- 1. The compound with formula $C_{11}H_{13}OCI$ gave the ¹H- and ¹³C-NMR spectra below
 - a. Calculate the degree of unsaturation for this compound
 - b. Propose a structure that is consistent with the provided spectroscopic data.
 - c. In your final structure label the non-equivalent hydrogens with *a*, *b*, *c*... and write the same letter next to the corresponding peak in the spectrum.

There are 6 carbons between 120 – 140 ppm

- 2. The compound with formula $C_{15}H_{20}O$ gave the ¹H- and ¹³C-NMR spectra below.
 - a. Calculate the degree of unsaturation for this compound
 - b. Propose a structure that is consistent with the provided spectroscopic data.
 - c. In your final structure label the non-equivalent hydrogens with *a*, *b*, *c*... and write the same letter next to the corresponding peak in the spectrum.

- 3. The compound with formula $C_{11}H_{14}O_2$ gave the ¹H- and ¹³C-NMR spectra below
 - a. Calculate the degree of unsaturation for this compound
 - b. Propose a structure that is consistent with the provided spectroscopic data.
 - c. In your final structure label the non-equivalent hydrogens with *a*, *b*, *c*... and write the same letter next to the corresponding peak in the spectrum.

- The compound with formula C₉H₁₂O gave ¹H-NMR and ¹³C-NMR spectra below

 Calculate the degree of unsaturation for this compound

 - b. Propose a structure that is consistent with the provided spectroscopic data.
 c. In your final structure label the non-equivalent hydrogens with *a*, *b*, *c*... and write the same letter next to the corresponding peak in the spectrum.

