the k-anonymity model for social 
networks had to additionally address the anonymization of 
network’s structural information, which itself carries a 
disclosure “potential”. Other researchers have proposed 
solutions for protecting the confidential links between 
nodes. Two nodes in a social network may have multiple 
connections, and some of them represent confidential 
relationships. Solutions to this link disclosure problem 
have been analyzed in [9], [21]. Less related to this paper, 
other contributions in the privacy in social networks field 
include: active and passive attacks [1], random perturbation 
[20], and access control / encryption protocols [5], [6]. A 
good survey of the state of the art in social networks’ 
privacy can be found in [23]. 

B. Contributions 
To our knowledge, this is the first work that extends the 

existing results on identity protection in social networks 
[4], [8], [12], [22] to also guard against the disclosure of 
sensitive information/attributes associated to network’s 
nodes. An equivalent model for flat microdata would be 
one that guards against attribute disclosure [10]. 

This paper’s contributions are: introducing a new 
privacy model for social network data entitled p-sensitive 
k-anonymity which combines the existing k-anonymity 
model for social networks [4] and the p-sensitive k-
anonymity model for microdata [19], integrating existing 
algorithms for the p-sensitive k-anonymity for microdata 
and the k-anonymity for social networks to generate a p-
sensitive k-anonymous social network, and performing 
experiments that prove the validity of the proposed model 
and algorithm. 

II. P-SENSITIVE K-ANONYMOUS SOCIAL NETWORKS 
We consider a social network to be a simple undirected 

graph G = (N, E), where N  is the set of nodes and E ⊆ N × 
N is the set of edges. Each node represents an individual 
user of the social network; each edge represents a 
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relationship or connection between two users in the 
network. 

All nodes in G are described by a set of attributes. These 
attributes can be classified as follows 
 I1, I2, …, Im are identifier attributes such as Name and 

SSN. 
 Q1, Q2, …, Qq are quasi-identifier attributes such as 

ZipCode and Age. They may be known from other 
public datasets and could be potentially used to violate 
individuals’ privacy. 

 S1, S2, …, Sr are sensitive attributes such as Disease. 
These attributes’ values must be protected against 
disclosure.  

There are two related aspects in anonymizing a social 
network modeled as described above. Both the data 
associated to the social network’s nodes, N, (identifier, 
quasi-identifier and sensitive attributes) and the structural 
information the network carries about the nodes’ 
relationships, E, have to be properly masked. The resulting 
masked network data has to protect the nodes against: 
identity disclosure (i.e. determining who exactly is the 
individual owning the node) and attribute disclosure (i.e. 
finding out sensitive data about an individual, but without 
identity disclosure). 

The process of anonymizing the nodes’ attributes 
consists of removing the identifier attributes from the nodes 
information, ensuring that the quasi-identifier information 
is at least k-anonymous [16], [18], and ensuring that the 
sensitive attributes are at least p-sensitive [19]. P-sensitive 
k-anonymity property for nodes’ data can be obtained by 
generalizing the quasi-identifier information, either with 
hierarchy-free generalization [11] for numeric data, or 
predefined hierarchies [13] for categorical data. The nodes’ 
data generalization we envision is performed based on a 
partitioning of the node set N into distinct clusters. The 
nodes’ data generalization is performed at the cluster-level: 
each cluster will have identical quasi-identifier values for 
all nodes, a minimum size of k, and at least p distinct 
values for each sensitive attribute. The network’s structural 
information (edges) is also masked starting from the 
established partitioning of N into clusters. Basically, the 
detailed connectivity information of the individual nodes in 
a cluster is replaced with a summary of intra-connectivity 
and inter-connectivity information of the cluster as a 
whole. So, the essential task in anonymizing a social 
network is partitioning the node set N – how we conduct 
this step and the reasoning behind it will be explained in 
the next section. 

The goal of the anonymization process is not only to 
produce a masked p-sensitive k-anonymous social network 
(formally defined next), but also to create a good-quality 
masked social network. The quality of an anonymized 
social network is given by the amount of information that it 
preserves from the original unmasked network: lower 
information loss means higher quality of the anonymous 

network. As we are dealing with graph data, the measures 
we use for quantifying information loss need to be sensitive 
to both the change in the quasi-identifiers attributes and the 
change in the structural information that occurs due to edge 
anonymization [4]. To measure the information lost from 
nodes’ quasi-identifier attributes generalization we use the 
generalized information loss, a measure defined in [2]. For 
assessing the structural information loss in the edge-
anonymization process, we use the measure introduced in 
[4]. 

Definition 1 (generalization information loss): Let cl be 
a cluster and QI = {N1, N2, .., Ns, C1, C2, .., Ct} the set of 
numerical and categorical quasi-identifier attributes. The 
generalization information loss caused by generalizing 
quasi-identifier attributes of the cl nodes is: 

GIL(cl)  = |cl|⋅
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where:  
 cl’s generalization information, denoted by gen(cl), is 

the “node” having as value for each quasi-identifier 
attribute, numerical or categorical, the most specific 
common generalized value for all that attribute values 
from cl nodes (see a formal definition in [3]); 

 |cl| denotes the cluster cl’s cardinality; 
 size([i1, i2]) is the size of the interval [i1, i2], i.e. (i2- i1); 
 Ni, i = 1..s are numerical quasi-identifier attributes; 
 Ci, i = 1..t are categorical quasi-identifier attributes 
 Λ(w), w∈HCj is the subhierarchy of the Cj’s predefined 

value hierarchy (HCj) rooted in w; 
 height(HCj) denotes the height of the tree hierarchy HCj. 

To be able to compare this measure with the structural 
information loss, we normalize it to the range [0, 1]. This is 
shown in the Definition 2. Detailed justification of 
Definitions 1 and 2 can be found in [4]. 

Definition 2 (normalized generalization information 
loss): The normalized generalization information loss 
obtained when masking the graph G based on the partition 
S = {cl1, cl2, … , clv}, denoted by NGIL(G,S), is: 

NGIL(G,S)  = 
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where: 
 n is the number of nodes for the graph G; 
 (s + t) is the number of quasi-identifier attributes. 

Structural information loss quantifies the probability of 
error when trying to reconstruct the structure of the initial 
social network from its masked version. There are two 



 
 

 

components for the structural information loss: the intra-
cluster structural loss and the inter-cluster structural loss. 
These components occur due to an edge anonymization 
process [4]. In the anonymized graph, the cluster cl will be 
generalized to (collapsed into) a node, and the structural 
information we attach to it is the pair of values (|cl|, |Ecl|), 
where |cl| represents the cardinality of the set cl. This 
information permits assessing some structural features 
about this region of the network that will be helpful in 
some applications. From the privacy standpoint, an original 
node within such a cluster is indistinguishable from the 
other nodes of the cluster. This intra-cluster edge 
generalization causes an intra-cluster information loss. In a 
similar way, given any two clusters cl1 and cl2, let Ecl1,cl2 be 
the set of edges having one end in each of the two clusters 
(e ∈ Ecl1,cl2 iff e ∈ E and e ∈ cl1 × cl2). In the anonymized 
graph, this set of inter-cluster edges will be generalized to 
(collapsed into) a single edge and the structural information 
released for it is the value |Ecl1,cl2|. This process is called 
inter-cluster edge generalization and induces inter-cluster 
information loss [4]. Based on this structural generalization 
method, a structural information loss (SIL) measure and a 
corresponding normalized structural information loss 
(NSIL) measure are derived. Due to the lack of space, for a 
complete definition we refer the reader to [4]. 

Given a partition of nodes for a social network G, we are 
able to create an anonymized graph by the generalization 
techniques explained above. 

Definition 3 (masked social network): Given an initial 
social network, modeled as a graph G = (N, E), and a 

partition S = {cl1, cl2,…, clv} of the nodes set N, U
v

j
jcl

1=
= N; 

=I ji clcl ∅; i, j = 1..v, i ≠ j; the corresponding masked 

social network MG is defined as MG = (MN, ME), where: 
 MN  = {Cl1, Cl2, … , Clv}, Cli is a node corresponding 

to the cluster clj ∈ S  and is described by the “tuple” 
gen(clj), the intra-cluster generalization pair (|clj|, |Eclj|), 
and the projection on all sensitive attributes of the nodes 
from clj; 

 ME ⊆ MN  × MN ; (Cli, Clj) ∈ ME iif Cli, Clj ∈ MN  
and ∃  X ∈ clj, Y ∈ clj, such that (X, Y) ∈ E. Each 
generalized edge (Cli, Clj) ∈ ME is labeled with the 
inter-cluster generalization value |Ecli,clj|.  

By construction, all nodes from a cluster cl collapsed 
into the generalized (masked) node Cl are indistinguishable 
from each other.   

To have the k-anonymity property for a masked social 
network, we need to add one extra condition to Definition 
3, namely that each cluster from the initial partition is of 
size at least k. The formal definition of a masked social 
network that is k-anonymous is presented below. 

 

Definition 4 (k-anonymous masked social network): A 
masked social network MG = (MN, ME), where MN  = 
{Cl1, Cl2, … , Clv}, and Clj = [gen(clj), (|clj|, |Eclj|)], j = 1, 
…, v is k-anonymous iff  |clj| ≥ k for all j = 1, …, v. 

Now we have all the tools to introduce the p-sensitive k-
anonymous masked social network that combines the 
above definition with the p-sensitive k-anonymity property 
for microdata [19].  

Definition 5 (p-sensitive k-anonymous masked social 
network): A masked social network MG = (MN, ME), 
where MN = {Cl1, Cl2, …, Clv}, is p-sensitive k-anonymous 
if it is k-anonymous and the number of distinct values for 
each sensitive attribute is at least p within each Clj, j = 1..v. 

III. SANGREEA_PK ALGORITHM 
The SaNGreeA_PK algorithm builds on the work done 

by Campan et. al. in the areas of k-anonymity in social 
networks [4] and p-sensitive k-anonymity for microdata 
[3]. By combining the two algorithms presented in these 
papers, we developed the SaNGreeA_PK algorithm, which 
is able to perform p-sensitive k-anonymization for social 
networks. 

The algorithm functions by taking the nodes of the social 
network and grouping them in a way that ensures p-
sensitiveness of the formed clusters. The clusters formed 
will also have cardinality greater than k. Of course, some 
preconditions have to be respected for a social network to 
be amenable to p-sensitive k-anonymity, for given p and k 
values. For example, the social network must have at least 
p unique values for each of its nodes’ sensitive attributes, 
and at least k nodes. 

The cluster formation process is performed in a greedy 
manner. Each cluster is started from an initial seed node 
and fed with one other node at a time, until it becomes p-
sensitive and k-anonymous. The node to be included in the 
currently developed cluster is the result of a greedy 
selection based on the values of the sensitive attributes and 
the levels of information loss (both through structural and 
attribute generalization) introduced in the summarization of 
the quasi-identifiable information. The functions that guide 
the selection process are: the diversity between the cluster 
being formed and the new node [3], the NGIL, and a 
function called structural distance that aims to limit the SIL 
(obviously, (N)SIL cannot be used as long as a complete 
partitioning of N is not known) [4].  

The diversity between a cluster and a new node helps 
achieve the desired level of sensitivity in each cluster. We 
introduce next this measure. Let X i, i=1..n, be all the nodes 
from the social network . We denote an node label 
information as },...,,,,...,,{ 2121

i
r

iii
q

iii ssskkkX = , where ki s 

are the values for the quasi-identifier attributes and si s are 
the values for the confidential attributes. 

 



 
 

 

Definition 6 (diversity of two tuples): The diversity of 
two tuples, X i and X j w.r.t. the sensitive attributes is given 
by:  

diversity(X i, X j ) =  ∑
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sensitive attributes. 

The data owner can choose different criteria to define 
this weights vector. One good selection of the weight 
values is to initialize them as inversely proportional to the 
number of distinct sensitive attribute values in the original 
dataset. Along this paper we use this choice for the weights 
in all the experiments. 

Definition 7 (diversity between a tuple and a cluster): 
The diversity between a tuple X i and a cluster cl is given 

by diversity(X i, cl) = ∑
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The justification that stands behind the selection of the 
structural distance for guiding cluster formation is 
presented in [4]. The formal definition of the structural 
distance measure follows. Assuming that the nodes in N 
have an order, N = {X 

1, X 

2, …, X 

n}, we represent the 
neighborhood of each node X 

i as an n-dimensional boolean 
vector Bi = ( )i

n
ii bbb ,...,, 21 , where 1=i

jb  if there is an edge 

(X 
i, X 

j) ∈ E, and 0 otherwise, ∀j = 1,n; j ≠ i. We consider 
the value i

ib to be undefined, and therefore not equal with 0 
or 1. 

Definition 8 (structural distance between two nodes): 
The structural distance between two nodes (X 

i and X 
j) 

described by their associated n-dimensional boolean 
vectors Bi and Bj is: 
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Definition 9 (structural distance between a node and a 
cluster): The structural distance between a node X and a 
cluster cl is defined as the average distance between X and 
every node from cl: 
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The following documents the new SaNGreeA_PK 
algorithm, which combines the SaNGreeA algorithm for 

anonymizing social networks [4] with the 
GreedyPKClustering algorithm that anonymizes microdata 
to conform to p-sensitivity k-anonymity [3]. 

 
Algorithm SaNGreeA_PK is 
 
Input: G = (N, E) - a social network 

k - as in k-anonymity 
p - as in p-sensitivity 
α, β - user-defined weight parameters; 
allow controlling the balancing  
between NGIL and NSIL 

Output: S = {cl1, cl2,…, clv}; U
v

j
jcl

1=
= N; 

=I ji clcl ∅, i,j = 1..v, i≠j;  

|clj|≥k, j = 1..v - a set of clusters  
that ensures p-sensitive k-anonymity 
for MG = (MN, ME) so that a cost 
measure is optimized; 

 
S = ∅; 
i = 1; 
rseed = a randomly selected node from N; 
Repeat 
  ));,((maxarg rrdiversityr seed

r
seed

N∈
=

 

  

cli = {rseed};

 
  

N = N - {rseed};
 

  

Repeat

 
    

// make cli p-sensitive; for that, find

 
    

// the set of most diverse nodes w.r.t. cli
 

    
));,((argmax i

r
clrdiversitydivcl

N
=

∈  

    
));,(*)1,1(*(minarg' iclXsdistβNGILαX

divclX
+SG=

∈

 

 

    

// G1: subgraph induced by cli∪{X’}in G
 

    

// S1: partition with 1 cluster cli∪{X’} 
 

    

cli = cli ∪ {X’};
 

    

N = N - {X’};
 

  

Until (cli is p-sensitive) or (N = ∅);

 
  

If (|cli| < k) and (N ≠ ∅) then

 
    

Repeat

 
      

// add nodes until cli has k nodes

 
   

   ));,(*),(*(minarg' 11 i
NX

clXsdistβNGILαX +SG=
∈

 

      

cli = cli ∪ {X’};
 

      

N = N – {X’};
 

    

Until (|cli| ≥ k) or (N = ∅);

 
  

End If;

 
  

If (|cli|≥k and cli is p-sensitive) then
 

    

S = S ∪ {cli};
 

    

i++;

 
  

Else

 
    

// this only happens to last cluster 
    DisperseCluster (S, cli);

 
  

End If;

 Until N = ∅; 
End SaNGreeA_PK; 

 
Function DisperseCluster(S, cl) 
  S = S – cl; 
  For every r ∈ cl do 
    clu = FindBestCluster (r, S); 
    clu = clu ∪ {r};  
  End For; 
End DisperseCluster; 



 
 

 

Function FindBestCluster(r, S) 
  bestCluster = null; 
  infoloss = ∞; 
  For every cli ∈ S do 
    If (α⋅NGIL(G1,S1)+β⋅sdist(r,cli)< infoloss)  
    then 
      infoloss = α⋅NGIL(G1,S1) + β⋅dist(r,cli);     
      bestCluster = cli; 
    End If; 
  End For; 
  Return bestCluster; 
End FindBestCluster; 

 

To illustrate this algorithm, we give an example that 
shows how p-sensitive k-anonymity is achieved in a sample 
social network. Suppose the social network Gex as shown in 
Figure 1 is given. The contents of the nodes are given in 
Table 1. The quasi-identifiers in this example are age, zip 
and gender, and the sensitive attribute is illness. The 
attribute age is numerical and subject to a hierarchy-free 
generalization. The value generalization hierarchies for the 
other two quasi-identifiers are given in Figure 2. 

By running the SanGreeA_PK algorithm for this dataset 
with k = 3, p = 2, α = 0, and β = 1, the masked social 
network MGex1, shown in Figure 3, is generated. Due to the 
choice of α and β values, SanGreeA_PK guides the cluster 
formation to optimize the structural information loss and 
disregards the generalization information loss. When run 
with k = 3, p = 2, α = 1, and β = 0, the masked social 
network MGex2, shown in Figure 4, is generated. In this 
case, as β = 0, the generalization information loss is the 
only cost metric SanGreeA_PK tries to minimize in the 
cluster formation process. 

 

 
 
Fig. 1.  The social network Gex. 

 
TABLE 1 

THE NODES’ QUASI-IDENTIFIER AND SENSITIVE ATTRIBUTES IN GEX 

Node Age Zip Gender Illness 
X1 25 41076 Male Diabetes 
X2 25 41075 Male Heart Disease 
X3 27 41076 Male Diabetes 
X4 35 41099 Male Colon Cancer 
X5 38 48201 Female Breast Cancer 
X6 36 41075 Female HIV 
X7 30 41099 Male Diabetes 
X8 28 41099 Male HIV 
X9 33 41075 Female Colon Cancer 

 

 
 
Fig. 2.  The value generalization hierarchies for attributes zip and 
person 
 
 

 
 
Fig. 3.  The social network MGex1. 
 
 

 
 
Fig. 4.  The social network MGex2. 
 
When we analyze the resulting graph for both 

generalization and structural information loss, we produce 
the results shown in Table 2. 

 
TABLE 2 

THE GENERALIZATION AND STRUCTURAL INFORMATION LOSS FOR 

THE SUMMARIZATIONS OF Gex 
MG GIL NGIL SIL NSIL 

MGex1 14.30 0.53 5.77 0.32 
MGex2 7.73 0.28 8.44 0.46 

IV. EXPERIMENTAL RESULTS 
In this section we compare the SaNGreeA_PK algorithm 

with the SaNGreeA algorithm [4], over various 
combinations of k and p values, in terms of the 
generalization and structural information loss of the 
masked social networks they generate.  

The two algorithms were implemented in Java. The tests 
were executed on a single CPU machine running at 2.53 
GHz with 2GB of RAM and Windows XP Professional.  

The algorithms were tested with a social network 
derived from the Enron e-mail dataset, an ex-employee 
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status report developed by Shetty et.al. [17], and the Adult 
dataset from the UC Irvine Machine Learning Repository 
[15]. The Adult dataset was necessary, as it provided quasi-
identifier and sensitive attribute values for the nodes of our 
test social network. This type of information has been 
stripped out of the publicly available Enron e-mail dataset, 
to respect the privacy of the Enron employees. However, 
the Enron e-mail dataset provided the structural 
information for our test social network. 

The nodes’ data we formed contained the quasi-identifier 
attributes: role (coming from the ex-employee status 
report), age, marital_status, and race (coming from the 
Adult database). Age is the only numeric quasi-identifier; 
the other three quasi-identifiers are categorical. The heights 
of their predefined generalization hierarchies are 2 (for 
role), 2 (for marital_status), and 1 (for race). Education 
and salary_range are the sensitive attributes. 

The attribute role is taken from the Enron ex-employee 
status report by matching the first and last name on the 
report with the e-mail database first and last names, 
resulting in 121 matching records. A Roles table was 
created that correlated role, education and salary ranges, as 
shown in Table 3. 

 
TABLE 3 

THE ROLES TABLE 

Role Education Min 
Salary 

Max 
Salary 

Trader Assoc-voc 40 110 
Manager Bachelors 40 110 

Managing Director Bachelors 70 150 
CEO Doctorate 90 200 

President Doctorate 90 200 
N/A HS-grad 30 60 

Director Masters 70 150 
Vice President Masters 90 200 

In House Lawyer Prof-school 40 110 
Director of Trading Prof-school 70 150 

Employee Some-college 30 60 

 
From this table, the education attribute was used to 

randomly match and select a record from the Adult dataset; 
that particular record provided the values for the 
marital_status, age, and race attributes. A salary value was 
then randomly generated, using a uniform distribution, for 
each individual, within the range associated to the 
individual’s Enron role. Exact salary values were then 
transformed into the following reporting ranges: $25-50K, 
$51-75K, $76-100K, $101-125K, $126-150K, $151-175K, 
and $176-200K.  

The edges of the graph were derived in the same way as 
in [17], with two users being considered related if they had 
exchanged 5 e-mails with each other. Once extracted, it 
was discovered that some nodes had dropped off the graph, 
as they did not meet the 5 e-mail connection rule with any 
of the other users. Finally, the edge information was 

merged with the node information. Any isolated node and 
any edge for which one end had been already eliminated 
from the node set were eliminated. The resulting graph 
consists of 84 nodes and 191 edges. 

The created test social network was anonymized with the 
SaNGreeA and SaNGreeA_PK algorithms, varying the 
value of k from 2 to 15 and the values of p from 2 to min(7, 
k). The experiments were run with two different (α, β) 
parameter values: (0, 1) and (1, 0). The pair (0, 1) guides 
the algorithm towards minimizing structural information 
loss, while (1, 0) reduces information loss due to the 
generalization of the quasi-identifier attributes. The 
normalized generalization information loss (NGIL) and the 
normalized structural information loss (NSIL) were 
computed for the resulting masked social networks. Figure 
4 presents the resulting NGIL and NSIL values for (α, β) = 
(0, 1). Figure 5 depicts the same measures for the pair (1, 
0). 

Looking at the results, we can see that in general there is 
a correlation between an increase in the values of k and p 
and an increase in structural and generalization information 
loss values. The experiments also show that increasing k 
values (for a fixed p) are reflected in a greater information 
loss (both SIL and GIL) than when increasing p values for 
the same k.  

As expected, α and β parameters values controlled the 
trade-off between SIL and GIL. For the same k and p values 
SIL is lower when α = 0 then when α = 1. Similarly, GIL is 
lower when β = 0 then when β = 1.  

 

 
 

 
 
Fig. 4.  The NGIL and SGIL values for the test social network with α = 
0, β = 1. 
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Fig. 5.  The NGIL and SGIL values for the test social network with α = 
1, β = 0. 

V. CONCLUSIONS AND FUTURE WORK  
In this paper we extended the existing results on identity 

protection in social networks to also guard against the 
disclosure of sensitive information/attributes associated to 
network’s nodes. To achieve this extension we introduced a 
new privacy model for social network data entitled p-
sensitive k-anonymity. We also integrated existing 
algorithms for the p-sensitive k-anonymity for microdata 
and the k-anonymity for social networks into a new 
algorithm entitled SaNGreeA_PK. Our experiments showed 
that the new algorithm generates p-sensitive k-anonymous 
social networks with their corresponding information loss 
is similar to the existing SaNGreeA k-anonymity algorithm 
with only a modest increase in structural and generalization 
information loss. The new proposed algorithm can also be 
user-balanced towards preserving more the structural 
information of the network or the nodes’ attribute values. 

We consider two possible directions to extend this 
work: 
 Analyze, using social networks from different areas, the 

utility of the anonymized social network. This may lead 
to the development of more practical data utility / 
information loss measures. 

 Formally study how the greedy criteria can be improved 
based on the properties of the social network data and 
the selected p and k values.  
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