
COKRIGING, KERNELS, AND THE SVD:

TOWARD BETTER GEOSTATISTICAL

ANALYSIS

by

Andrew Edmund Long

A Dissertation Submitted to the Faculty of the

Graduate Interdisciplinary Program
in Applied Mathematics

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

In the Graduate College

The University of Arizona

1 9 9 4



2

Acknowledgments

A long and twisted path has brought me to this point: my journey has been (for the
most part) a pleasant one, due primarily to some special travelling companions. It is
a pleasure to thank them.

My mother and father kept the wolves from the door throughout graduate school;
but, more importantly, they have always tried, and often managed, to keep the wolves
from my mind. You have been my best teachers, using the best technique: education
by example. Thanks for the support.

My ears and I will miss the whole KXCI family: Milo and Victor, for “the Blue-
grass Show”; Carol Anderson; Peter Bourque; Eb Eberlein; Betsy Meisner; Kidd
Squidd; Michael Hyatt; Jim Foley; Annie Barva; Mike Landwehr and George “It’s
Five” Ferris, my pals. Tucson is so lucky. Fish Karma, Rainer, Los Lasers: way cool!
Thanks for teaching me, and keeping my spirits up!

Lois, Bob, and Kathleen: you’ve been the bosses, and you made it happen. Keep
up the good deeds and work. I appreciate all your help and support.

Certain professors went above and beyond the call of duty, either in terms of
making me feel comfortable here, or by trying harder to communicate difficult ideas
than anyone could reasonably expect, or by spending time outside of class sharing of
themselves. I thank particularly Bruce Bayly, Jim Cushing, Rick Michod, Hermann
Flaschka, and Committee member Dr. A. Warrick in this regard.

Thanks, Anna and Tchapo, for putting up with the “Grumpy Old Man”, especially
at the last, when I was juggling a job search, a dissertation, and a family. I try to
look cool but you saw me sweat. I regret especially the times when I foolishly felt
that I couldn’t afford even to read to you, Tchapo. I was wrong: I couldn’t afford
not to, buddy, and I’ll try to do better from now on.

Friends Dan, Jim, Howard, Peter, David, Aric, George, Elizabeth and Warren:
all of you got me through the transition period from ex-Peace Corps Volunteer to
student (again! Good Lord, will it never end?! I guess it does...). Thanks guys, and
especially Dan, who made the initial effort to bring me into the fold, and has proven
himself a steadfast friend under all circumstances; Jim, who has bared his soul and
been a searching and challenging friend; and my steady little buddy Howard: all three
of you have helped make Tchapo a better fella, and he, Anna, and I salute you. I’ve
had a blast, sometimes; fun, most of the time; and you were there when I wasn’t
having any fun at all.

Dr. Myers: you’ve been patient, interested, and interesting. I enjoy working with
you, and look forward to working with you in the future. Thanks for being the lure
that brought me here, and the prod that pushed me through. Your hard work in the
interests of your students does not go unnoticed, although it may sometimes seem to
go unrewarded. You’ll probably say that the success of your charges is all the reward



3

you need; I contribute my heartfelt thanks, nonetheless.



4

Dedication

For my father

Thanks, Dad, for showing me how much fun this would be!



5

Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2. The Singular Value Decomposition and a Tensor Gen-
eralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1. The Singular Value Decomposition of a Matrix . . . . . . . . . . . . . 18

2.1.1. Hoechsmann’s Proof . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2. The Operator Tao of SVD . . . . . . . . . . . . . . . . . . . . 20
2.1.3. The Eigen Tao of SVD . . . . . . . . . . . . . . . . . . . . . . 23
2.1.4. The Inner Tao of SVD . . . . . . . . . . . . . . . . . . . . . . 24
2.1.5. The Meaning of Singular Things . . . . . . . . . . . . . . . . . 26

2.2. The SVD as a Rapid Interpolator on a Grid . . . . . . . . . . . . . . 27
2.2.1. Illustrative Example: Abe . . . . . . . . . . . . . . . . . . . . 30

2.3. The Three-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.1. Independence is Rank-One . . . . . . . . . . . . . . . . . . . . 32
2.3.2. Decomposing Three-Dimensional Objects . . . . . . . . . . . . 34
2.3.3. A Notation for Tensor Inner- and Outer-Products . . . . . . . 36
2.3.4. Embedding Matrices into Tensors . . . . . . . . . . . . . . . . 36
2.3.5. Maximum Rank of a Three-Tensor . . . . . . . . . . . . . . . 41
2.3.6. The Eigen Tao of TSVD . . . . . . . . . . . . . . . . . . . . . 44

2.4. Proof of the Existence of the Tensor SVD in Three Dimensions . . . . 46
2.4.1. Special Case: the Bi-Symmetric Three-Tensor . . . . . . . . . 50

2.5. TSVD: Rapid Interpolator in Higher-Dimensions . . . . . . . . . . . . 51
2.6. A Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 3. Variogram Analysis . . . . . . . . . . . . . . . . . . . . . . 54
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1. Principal Components Analysis and Similar Techniques . . . . 55
3.1.2. What is the Variogram, and Why Use It? . . . . . . . . . . . . 57

3.2. The Variogram: Spatial Decomposition of Variance . . . . . . . . . . 59
3.3. Variogram Analysis as a Multivariate Analysis Tool . . . . . . . . . . 64
3.4. Modelling the Variograms and Cross-Variograms . . . . . . . . . . . . 65

3.4.1. Variograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Table of Contents—Continued

6

3.4.2. Cross-Variograms . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5. TSVD and TSVD-like Methods in Variogram Analysis . . . . . . . . 71
3.6. Choosing Variables for Combined Analysis . . . . . . . . . . . . . . . 79

Chapter 4. Interpolation/Estimation Methods . . . . . . . . . . . . 83
4.1. Historical/Kernel Methods - Simple, Fast, Stable . . . . . . . . . . . 83
4.2. Kriging and Cokriging - Complex, Slow, Risky . . . . . . . . . . . . . 84

4.2.1. Kriging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2.2. A Better Algorithm for Cokriging . . . . . . . . . . . . . . . . 95

Chapter 5. Kernels and Kriging: In Search of a Compromise . . 111
5.1. Introduction and Motivation . . . . . . . . . . . . . . . . . . . . . . . 111
5.2. Shadow Effect? What Shadow Effect? . . . . . . . . . . . . . . . . . . 117

5.2.1. Variogram Models That Are Concave Up . . . . . . . . . . . . 119
5.2.2. Variogram Models That Are Concave Down . . . . . . . . . . 126

5.3. Two-Dimensional Case . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.5. Analytical and Experimental Results . . . . . . . . . . . . . . . . . . 132
5.6. From Here to Infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Chapter 6. Case Study: Nitrate Pollution in the Phoenix Area 147
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.2. Cross-Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3. Overview of Mapping Results . . . . . . . . . . . . . . . . . . . . . . 154
6.4. Diagonalizing the Data . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.5. Linear Approximation to Cokriging . . . . . . . . . . . . . . . . . . . 163
6.6. TSVD of Common Sites . . . . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendix A. TSVD Calculations . . . . . . . . . . . . . . . . . . . . . 172
A.1. Symmetric Power Method for Finding Singular Tensors . . . . . . . . 172

A.1.1. Main Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
A.1.2. Sub-Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

A.2. Power Method for Unsymmetric Tensors . . . . . . . . . . . . . . . . 177
.1. Variogram Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
.2. Corhograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
.3. Variance Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204



7

List of Figures

Figure 2.1. Three different operator decompositions of a matrix X. . . . . . 22
Figure 2.2. A two-dimensional data set of tracks in a field. It is not necessary

that the tracks show the symmetry represented in this figure. Although
not yet discussed, this is also the form of an interpolation matrix for a
one-dimensional data set. . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.3. The SVD Interpolation Scheme: a grid is turned into two finite
sets of functions, whose outer-products form functions of two variables.
“Rows” (tracks running left to right) of the interpolating function are
gotten by taking sums of the interpolated rows of V ; “columns” by taking
sums of interpolated columns of Q. . . . . . . . . . . . . . . . . . . . . . 29

Figure 2.4. Abe himself, Abe represented using only half the information in
his singular values and Schmidt pairs), and Abe “densified” by a spline-
fitting his singular vectors. . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 2.5. Tensor inner- and outer-product notation. . . . . . . . . . . . . 36
Figure 2.6. The most natural three-tensor to create from a matrix? . . . . . 37
Figure 2.7. Tensor SVD of X is simple, given by construction! . . . . . . . 38
Figure 2.8. These are the tensor products referred to in the text . . . . . . 40
Figure 2.9. Left: X = v ⊗ A (components of vector v are indicated by their

size as balls). Right: both A and X are rank-three in this example. . . 40
Figure 2.10. The shortened (non-zero portion of the) three-tensor X after

multiplication by the orthogonal matrix of singular vectors in the long
dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 2.11. Face A of the tensor contains more “information” overall, but
face B has the most heavily weighted single outer-product. . . . . . . . . 44

Figure 3.1. Abe Lincoln has his sample variance decomposed by the vari-
ogram. The variogram, weighted by the measure of the distribution of
pairs, gives the variance. The panel at bottom-right represents the inte-
grand, the product of the variogram and the measure. . . . . . . . . . . 63

Figure 3.2. Data are compared at sites separated by (roughly) the same angle
and distance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 3.3. Model variograms (of variables from the Nitrate Study), calcu-
lated and modelled using the Geo-EAS automated technique. . . . . . . 69

Figure 3.4. Automated cross-variogram modelling in action. This cross-
variogram was obtained by software automatically modelling the vari-
ograms of the two variables, their sum and difference, and choosing the
best of the three possibilities according to Myers’s scheme. . . . . . . . . 71



List of Figures—Continued

8

Figure 3.5. Five 3 × 3 × 50 tensors shown in columns: diagonalized tensor;
rank 1,2, and 3 reconstructions; and the original tensor at right. Since
the 3 × 3 matrices are symmetric, only 6 components appear. . . . . . . 77

Figure 3.6. Corhogram model from 1977 data winner magnesium, 1985 data
winner calcium, and 1988 data winner magnesium. . . . . . . . . . . . . 81

Figure 3.7. Left: all corhograms for a coregionalization of nine variables,
using only nugget and spherical models (from a study by Wackernagel).
Right: invalid corhogram for which cokriging seemed to lead to a sub-
stantial improvement over kriging (from a study by Carr et al.). . . . . . 82

Figure 4.1. Histograms of Abe’s pixel values (original data) and the trans-
formed data of the dual kriging equations. . . . . . . . . . . . . . . . . . 89

Figure 4.2. A sample of Abe Lincoln’s face was used to estimate the missing
portion. The dual form required the computation of the transformed
data, which is obviously not as smooth as Abe! The variogram acts as an
interpolating kernel on this transformed data, while the data weights are
used with the actual values of Abe’s face to get the estimate (here taken
in the upper left corner, in his hair). . . . . . . . . . . . . . . . . . . . . 90

Figure 4.3. Top-left: Abe’s isotropic sample variogram; top-right: trans-
formed data sample variogram. Notice that the transformed data vari-
ogram is better correlated at mid-range, which makes it rather strange as
variograms go. Abe’s is much more typical. The corhogram (of Abe and
Abe transformed) (bottom-left) is also striking, quite piled up, and more
open to interpretation than the ill-mannered cross-variogram (bottom-
right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 4.4. The dual ways of showing the information contained in the cross-
variogram: against the product of the variograms, or scaled into the
corhogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 5.1. Four kriging weight patterns in the one-dimensional case, using
25 scattered data locations on the interval [0,1]. Estimation at x=.4 with
four different sets of locations. . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 5.2. Four kriging weight patterns in the one-dimensional case, using
25 scattered data locations on the interval [0,1]. Estimation using fixed
set of data locations, at four different points on the unit interval. . . . . 113

Figure 5.3. Kriging weights for two different models in the two-dimensional
case, for scattered sites. The resemblance these (typical) weight distri-
butions bear to weights given by kernels suggested that there might be
equivalent kernels appropriate for a variety of variogram models. . . . . 114

Figure 5.4. Silverman’s kernel function for the smoothing spline (left) looks
like an attenuated sinc function (5.1.3), right. . . . . . . . . . . . . . . . 115



List of Figures—Continued

9

Figure 5.5. The model and kernel seem to mimic each other in this exponen-
tial variogram interpolation pattern. The model above, and the kriging
weights below, are referenced to an estimation site around 10. . . . . . . 119

Figure 5.6. Cosine reconstructed from scattered samples: note in particular
the hump on the left side, which was well reconstructed in spite of the
lack of elevated neighbors. . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Figure 5.7. Cosine data weights and variogram: one and the same? . . . . . 121
Figure 5.8. The Variogram of data set linear.dat modelled by a long-range

gaussian (long with respect to the pair distances). . . . . . . . . . . . . 122
Figure 5.9. The weights for the gaussian model suggest a kernel function

which resembles the sinc. Left: nugget variation; the highest weight drops
steadily as the nugget percentage increases. Right: range variation; the
weights steadily spread out as the range increases. . . . . . . . . . . . . 123

Figure 5.10. Notice the boundary effect, which is very similar to that found
by Silverman, which he corrected using reflection. . . . . . . . . . . . . . 124

Figure 5.11. The portion of the spline coefficient matrix corresponding to the
variogram portion of the kriging system. . . . . . . . . . . . . . . . . . . 125

Figure 5.12. The kriging weights in this exponential model without nugget
are effectively non-negative on only the two closest neighbors, at 50 and
51. Shown are the weights as estimates occur at a succession of values
from 50 to 50.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Figure 5.13. Once a nugget is added, the exponential weights begins to look
resemble a pointy but smooth kernel. . . . . . . . . . . . . . . . . . . . . 127

Figure 5.14. Kriging weights for the linear model go quickly from shadow
effect to smooth kernel as the nugget is increased. The one-dimensional
weight distributions are stacked by increasing nugget. . . . . . . . . . . 127

Figure 5.15. Kriging weights suggest a “witch’s hat” kernel function in the
case of a spherical model, with (below) and without (above) a nugget.
The shadow effect seems to appear in the weight pattern above, without
nugget. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Figure 5.16. This sort of extrapolatory behavior is typical for all models. . . 130
Figure 5.17. Kriging weights for a gaussian model, both without (top) and

with (bottom) a nugget. . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 5.18. The ordinary kriging matrices (minus the row and column of

ones) for two standard models for one-dimensional scattered data sets.
Top, exponential with nugget; bottom, gaussian, without nugget. . . . . 133

Figure 5.19. Joint zeros (origin excepted) of these functions give the eigenval-
ues for the differential equation coinciding with the case of the exponential
variogram. Values are converging on integral multiples of π

2
. . . . . . . . 135



List of Figures—Continued

10

Figure 5.20. The best and worst looking weight distributions from a set of 20
random points, on an interval with 100 design points randomly dispersed.
Ratio of nugget to sill: .15. The actual weight distributions are smooth
and decline monotonically away from the point at which the estimate
is desired. (There is not much difference, but the one on the right was
considered worst of the twenty.) . . . . . . . . . . . . . . . . . . . . . . . 138

Figure 5.21. 40 eigenfunctions, rather than the 500 singular vectors obtained
from the kriging system, generate the weights for an approximation to
kriging. The kernel is slightly higher at the peak, and oscillates about the
true weights away from the peak. Also depicted are the rank-40 pseudo-
solution, and the kernel solution without the addition of the null-space
term: these last two are essentially identical. . . . . . . . . . . . . . . . 140

Figure 5.22. Above: all weights, in the midst of 500 design points; the kernel
dips below the actual weights at right, and is above (for awhile) at left,
before dropping below. Below: a close-up view of that weight distributions
in a neighborhood of the point at which the estimate is computed. Also
included are the rank-120 approximation using the 120-pseudo-inverse,
which oscillates, and falls short of the peak. The kernel solution is nearly
indistinguishable from that of the true distribution, slightly above at left
and below at right. Obviously, a pretty good fit! . . . . . . . . . . . . . 141

Figure 5.23. Kriging weights versus the cosine kernel weights. Variation is
systematic, but small, when considering scattered rather than gridded
locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Figure 6.1. The three data sets give rise to three sets of Nitrate and Mag-
nesium models, cross-variograms, and corhograms. No corhogram failed
(|ρ(h)| > 1) for the intervals used in the matrix systems. 1977: solid lines;
1985: dashed lines; 1988: dotted lines. . . . . . . . . . . . . . . . . . . . 155

Figure 6.2. A comparison of the isotropic sample variograms of nitrate, and
cross-variograms of nitrate and other variables of interest for the three
data sets. N.B.: the variogram values of zero at zero are notnecessarily
realistic, but were added to force plots to include the origin, and to indi-
cate the size of the nugget. . . . . . . . . . . . . . . . . . . . . . . . . . 156

Figure 6.3. Four methods, four maps: A. inverse distance squared; B. radial
basis function (multiquadric); C. kriging; D. cokriging. There is signifi-
cant variation in these maps: how is a manager to choose? These maps,
of nitrate concentrations, were produced for the same area, for the same
period (around 1985). The same contour levels were used in all maps,
although they are not marked, as the goal of this figure is to simply point
out the obvious differences in the maps. . . . . . . . . . . . . . . . . . . 158



List of Figures—Continued

11

Figure 6.4. Bicarbonate contours, for cokriging and kriging of the raw data,
and kriging of the transformed data, retransformed to the original. Re-
sults were contoured to the same intervals. . . . . . . . . . . . . . . . . . 160

Figure 6.5. Calcium contours, for cokriging and kriging of the raw data, and
kriging of the transformed data, retransformed to the original. Results
were contoured to the same intervals. . . . . . . . . . . . . . . . . . . . . 162

Figure 6.6. Magnesium contours, for kriging of the raw data, and kriging of
the transformed data, retransformed to the original. Results were con-
toured to the same intervals. Kriging beat cokriging, and raw kriging did
better than did kriging transformed data. . . . . . . . . . . . . . . . . . 163

Figure 6.7. Maps obtained using the new cokriging method (described in the
Chapter on kriging), kriging, and the linear approximation to cokriging.
The linear approximation failed to approximate the cokriging map well,
but this result may simply indicate that the the norms of the matrices
related to the cross-variogram were too large. . . . . . . . . . . . . . . . 164

Figure 6.8. Comparison of the total “diagonal” representations by a sepa-
rate SVD, and by the TSVD. The TSVD does better at representing the
information, up to rank 21, but does not quite capture all the information
in the original tensor (accounting for the dip at the end). . . . . . . . . 166

Figure 6.9. The TSVD maximized the representation of the tensors for some
fixed rank in each case, as shown in this histogram of the improvements
TSVD achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Figure 1. All Corhograms for the 1977 data set . . . . . . . . . . . . . . . 198
Figure 2. All Corhograms for the 1985 data set . . . . . . . . . . . . . . . 199
Figure 3. All Corhograms for the 1988 data set . . . . . . . . . . . . . . . 200
Figure 4. Cross-Variance Map, Circa 1977 . . . . . . . . . . . . . . . . . . 201
Figure 5. Cross-Variance Map, Circa 1985 . . . . . . . . . . . . . . . . . . 202
Figure 6. Cross-Variance Map, Circa 1988 . . . . . . . . . . . . . . . . . . 203



12

List of Tables

Table 3.1. Rank-One Tensors Results . . . . . . . . . . . . . . . . . . . . . 78

Table 4.1. Operation counts for different equation solvers . . . . . . . . . . 109

Table 6.1. Cross-Validation results for each method, circa 1977 . . . . . . . 152
Table 6.2. Cross-Validation results for each method, circa 1985 . . . . . . . 153
Table 6.3. Cross-Validation results for each method, circa 1988 . . . . . . . 153
Table 6.4. Cross-Validation statistics for the Xie data . . . . . . . . . . . . 161
Table 6.5. Results of 100 runs, for random 3 × 8 × 34 tensors . . . . . . . . 167

Table 1. Variograms and cross-variograms for 1977 cokrigings, I . . . . . . 191
Table 2. Variograms and cross-variograms for 1977 cokrigings, II . . . . . 192
Table 3. Variograms and cross-variograms for 1985 cokrigings, I . . . . . . 193
Table 4. Variograms and cross-variograms for 1985 cokrigings, II . . . . . 194
Table 5. Variograms and cross-variograms for 1985 cokrigings, III . . . . . 195
Table 6. Variograms and cross-variograms for 1988 cokrigings, I . . . . . . 196
Table 7. Variograms and cross-variograms for 1988 cokrigings, II . . . . . 197



13

Abstract

Three forms of multivariate analysis, one very classical and the other two relatively
new and little-known, are showcased and enhanced: the first is the Singular Value
Decomposition (SVD), which is at the heart of many statistical, and now geostatis-
tical, techniques; the second is the method of Variogram Analysis, which is one way
of investigating spatial correlation in one or several variables; and the third is the
process of interpolation known as cokriging, a method for optimizing the estimation
of multivariate data based on the information provided through variogram analysis.

The SVD is described in detail, and it is shown that the SVD can be generalized
from its familiar matrix (two-dimensional) case to three, and possibly n, dimensions.
This generalization we call the “Tensor SVD” (or TSVD), and we demonstrate useful
applications in the field of geostatistics (and indicate ways in which it will be useful
in other areas).

Applications of the SVD to the tools of geostatistics are described: in particular,
applications dependent on the TSVD, including variogram modelling in coregional-
ization. Variogram analysis in general is explored, and we propose broader use of an
old tool (which we call the “corhogram”, based on the variogram) which proves useful
in helping one choose variables for multivariate interpolation.

The reasoning behind kriging and cokriging is discussed, and a better algorithm
for solving the cokriging equations is developed, which results in simultaneous kriging
estimates for comparison with those obtained from cokriging. Links from kriging
systems to kernel systems are made; discovering kernels equivalent to kriging systems
will be useful in the case where data are plentiful.

Finally, some results of the application of geostatistical techniques to a data set
concerning nitrate pollution in the West Salt River Valley of Arizona are described.



14

Chapter 1

Introduction

The work which follows springs from two sources. The first was a research assis-
tantship with Dr. Donald Myers, of the Department of Mathematics at the University
of Arizona, which entailed the development of geostatistical software. In the course of
developing and testing new procedures, ideas would crop up which demanded exper-
imentation: this occasionally led to useful results, which could be incorporated into
our thinking (usually, of course, it amounted to nothing!). So the implementation of
ideas and a continual examination of the problems of spatial interpolation led us to
the creation of new tools, which would aid us in our work.

The second source was a consulting position with the United States Geological
Survey (USGS), which required the spatial analysis of a data set concerning water
pollution (specifically nitrate pollution) in an area around Phoenix, Arizona. Hun-
dreds of water analyses from wells in an area encompassing some 50 kilometers square
served as the database. The problems posed included making the best maps of the
nitrate concentrations for a series of periods, in order to provide a baseline or some
point of reference for future work. In order to carry out our work, a consideration of
various spatial analysis (in particular, geostatistical) techniques was begun, and from
that consideration arose many results presented herein.

First of all, let us decide “what is spatial analysis?”, and “why is it necessary?”
Spatial analysis is essential when studying phenomena which have coordinates, usu-
ally spatial (but including temporal and more exotic coordinates), attached. Spatial
analysis determines the level to which values of the variables of interest are related
according to position from neighboring sites. One might argue that it is unnecessary if
there is no spatial correlation in the data, which leads into the following proposition:
unless one knows a priori that no spatial (temporal) dependence exists in a problem,
then one should avail oneself of some techniques of spatial analysis to make a test.
This explains the necessity of spatial analysis.

We present some results about several spatial analysis techniques found in that
branch of spatial analysis called “Geostatistics”, a word coined by Matheron in 1962
[59]. Journel [46] notes that “geostatistics has been defined commonly as the appli-
cation of the ‘Theory of Regionalized Variables’ to the study of spatially distributed
data.” The theory of regionalized variables was developed by Matheron as early as
1962, in works such as [57] and [58]; he is responsible, more than any other single
person, for the development of this field (and, whether he would accept the title or
not, he undoubtably deserves to be called the “Father of Geostatistics”).

Journel goes on to redefine geostatistics as “...a branch of statistics dealing with
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spatial phenomena.” We take this broader statement as the operational definition,
with the caveat that we include temporal problems, as well as other sorts of coordinate
systems.

We begin with a thorough discussion of a powerful mathematical tool: the Singular
Value Decomposition (SVD). We describe the importance of the SVD to many of
the techniques presently used in geostatistics, and in interpolation and estimation
problems. Proceeding from characteristics of the SVD, we develop what is currently
an essentially unknown technique, the Tensor SVD (TSVD), proving its existence in
the three-dimensional case, and demonstrating its utility in problems of geostatistical
importance. An algorithm is given for calculating the TSVD of an arbitrary tensor
in three-dimensions.

Two of the most important techniques of geostatistics are the multivariate tech-
niques of variogram matrix analysis and the interpolation method known as cokriging,
which is based on the results of the variogram and cross-variogram modelling. We
have made several improvements in both the understanding and the implementation
of these.

We show that the sample variogram matrix is a spatial decomposition of the
sample covariance matrix, which aids both in interpreting and modelling the vari-
ograms (spatial decompositions of variances) and cross-variograms (spatial decom-
positions of covariances). We promote the study of a spatial statistic which we call
the “corhogram”, also known as the codispersion coefficient, which is a spatial de-
composition of the correlation between two variables. The corhogram is useful as a
modelling tool, and as a means for helping decide when multivariate estimation will
give results superior to univariate estimation.

The most important current application of the TSVD is as a tool in variogram
modelling under the linear coregionalization model. We describe this application
in detail, including links between the TSVD and the technique of near-simultaneous
diagonalization of matrices, which has already been used to model variogram matrices
in the same way.

On the cokriging side, a new way of writing the cokriging system leads to in-
sight into both the solution of the system, and to links with the univariate Cauchy-
Schwartz condition which show when the cokriging coefficient matrix may or may not
be invertible. This new formulation is an improvement over the original formulation
computationally in two ways: its solution requires that smaller matrices be inverted;
and individual kriging results are obtained in the process of obtaining the cokriging
results. Since kriging results are generally computed anyway, we show that the cok-
riging results require only the additional inversion of smaller matrices of low condition
numbers.

In addition, the formal solution of the new formulation leads to a first-order ap-
proximation to the cokriging solution, which is useful if the cross-variogram terms are
small. The first-order approximation involves no additional matrix inversions.
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In Chapter Five we describe how we are proceeding toward the discovery of tech-
niques which approximate the results of cokriging. Large linear systems occasionally
arise in the process of obtaining cokriging estimates, especially in the case of global
cokriging. Since the size of the matrices depends on the numbers of data locations and
variables used, the addition of more data points or additional variables may prove
detrimental in a cokriging scheme: the larger the coefficient matrix of a cokriging
system, the more likely it is to become ill-conditioned, and so give results whose re-
liability may be questionable. This is quite obviously an undesirable feature of any
interpolation or estimation process.

We seek kernel functions, determined in part by the variogram model used in the
kriging system, which determine data weights in good agreement with those weights
obtained by solving the kriging system. This substitution of kernels for kriging should
be particularly useful in cases where data locations are many and well-dispersed.

We show that the weights obtained from kriging using a variety of models resemble
the weight patterns obtained from kernels. We then show how one may use integral
equations to obtain a kernel which successfully approximates the weights obtained
using an exponential model. The technique of passing between the infinite and finite
dimensional problems is explored.

Finally, we describe certain applications of geostatistical techniques, including
some of those described here, to the Nitrate study mentioned above. In particular,
we compare interpolation techniques using cross-validation statistics.
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Chapter 2

The Singular Value Decomposition and a

Tensor Generalization

In many areas of pure and applied mathematics use is made of a fundamental result
known as the Singular Value Decomposition, or SVD. This decomposition is the
result of a theorem, sometimes called the Singular Value Theorem [40], which says
that a matrix can be “decomposed” into an optimal sum of outer-products of vectors:
that is, that a high dimensional object can be represented as a sum of products of
lower dimensional ones. This is useful because it is sometimes easier to analyze low
dimensional objects than high dimensional ones, and some mathematical procedures
apply to vectors, but not to matrices. Furthermore, it allows for information contained
in a matrix, which is scattered about the matrix, to be “packed” into blocks which
are more easily analyzed and studied. If there is redundant information in the matrix,
the SVD indicates this and even provides a measure of just how much information is
actually contained.

The SVD is much overlooked in mathematics, in spite of statements like this
from a well-known mathematician of our time (Gilbert Strang, of MIT, author of
a definitive undergraduate textbook on linear algebra [87]): “...[the Singular Value
Decomposition] is not nearly as famous as it should be.” 1 Hoechsmann [40] adds
that “the Singular Value Theorem...is not only one of the nicest matrix theorems
to state and to visualize but also one of the easiest to prove and to apply. In any
introductory course on matrices it deserves a place near the center.”

The history of the SVD is documented in a recent article by Stewart [85] in SIAM
Review. Stewart dedicated it to Gene Golub, who developed the “workhorse” algo-
rithm [32] most often used in its calculation. Applications of the SVD are found in
many areas of mathematics: in statistics, where it is used to uncover relationships
that exist between different variables, and where it is essential in least-squares prob-
lems; physics (where, for example, the PDE solution procedure known as “separation
of variables” is actually an example of rank-one solutions of infinite dimensional prob-
lems); image processing (data compression and storage, noise removal, rapid image
transmission); in cryptology [27]; and in many other areas, including estimation, or,
as one could call it, “map-making” - where it is used as a tool for structure-recognition
or as a tool for making quick “first-pass” maps of data defined on a grid. This last
application will be described in detail.

Data is not restricted to the two dimensions of a sheet of paper or a sidewalk,

1Gilbert Strang, Linear Algebra and Its Application, Second edition, p 142.
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however: there are times when it may be defined on a three-dimensional lattice (for
example, the steel frame of a skyscraper); or one can think of the images on a film
strip as a three-dimensional stack of matrices in time. Nor is this limited to three-
dimensions: the space-time of our world is four-dimensional, and the data in a cate-
gorical statistical analysis can take an arbitrary number of dimensions. Can one carry
out a sort of singular value decomposition of those structures, too?

It appears that one can indeed. There is an extension of the SVD, to tensors,
which will be called the Tensor Singular Value Decomposition (TSVD). This exten-
sion should be a boon to those in many areas of research, and a number of useful
applications will be described. Although we develop it fully only in the three-tensor
case (of the skyscraper or filmstrip above), and do not prove its existence in general,
we conjecture that it extends fully to tensors of all dimensions.

2.1 The Singular Value Decomposition of a Matrix

We begin with a review of the Singular Value Decomposition of matrices, pro-
ceeding in such a way that one will be able to understand both the motivation for
the generalization and the route taken to it. (Good references in a similar vein, but
without mention of the generalization, include [4] and [22].)

The place to start is with a statement of the Singular Value Theorem, and its
proof.

2.1.1 Hoechsmann’s Proof

Hoechsmann’s simple statement and proof of the following “Singular Value The-
orem” [40] bears repeating. His presentation will be expanded, however, to make
it more complete. This proof and results to follow rely on two important theorems
from analysis: 1) the Heine-Borel-Lesbesgue theorem, which states that a subset of
Euclidean n-space is compact iff it is closed and bounded; and 2) that a real-valued
function takes a maximum on a compact set [50].

Theorem 2.1.1. Let A 6= 0 be an m × n real matrix. Then there exist orthogonal
matrices U and V such that

UTAV =

[

D 0
0 0

]

whereD =







d1

. . .

dr






withdi ≥ di+1 > 0. (2.1.1)

Proof: Let M(k) be the set of all k × k matrices, and O(k) be the set of all k × k
orthogonal matrices. That is, the subset of M(k) satisfying the k2 algebraic equations
given by the single matrix equation

f(Q) ≡ QTQ = I ∀Q ∈ O(k). (2.1.2)
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For U ∈ O(m) and V ∈ O(n), let α(U, V ) stand for the entry in the upper left corner
of UTAV .

Now O(k) is a compact subset of the metric space IRk2

, with the Frobenius norm
(IR represents the real numbers): it is bounded, as every element has norm k, and
it is closed, by the following argument: let Qi be a sequence of orthogonal matrices.
The limit point, Q, is in M(k) since it is complete. The question is: is it in O(k)?
It is, because the function f of equation (2.1.2) is a continuous function of its matrix
argument, so pass the limit inside:

lim
i→∞

f(Qi) = f( lim
i→∞

Qi) = f(Q) = I

(as the limit of the right-hand side of equation (2.1.2) is always I).
Clearly α is a continuous function of the pair (U, V ), and therefore attains a

maximal value d1 > 0 on the set O(m) × O(n) (which is compact as the tensor
product of two compact sets).

Let d1 = UT
1 AV1; then

UT
1 AV1 =

[

d1 Y
X A1

]

,

where A1 is an (m− 1) × (n− 1) matrix. Now X and Y are actually zero rows and
columns: if X were non-trivial, then the first row (call it ρ1, notational pun intended!)
of UT

1 AV1 would have length d > d1. Then one could simply multiply on the right
by the reflection matrix H which takes ρ1 to [d, 0, . . . , 0]. For analogous reasons,
involving columns and left multiplication, it follows that Y = 0. So

UT
1 AV1 =

[

d1 0
0 A1

]

,

No row or column of A1 can have length d > d1 either, for similar reasons: if it
did, then a permutation matrix could move it into the position of X or Y , and then
a reflection matrix could pile its weight up onto the upper left corner. An inductive
argument finishes the proof. Suppose that the theorem is true up to order k:

UT
k U

T
k−1 · · ·UT

1 AV1 · · ·Vk−1Vk =











d1 0 0 0

0
. . . 0 0

0 0 dk 0
0 0 0 Ak











,

with di ≥ di+ 1 > 0 ∀ i < k − 1. Note that, in order to leave the previous k di

unchanged from previous steps, successive matrices Uk+1, Uk+2, etc. will have the
k × k identity in the upper left corner, and zeros in the rest of the first k rows and
columns. Then, if Ak is zero, the proof is done. If not, one once again finds an
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(m− k) × (m− k) matrix U ′
k+1 and an (n− k) × (n− k) matrix V ′

k+1 such that

U ′T
k+1AkV

′
k+1 =

[

dk+1 0
0 Ak+1

]

,

Embed these matrices U ′
k+1 and V ′

k+1 in the matrices Uk+1 and Vk+1 such that the
k × k identity is in the upper left corner of each, with zeros in the other first k rows
and columns: then

UT
k+1U

T
k U

T
k−1 · · ·UT

1 AV1 · · ·Vk−1VkVk+1 =















d1 0 0 0 0

0
. . . 0 0 0

0 0 dk 0 0
0 0 0 dk+1 0
0 0 0 0 Ak+1















,

which concludes the proof by induction.

2.1.2 The Operator Tao of SVD

(In this subsection, and in subsections to follow, we use the word “tao” to mean a
certain “path” or “way of thinking” by which one arrives at the SVD of a matrix. We
also often use the somewhat strange dimensions of N × p for matrices: this reflects
the fact that we often think of the matrices as representing sites, of which there are
N , and variables, of which there are p. C’est la vie!)

A matrix X can be thought of as a bounded linear operator on a vector space
V : it takes vectors in the row space of X (which are elements of V ) to vectors in its
column space. The image vector is a continuous function of the argument vector, as
is the norm of the image vector. The operator norm of X is given by

‖X‖ = max
‖Xv‖
‖v‖ , v 6= 0,

or, better yet (from the geometrical perspective),

‖X‖ = max‖Xv‖, ‖v‖ = 1,

where the norm of the vector v is the usual L2-norm. This matrix norm is understood,
in a geometrical way, as the value of the greatest stretch of the unit sphere (the second
definition above) under application of X (see [39] for this and other geometrical ideas
related to concepts from linear algebra).

It is clear that the norm of X must attain a maximum value on the set of vectors
described by the closed and bounded unit sphere, as a continuous real-valued function
on any compact set has a maximum. A vector such that this maximum is obtained
will be called a Principal Singular Vector of X (it is not necessarily unique). The
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norm of the transformation will be called the Principal Singular Value of X (it
is unique). This is perhaps the most intuitive way to begin to think of the SVD
problem, illustrated by the following question:

Given a matrix X of dimensions N × p, is there a unit vector q ∈ V such that the
norm of the product Xq is maximal: that is, such that

Xq = λe,

with ‖e‖ = 1 and λ maximal? Or rather, can one maximize f(q) = qTXTXq over all
unit vectors q ∈ V ?

As f is continuous and bounded (by the boundedness of the components of X) on
the (closed) unit sphere V , it must attain a maximum on V . This proves the existence
of a PSVector and the PSValue, and everything else for that matter: for all the rest
follows essentially from that first PSVector, as one can successively remove the outer-
product of those vectors from X, and iterate on the reduced matrices (projections
removed)

X(k) = X −
k
∑

i=1

λie
T
i qi

.

This is the essence of Hoechsmann’s proof. Removing a vector from the domain
reduces the dimension of the sphere, but leaves the succeeding domain closed and
bounded: e.g., V1 = {q ∈ V ∋ q ⊥ q

1
}.

Each of these reduced matrices also has a PSVector, and PSValue, which must live
in the remainder of the space, and this continue inductively like so until one arrives at
the zero matrix, and the decomposition is at an end. (According to Stewart [85], this
“deflation” approach is due to Jordan.) In fact, this is a sort of restatement of the
Eckart-Young theorem, which says that the matrix X can be best approximated by
this sequence of sums of operators of increasing rank. This approximation property
was due to Erhard Schmidt, of Gram-Schmidt fame, and was rediscovered by Eckart
and Young in the context of matrices (Schmidt worked in the realm of continuous
kernels, rather than matrices, and developed the continuous version of the SVD).

Thus the link between the singular values and the linear operator is laid bare,
and, in particular, the norm of the operator (or the norms of a series of operators,
obtained by iteration and deflation). These norms, and the corresponding progression
of singular vectors, give rise to one useful representation of the SVD as a matrix sum
of dyadic (rank-one outer-product) terms:

X =

p
∑

i=1

λie
T
i qi

. (2.1.3)

This implies that the original operator is composed of a series of (bi-)orthogonal rank-
one operators of decreasing importance (as measured by the decline in the singular
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X D

2Q
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y

x

X = L1
+ L +...+ Lp2

T

T

Figure 2.1. Three different operator decompositions of a matrix X.

values, or norms). The operators are “bi-orthogonal” since

ei ⊥ ejandq
i
⊥ q

j

for i 6= j. The pairs ei and q
i

are known as “Schmidt Pairs” [22], after Erhard
Schmidt.

A second useful “operator-oriented” representation is as a matrix product,

X = Q1ΛQ
T
2 ,

which says that the matrix X can be decoupled as a product of orthogonal matrix
Q1, diagonal matrix Λ, and orthogonal matrix Q2 (or its transpose, really). This is a
good representation from the point of view of the geometrical action of the operator:
that it rotates the whole p−space, then expands (or contracts) p-space (squashing
some dimensions, if any singular values are zero), then rotates back (into N−space).

It has been our experience that some problems are more profitably pursued while
thinking in terms of the former framework (outer-products), while others are better
considered in terms of the latter (products of matrices). The particular generalization
of the SVD, alluded to in the title of this chapter, is better imagined in the former
sense - the outer-product sense (the last form in Figure (2.1)).
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In fact, it is worth noting that one can represent X as a product of matrices in two
fashions: if N > p, then X will not be of rank-N , and will not be square. Extending
the matrix Q1 of Figure (2.1) to be square entails adding N−p rows of zeros to the D
matrix (to get the dimensions right). It is obviously “wasteful” to do so from certain
standpoints, but from the standpoint of proofs [40], say, or even from the operator
standpoint of orthogonal matrices and rotations, it is sometimes better to think of X
as the product of a square N ×N matrix, the N × p matrix Λ, and the p× p matrix
QT

2 (the middle form of Figure (2.1)).
Thus there are at least three different ways of representing the same decomposi-

tion: the choice is related to the applications that one has in mind.
The Operator Tao tells us that one can represent XN×p as Q1ΛQ

T
2 : what that

really means is that if one is willing to change to other bases, for both the row
and column spaces, then one will have diagonalized the operator X (it will have
the diagonal representation Λ); then the effect of taking an inner-product of X with
some other matrix, or letting X operate on either p−space or N−space, will be easily
understood in this coordinate system. Remember that vectors are not determined by
their coordinates, but only by their coordinates relative to some basis: changing the
basis does not change the vector, only its representation.

2.1.3 The Eigen Tao of SVD

In the previous section a relationship between the SVD and the quadratic form
qTXTXq was disclosed. In this section, the statement of the PSValue/PSVector
problem above will be rephrased equivalently as an eigenvalue problem.

Given a matrix X of dimensions N × p, is there a unit vector q which maximizes
the quadratic form

qTXTXq = λ2? (2.1.4)

The requirement that q be a unit vector adds a Lagrange multiplier to the optimiza-
tion problem: i.e., maximize

E(q, λ) = qTXTXq − µ(

p
∑

i=1

q2
i − 1).

Differentiating with respect to the qi and µ gives a system of p+ 1 equations: for
the kth component of q

N
∑

i=1

p
∑

j=1

xikxijqj − µqk = 0, (2.1.5)

with the constraint that
p
∑

k=1

q2
k = 1. (2.1.6)
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The first set of equations, (2.1.5), written in matrix form, is recognizable as the
eigenvalue problem for the matrix XTX:

XTXq = λ2q,

and (since it is linear) any (non-zero) solution can be scaled to meet the condition
(2.1.6), which takes care of the constraint. In other words, the Singular Value prob-
lem leads directly to the eigenvalue problem for the matrix XTX. This matrix is
symmetric and nonnegative definite, which is guaranteed to have a full set of non-
negative eigenvalues λi with orthogonal eigenvectors. (For details on nonnegative
definite matrices, and their equivalence with the class of covariance matrices, see [3].)
The eigenvalues of XTX are thus the squares of the singular values of the matrix
X, and the eigenvectors are the singular vectors of X. In sum: the singular value
problem is equivalent to an eigenvalue problem.

Golub notes, however, that it is not necessarily wise to compute the SVD of a
matrix via this eigenvalue problem, as it “does violence” to the small singular values
in the process of “squaring” the matrix [31, 32].

2.1.4 The Inner Tao of SVD

The outer-product decomposition of X can be considered as an inner product
decomposition, on the vector space of N × p matrices.

The inner-product is given by component-wise multiplication of matrix elements,
so that the norm of X (the Frobenius norm) is given by

‖X‖ ≡
√

〈X,X〉 =

√

√

√

√

N
∑

i=1

p
∑

j=1

x2
ij =

√

Tr(XTX).

Note that

‖X‖ =

√

√

√

√

p
∑

i=1

λ2
i ,

and that the standard Euclidean basis of unit matrices (with one single non-zero entry
whose value is “1”) is the set of outer-products of the standard bases of p-space and
N -space; any other set of all outer product of bases of the respective spaces is also a
basis [84].

The outer-product representation of X from above (2.1.3) is also a representation
of X in this vector space of matrices:

X =

p
∑

i=1

λie
T
i qi

≡
p
∑

i=1

λiXi,
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so one can think of the set of Xi as an optimal rank-one subspace-basis with which to
represent X (“subspace-basis” because it is not a basis of the whole space but only
the span of the Xi, which clearly contains the matrix X). It is optimal in the sense
that the projection of X onto the set of rank-one matrices is maximized for X1, then
for X2 ⊥ X1, etc.

This puts a new twist on the SVD of X, closer in spirit to the generalization of
the SVD to tensors: the fundamental idea is that one can consider tensors as objects
in a higher dimensional vector space, and look for best rank-one bases in which to
express them.

This idea, of rank-one bases, may be somewhat foreign: in the “usual” vector
space (that is, of arrows of variable length as in physics) one cannot represent vectors
in anything but rank-one basis elements, as all vectors are rank-one! But in vector
spaces of matrices, or tensors more generally, one can set up rank-one bases and argue
that this one or that one is more appropriate for a given purpose (operator, etc.).

The question one might ask is: why rank-one bases? What is so special about
these simple bases? And again, the answer is: they allow us to separate the linear
space into nice little chunks, each of which probes into only one part of space, and
which one hopes will have some meaning, or give some insight, or allow for dimension
reduction, or provide for an analysis that one cannot achieve so well otherwise.

Let us now show explicitly how the matrix inner-product shows up as one changes
bases while performing the SVD. At this point we consider it useful to introduce a
notion for outer-product which can be generalized (as we will soon be doing three-
dimensional outer-products). We use the symbol “⊗” to denote an outer-product, so
that for two dimensions, one can write

u⊗ v ≡ uvT .

If one writes

X =

p
∑

i=1

q
∑

j=1

(

u1
i ⊗ u2

j

)

xij

where u1 and u2 are the standard Euclidean unit vectors, then one can consider an
arbitrary change of basis such that

Ip = EET andIq = FFT,

where the columns of E and F are the new basis vectors. Writing the unit vectors in
these new coordinates leads to

X =

p
∑

i=1

q
∑

j=1

(

p
∑

k=1

ekiek

)

⊗
(

q
∑

l=1

fljf l

)

xij

=

p
∑

k=1

q
∑

l=1

(

ek ⊗ f
l

)

(

p
∑

i=1

q
∑

j=1

ekixijflj

)
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=

p
∑

k=1

q
∑

l=1

(

ek ⊗ f
l

)

eT
kXf l

=

p
∑

k=1

q
∑

l=1

(

ek ⊗ f
l

)

〈ek ⊗ f
l
, X〉

The SVD suggests that one choose them in such a way that the inner-products 〈ek ⊗
f

l
, X〉 = α of X with rank-one matrices are successively maximized.
Having found the first vectors, e1 and f

1
, and hence the first matrix basis element,

note that
〈e1 ⊗ f⊥

1
, X〉 = 〈e⊥1 ⊗ f

1
, X〉 = 0,

for, if not, then without loss of generality (WLOG) ∃f ∈ f⊥
1

such that

〈e1 ⊗ f,X〉 = β,

which suggests that one then consider

〈e1 ⊗
(

αf
1
+ βf

√

α2 + β2

)

, X〉 =
√

α2 + β2 > α,

which is a contradiction of the claim that α was maximal, corresponding to e1 ⊗ f
1
.

Thus, having chosen e1 ⊗ f
1
,

X =
(

e1 ⊗ f
1

)

〈e1 ⊗ f
1
, X〉 +

p
∑

k=2

q
∑

l=2

(

ek ⊗ f
l

)

〈ek ⊗ f
l
, X〉.

The space is deflated like so, and the search for new singular vectors is reduced to
the spaces perpendicular to e1 and f

1
, which are each smaller in dimension by one.

The first choice has led to the loss of p + q − 1 degrees of freedom in the search for
singular vectors, from which the total number of degrees of freedom remaining is

pq − ((p+ q) − 1) = (p− 1)(q − 1).

This continues inductively until the space is reduced to the empty set: that is, until
p or q is reached, whichever is smaller (the usual “full-rank” case for a matrix).

2.1.5 The Meaning of Singular Things

The meaning of the singular values changes, depending on the application one
makes of them. For example, in the operator sense they represent the norms of a set of
rank-one operators which best approximate the original operator by another operator
of a given rank. In this case, the left singular vectors represent the successively
less important parts of the range space, and the right singular vectors represent
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successively less important parts of the complement of the null-space of the matrix
operator.

From the “eigen-standpoint”, note that, as the eigenvectors of XTX are mutually
orthogonal, so are the singular vectors of X. Statisticians like to think of the values
of λ2 as variance, and use the decomposition on the mean-centered and unit-scaled
matrix X to describe its variance structure in the procedure known as “Principal
Components Analysis”, or PCA (PCA will be described in detail in the next chapter).
In this case, the intuitive understanding of the orthogonality and singular values is
as follows: one can think of the rows of X as a set of points (in p-space); that is,
as a point-cloud in p-space. This point-cloud could be best-fit by an ellipsoid. That
ellipsoid has a direction along which it is most elongated, which, in statistical jargon,
means that it has maximal variance; and that direction (a vector, referred to the
center of mass of the point cloud) is the PSVector. The ellipsoid is described further
by its dimensions along its axes orthogonal to that PSVector, and these additional
directions are successive (by size) singular vectors.

In an image analysis problem, singular values are treated as amount of “informa-
tion”, and the corresponding Schmidt pair outer-products as decreasingly important
basis images, or “eigenimages” [4]. In data compression, the sum of the retained
singular values (or their squares) represent the proportion of the picture which will
be reconstituted by the corresponding “singular pictures” (i.e., the dyadic pairs: see
Figure (2.4), in which is shown an image of Abraham Lincoln with only half of the
total information of the matrix).

2.2 The SVD as a Rapid Interpolator on a Grid

One can use the SVD of a matrix of gridded data (in two-dimensional space) to
generate an interpolator of that data. This method has been elaborated in Preisendor-
fer [76], in his treatment of Principal Component Analysis2. Preisendorfer gives an
extended development of PCA from the standpoint of spatial/temporal interpolation,
relating the singular vectors to samples from continuous populations, although he did
not provide as much detail as follows.

Let X represent an n×m matrix of data locations, taken from a grid, or tracks, in
a field. Without loss of generality, assume that n ≥ m. Think of the tracks as lying
perpendicular or parallel to each other, although it is not necessary that the tracks
occur with equal spacing (Figure (2.2)). The SVD of X is

X = Q1ΛQ
T
2 ,

2Page 25 and following material, only in reverse: he describes how singular vectors converge to

eigenmodes, as data of a continuous phenomenon are gridded at finer and finer meshes. Thus, he

describes how one can use the singular vectors to guess the form of continuous objects. One can

turn around and ask that singular vectors from a fixed grid give us a guess as to what the continuous

object would be, by interpolating or estimating the singular vectors.
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Figure 2.2. A two-dimensional data set of tracks in a field. It is not necessary that
the tracks show the symmetry represented in this figure. Although not yet discussed,
this is also the form of an interpolation matrix for a one-dimensional data set.

where Q1 and Q2 are orthogonal matrices of dimensions n×m andm×m, respectively,
whose columns are eigenvectors of XXT and XTX. Λ is also m ×m, and diagonal
with positive entries.

If one interpolates the eigenvectors (using any interpolation scheme whatsoever)
which make up Q1 and Q2 (while respecting the real distances which exist between
their entries), then one will have successfully created a matrix function which inter-
polates X:

X(x, y) = Q1(x)ΛQ2(y)
T

(If the vector constituents of Q1 and Q2 had been merely estimated, then one would
have estimated, rather than interpolated, X.)

In order to get an estimate of a row off of “the beaten tracks”, at x0 say, use the
function

X(x0, y) = Q1(x0)ΛQ2(y)
T



29

=

pp
q

NN

=
L

+
 L

+
...+

 L
11

L
+

 L
+

...+
 L

22
pq p

M
atrix A

         is         a sum
 of p rank one outer products.

T
ensor A

         is         a sum
 of p*q rank one outer products.

Sim
ilarly, 

Figure 2.3. The SVD Interpolation Scheme: a grid is turned into two finite sets
of functions, whose outer-products form functions of two variables. “Rows” (tracks
running left to right) of the interpolating function are gotten by taking sums of the
interpolated rows of V ; “columns” by taking sums of interpolated columns of Q.
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sketched in Figure (2.3). The entries of Q1 at x0 are computed, then one treats the
rows of QT

2 as functions. Similarly, for a column at y0, use

X(x, y0) = Q1(x)ΛQ2(y0)
T (2.2.7)

(Figure (2.3)). Note that a matrix multiplication is not really needed each time, as
Λ is diagonal. What really results is a function

X(x, y0) =

m
∑

i=1

q1,i(x)λiq2,i(y0) =

m
∑

i=1

ciq1,i(x)

which can be computed at any point x (inside, or even outside, the convex hull of
the data). If one estimates beyond the bounds of the grid, then the extrapolatory
properties of the estimate are determined by those of the interpolator chosen for the
vectors of Q1 and Q2: that is, if a cubic scheme were used, then there will be cubic
growth, rather than a tendency to the mean, etc.

If the function need not interpolate the matrix (that is, pass through the points on
the matrix), but only estimate it (smoothing, for example), then one can consider the
usual practice of eliminating those rows and columns of Q1 and Q2 which corresponds
to the small (presumably negligible) singular values. In fact, many of these may truly
be negligible, and would hence permit us to make faster estimates.

The eigenvectors can be very smooth, a result of ordering the data properly (or-
dering is crucial, and accounts for the problem in generalizing this method beyond
one-dimensional problems). Changing the order of rows in a matrix only changes the
form of the column singular vectors: it has no effect on either the singular values or
the row singular vectors. This smoothness implies that it may be relatively simple
and painless to interpolate them (e.g. one might get away with linear interpolants of
the singular vectors).

2.2.1 Illustrative Example: Abe

C. Long [53] obtained points from a statue of Abraham Lincoln on a 49×36 grid, which
he then used to study properties of the SVD, the pseudo-inverse, and other interesting
topics. We use the same data set to demonstrate the interpolation described above.

The matrix of data, 49 × 36, represents the 16th president of the United States,
and interpolates a statue of Abe. The SVD of the matrix was computed, and a plot
of Abe derived using linear interpolants of the singular vectors, taking values on a
100 × 70 grid (roughly twice the size in each direction), is compared to a plot of the
original matrix in Figure (2.4). As one can see, the technique does a nice job of filling
in Abe’s face, smoothing it into a more natural image; and it is done quickly and
easily.

This is a very general method, in the sense that there are an infinite number
of implementations of it (corresponding to the various interpolators and estimators
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Figure 2.4. Abe himself, Abe represented using only half the information in his
singular values and Schmidt pairs), and Abe “densified” by a spline-fitting his singular
vectors.
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that one might use), and each will give different results. A linear interpolant of the
singular vectors is the safest, in that estimates cannot stray from the convex hull (in
space) of the data: that is, values estimated on a line between adjoining grid points
will be between the values at the gridpoints.

The question of the optimality of the method will not be discussed. The point
to make is simply that this method exists, and works well at filling in gridded data.
It provides one with a functional interpolator, or estimator (if one were to discard
several singular values, for example, or if one merely estimated the singular vectors),
which can even be used to extrapolate the gridded data; but again, the properties
of the extrapolation will be those of the interpolator/estimator used on the singular
vectors.

A comparison of this method to other methods, and a comparison of singular
vector interpolators within this method are beyond the scope of this dissertation (but
interesting topics, nonetheless!). One thing to note, however, is that, as the SVD
really only makes comparisons vertically and horizontally (but never on a diagonal),
so will the interpolator/estimator derived from it. One can see that the SVD has
this property by considering that its vectors are determined from matrices composed
of inner-products of rows or columns: thus, only elements which “collide” in such
inner-products are compared (i.e., Aij and Akl such that i = k or j = l). On the
other hand, when it comes time to estimate or interpolate the singular vectors, it
may be that every point on those two lines contributes to an estimate at the point of
interest.

2.3 The Three-Dimensional Case

Motivation for the search for a generalization of the SVD came from two com-
pletely different areas at the same time: a course in categorical data analysis, using
a textbook by Agresti [1] led to consideration of “three-dimensional data sets” (the
first specific reference was to “Loglinear Models for Three Dimensions”3); and in an
unrelated area, we were looking at the SVD as an interpolator (see the previous sec-
tion), and asked ourselves what one would do if one wanted to treat three-dimensional
data sets (e.g., room temperatures, given on a 3-d grid, etc.). “Generalize the SVD!”
was the most sensible reply. In sections below are two examples which motivated our
search.

2.3.1 Independence is Rank-One

Agresti considered the following problem: Given a three-way contingency table,
for variables X, Y, andZ of dimensions I, J, andK (respectively), let {mijk} denote the

3Section 5.3 heading, page 143
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expected frequencies. Consider the following model for the logs of the frequencies:

log(mijk) = µ+ λX
i + λY

j + λZ
k ,

where

µ =
1

IJK

∑

i

∑

j

∑

k

log(mijk), and

λX
i =

1

JK

∑

j

∑

k

log(mijk) − µ, etc.,

which, one notes, implies that

∑

i

λX
i = 0, etc. (2.3.8)

Now, although Agresti does not do so, one could re-write this equation in tensor
form as

log(M) = µ1X ⊗ 1Y ⊗ 1Z + λX ⊗ 1Y ⊗ 1Z + 1X ⊗ λY ⊗ 1Z + 1X ⊗ 1Y ⊗ λZ,

where “⊗” means the outer-product of vectors into the appropriate part of three-
space (there are three dimensions here). In this way, log(M) is expressed as a sum of
four orthogonal three-tensors (orthogonal due to the “zero-sum” conditions (2.3.8),
with term-by-term multiplication (i.e., the Frobenius inner-product)).

It was evident to us that this was the case of independence of the three variables,
however, and would be expressed better in terms of the original frequencies as

mijk = eµ+λX
i +λY

j +λZ
k = eµeλX

i eλY
j eλZ

k ,

or
M = cp

i
⊗ q

j
⊗ rk :

i.e., that the frequencies are given by a rank-one outer-product of three vectors, one
in each dimension (X, Y, andZ): this is just another way of expressing the fact that
independence requires that mijk = cpiqjrk . Agresti did not represent the case in
this tensor-oriented way, although he comments that this model represents indepen-
dence. Our method seemed a more natural way of considering such a loglinear model,
however.

We then began to search for ways of expressing the many other models he considers
in terms of outer-products, and the notion of the TSVD popped up. Although we
have not pursued this particular avenue, it looks like this might be a good place to
begin looking at application of the technique of TSVD outside of interpolation and
estimation.
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2.3.2 Decomposing Three-Dimensional Objects

The SVD serves admirably as a rapid interpolator of a matrix: but it must be
generalized to treat higher dimensional objects. A search for such a generalization
yielded nothing, however: at least nothing of the right sort.

Preisendorfer [76] gives an extension of Principal Components Analysis to vector-
valued fields (which one could consider as three-tensors) and matrix-valued fields
(four-tensors), but it is not the extension that we sought. He essentially in-lined
matrices (considering vectors as the special case) into a larger matrix, creating, from
an n×p matrix of matrix components of size l×m, a larger matrix of size nl×mp. He
then treated it in the normal PCA fashion. This is not even-handed in its treatment
of the four dimensions involved, and completely suppresses two of the dimensions, as
the resulting objects will be rank-mp in any case, in spite of the values of both l and
n.

Lieven [51], in a personal communication, reports that he has undertaken a gen-
eralization, although he has not yet published it. He also claims to have an algorithm
for computing it. Comparison of our decompositions on the same tensor shows his to
be quite different, however; he has developed a different type of generalization. This
brings up the point that there is more than one way to decompose a tensor: but if
one wants to get at a true generalization of the SVD, then one needs to justify calling
it by that name. A generalization of the SVD should earn its name by generalizing
important properties of the SVD, and should include the SVD of a matrix as a special
case.

The following problem is considered in the field of object-imaging: given an object,
or rather points from an object in three-space, and an array of detectors, determine
a linear relationship between the object and the detectors satisfying the equation

gN = HN×pqrfpqr

for f, where f is an image written as a vector composed of columns from the three-
tensor of dimension p × q × r (columns in an arbitrary dimension). This can be
re-phrased as the following inverse problem: given the detector readings, tell us what
the image must have been. This technique involves replacing the four-tensor (of
dimensions N × p× q × r) by H , where H is the (N × pqr)-dimensional matrix with
rows of the sample images and columns of detector responses to a set of unit impulses.
They hope that those impulses and their responses will serve as a basis in which a
typical object can be represented.

This creates a set of singular vectors

H = UΛV T

which, in the row space (i.e. the V vectors), are singular unit images (in the Frobenius
norm) and in the column space are singular unit responses. The least-square solution
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to the problem is then given by using the pseudo-inverse to obtain

fpqr = (HTH)−1HTgN = V Λ−1UgN .

This image analysis procedure represents a different way of decomposing the ten-
sor, with a preferential direction: the singular images are not rank-one objects, as
are the singular images we seek: they are vectors turned back into tensors, with a
potential for containing pqr +N pieces of information (whereas a 4-tensor rank-one
object would contain at most p+ q + r +N).

Geladi et al. [30] have discussed applying PCA to “multivariate images”, by which
they mean a stack of images sorted by frequency, and represented as integers in the
range [0,255]. They proceed in a way that seems very natural, taking a modified
SVD (not truly PCA, since they do not mean-center their images) of the stack along
the frequency dimension, thus obtaining eigenimages (Schmidt pairs) as scores on
frequency factors.

This is equivalent to writing the tensor as a matrix: from Ti×j×k they formM(ij)×k,
decomposing that to get the singular vectors in the two directions. They then reform
images from the ij vectors, by “unfolding” them.

Their paper represents a struggle with some of the same problems that will appear
in this dissertation: notation and representation of three dimensional structures, and
the mappings they represent. On the one hand, they did not need to bother, since
they could represent their tensors as matrices. But they comment that they realized
that they were losing information about the “contextual properties” of the pixels (that
is, the fact that nearby pixels are correlated). This is a consequence of the fact that,
once the tensor is transformed to a matrix, the ordering of the rows is completely
arbitrary: that is, all rows (i.e. pixels) will be compared equally and in ignorance of
actual proximity to other pixels.

A few comments on that paper are appropriate: the first is that by avoiding the
mean-centering, their title is a mis-nomer; the second is that the eigenimages they
obtain can be full rank; and, on a minor note, but one which is important nonetheless,
they mistakenly assert that the first principal component “usually” contains all non-
negative values. This is too weak a statement, as the Perron-Frobenius Theorem
[4, 9] assures us that the principal Schmidt pair of these positive-valued matrices can
be chosen so as to have positive values. This is important because the authors were
concerned that the eigenimages be positive, so that they could be easily re-interpreted
as images (recall that the multivariate images were defined on [0,255]). Of course,
this only applies to the first pair: all others will have negative values (in general),
and need to be rescaled to that interval.

We therefore seek our own generalization of the SVD of a matrix, motivated by
the very geometrical idea that a matrix can be decomposed into an outer-product of
vectors and the assumption that such should also be the case in higher dimensions.
We have not discovered in it any source material.
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A 3-tensor:

An outer-product:

An inner product (one dimension) ; here’s one with two dimensions:

Figure 2.5. Tensor inner- and outer-product notation.

2.3.3 A Notation for Tensor Inner- and Outer-Products

For lack of a better way of keeping track of tensor inner and outer products, we
“developed” (perhaps remembering it from some other field) the notation of Figure
(2.5).

This notation is not meant to imply that the “stick figure” tensors are necessarily
rank-one outer-products of vectors, as one might naturally infer: the sticks merely
indicate that there are components in a given “direction” of the higher dimensional
space which are represented (as well as possible) on a two-dimensional page.

2.3.4 Embedding Matrices into Tensors

In order to help the reader get a better feel for the three-tensor idea, several little
“tensor games” are included; these are intended to show the relationships involved,
and motivate some of the following material. While the three-tensors will be treated
not as operators, but as elements of a vector space, it is still good to recall that each
of the “taos” of the matrix case should have some corresponding “tao” in the tensor
case. As the existence of the TSVD has not yet been proven, this section may seem
premature: but the idea is to stimulate some interest and intuition into the tensor
manipulations to follow.

Example 1
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Figure 2.6. The most natural three-tensor to create from a matrix?

Consider matrix A as a 1×p×N (thin!) three-tensor, and consider embedding the
SVD of matrix A (and hence all the information of A), of rank k, in the three-tensor
Xk×p×N (Figure (2.6)). The tensor should then also be rank k, and decompose as
each Schmidt pair times a Euclidean unit vector (Figure (2.7): the difference is that
the plus signs have disappeared!).

This is a good time to extend the inner-product notation to serve in a more general
capacity, beginning with the matrix case: for a matrix/vector product, for example,
one could use

〈A, x〉 ≡ Ax

as long as the dimensions are clear, and

〈Aij, xj〉 ≡ Ax

to mean inner-product on the second dimension, say, if not. For a tensor/matrix
product, whose result is a vector, one does the same: i.e.,

〈T,M〉

as long as the dimensions are clear, and

〈Tijk,Mik〉,

for example, otherwise. Notice that the second form is just the Einstein Summation
Convention (ESC); but the brackets make us happier!
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Figure 2.7. Tensor SVD of X is simple, given by construction!

Now, if one calculates the tensor products of X with itself, such that two dimen-
sions are modded out by inner-products, then three different resultant matrices result:
in the case of the figure, the result is

〈Xirs, Xjrs〉 ≡ Λ2 =





λ2
1 0 0

0 λ2
2 0

0 0 λ2
3





〈Xris, Xrjs〉 =
k
∑

m=1

λ2
mqmq

T
m =

k
∑

m=1

λ2
m





q2
m1 qm1qm2 qm1qm3

qm2qm1 q2
m2 qm2qm3

qm3qm1 qm3qm2 q2
m3





〈Xrsi, Xrsj〉 =

k
∑

m=1

λ2
mpmp

T
m =

k
∑

m=1

λ2
m









p2
m1 pm1pm2 pm1pm3 pm1pm4

pm2pm1 p2
m2 pm2pm3 pm2pm4

pm3pm1 pm3pm2 p2
m3 pm3pm4

pm4pm1 pm4pm2 pm4pm3 p2
m4









.

If one had embedded A as X = A ⊗ e1 instead, then only the first matrix (Λ2)
would have been different.

XirsXjrs ≡ Λ2 =





∑k

m=1 λ
2
m 0 0

0 0 0
0 0 0



 .
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If one had embedded A as X = A⊗ 1√
3
(1, 1, 1), then once again only the Λ2 matrix

would have been different:

XirsXjrs ≡ Λ2 =
k
∑

m=1

λ2
m





1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3



 =
k
∑

m=1

λ2
m







1√
3

1√
3

1√
3







[

1√
3

1√
3

1√
3

]

.

The others remain unchanged.
Thus crossing the matrix A with different unit vectors only changes the first matrix

Λ2, and not the others.
Another way of thinking about these embeddings of matrices into tensors is as

operators of the sort
T : IR2 −→ IR3,

where T represents a tensor acting on A in such a way to result in a three-tensor. For
example, one could think of dotting (taking an inner-product of) the matrix A with
different unit 5-tensors (eliminating two dimensions): in the first case the three unit
5-tensors used were q1⊗p1⊗q1⊗p1⊗e1, q2⊗p2⊗q2⊗p2⊗e2, and q3⊗p3⊗q3⊗p3⊗e3.
These are unit tensors using the 5-tensor Frobenius norm. More explicitly,

〈A,
3
∑

i=1

qi ⊗ pi ⊗ qi ⊗ pi ⊗ ei〉 =

3
∑

i=1

λiqi ⊗ pi ⊗ ei

which is a sum of three three-tensors, as illustrated in Figure (2.6), for example. (In
the other two cases described above, the unit tensors used were:

qi ⊗ pi ⊗ qi ⊗ pi ⊗ e1,

and

qi ⊗ pi ⊗ qi ⊗ p1 ⊗
1√
3
(1, 1, 1).

Note that these products could be represented using the special operation notation
as in Figure (2.8).

The generalization ultimately derived will decompose these singular tensors as
expected.

Example 2

Consider the simple case of a three-tensor X created by taking the outer-product
of a matrix A and a vector v (Figure (2.9)).

If A has SVD A = Q1ΛQ
T
2 , then it seems clear (as noted in Example 1) that the

TSVD of X should be
T = Q1ΛQ

T
2 ⊗ v,

and that the rank of T , R(T ), should be the same as the rank of A, R(A) (Figure
(2.9)).



40

A 5-tensor dotted with a matrix yields a 3-tensor.

Figure 2.8. These are the tensor products referred to in the text
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Figure 2.9. Left: X = v⊗A (components of vector v are indicated by their size as
balls). Right: both A and X are rank-three in this example.
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Discussion of Example 2

Note that if one uses the Frobenius inner-product (component-wise multiplication)
to multiply matrices, then the singular matrices of A are orthogonal; likewise for the
singular tensors of X.

If a rank-one tensor is added to X, then several special cases can be considered:
if any singular tensors of the decomposition in Figure (2.9) are added, then there
will be no change in the rank (unless a singular tensor is added with exactly the
opposite weight as it has in the TSVD of X). Only the singular values will change,
or the directions (adding a singular tensor with a negative coefficient has the effect
of diminishing the singular values: if the coefficient drives the sign negative, the sign
of one of the singular vectors is changed).

If any rank-one tensor that has v in the third dimension is added, then the result
is still a rank-three object, with a potential perturbation in each singular matrix
(rank-one, in the first and second dimensions of A). (Such an addition is equivalent
to a change in the A matrix chosen at the outset.)

If, in fact, any three-tensor which is bi-orthogonal to each singular tensor of the
TSVD of X is added, then a rank-four tensor results. Otherwise one must recalculate
the TSVD, based on the new information contained in the additional rank-one tensor.

2.3.5 Maximum Rank of a Three-Tensor

Now consider the case of a three-tensor X of dimension p× q× r, with p ≤ q ≤ r.
In this case X can be written in the form of a sum of p × q × r outer-products of
vectors as follows:

X =

p
∑

i=1

q
∑

j=1

r
∑

k=1

xijke
X
i ⊗ eY

j ⊗ eZ
k

where the “X” index on the unit vector eX
i indicates that it is the Euclidean basis

vector in the X-dimension of the space with the ith component equal to 1, and all
others equal to 0.

Writing this in a slightly different way shows the actual maximum rank of X:

X =

p
∑

i=1

eX
i ⊗

q
∑

j=1

eY
j ⊗

r
∑

k=1

xijke
Z
k ;

but the third sum is a single vector in the third space, and hence of rank one: therefore,

X =

p
∑

i=1

q
∑

j=1

eX
i ⊗ eY

j ⊗ vZ
ij (2.3.9)

where the indices on v are not components, but rather different vectors living in
the third (Z) dimension, subscripted by ij. Thus, X is the sum of pq orthogonal
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outer-products of vectors, and is hence of rank at most pq. In fact,

X =

pq
∑

i=1

λiri ⊗ si ⊗ ti ≡
pq
∑

i=1

λiX i,

where λi ≥ 0 and the vectors r, s, andt are unit vectors in their respective spaces, and
the X i are mutually orthogonal rank-one tensors. They are mutually orthogonal as
the Frobenius inner-product of two of them is

〈eX
i ⊗ eY

j ⊗ vZ
ij, e

X
i′ ⊗ eY

j′ ⊗ vZ
i′j′〉 = δii′δjj′〈vZ

ij, v
Z
i′j′〉,

and they are distinct iff δii′δjj′ = 0
Now a question posed in the matrix case naturally poses itself again: can one find

a “best” set of such outer-products, such that

• the outer-products are mutually orthogonal; and

• each successive outer-product X i, i = 1, · · · , pq yields the maximal coefficient
λi over all other outer-products of the reduced tensor X −∑i−1

k=1Xk?

One natural approach would be to attempt to turn this problem into a matrix
problem and perform the usual SVD on the matrix. The following example will help
show why it is not enough to group the vectors of a single dimension, perform matrix
SVD on them, and then use the singular vectors of that dimension.

Example 3

Consider a case where X is “decomposed” as in equation (2.3.9); take the vectors
vZ

ij, form a matrix (call it Mr×pq), and perform the SVD on that matrix to obtain the
decomposition of M = UΛV T , where U is r × r. Thus,

X =

p
∑

i=1

q
∑

j=1

eX
i ⊗ eY

j ⊗ vZ
ij =

p
∑

i=1

q
∑

j=1

eX
i ⊗ eY

j ⊗
pq
∑

k=1

αij
k u

k.

If X is now multiplied along its Z-columns by UT , whose first pq rows are the
vectors uk, then the result is a three-tensor whose first pq XY -planes are filled with
the components of the singular value decomposition (that is, with the elements of the
columns of α = V Λ (of length pq), but arranged into a matrix, and whose last r− pq
XY -planes contain all zeros. I.e., computing the inner-product on the Z dimension
(resulting in a product r × r and r × p× q on the adjacent r dimensions),

X ′
ijk = 〈U,X〉ijk = αij

k
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Planes corresponding to pq ordered singular values

(after transformation).

...1 2 3 pq

Figure 2.10. The shortened (non-zero portion of the) three-tensor X after multi-
plication by the orthogonal matrix of singular vectors in the long dimension.

and
X ′

ijk = 0, k > pq.

(Notice that this shows that the general problem of tensor decomposition reduces to
tensors of dimension p × q × pq, since an orthogonal matrix multiplication leaves a
tensor with all zeros beyond the pqth layer along the Z edge. This is important in
actual computations using power methods, described in the algorithm section, as it
may lead to a great decrease in the size of the tensor on which one must perform
multiplications, etc.)

Thus the amount of total information contained in the first plane will be λ2
1, and

the amount in the second will be λ2
2, etc.

One might expect that the Principal Singular Value of the tensor would be found
in the first face, as it is weighted by λ1. However, that is not generally the case, for
the following reason: suppose that the information (as measured by the Frobenius
norm of a matrix) of the first face is dispersed about the matrix (that is, that it is full
rank, say), but that the information in the second is concentrated (of rank-one, say).
Then the best outer-product may not appear in the first face, but rather possibly in
the second, as is shown in Figure (2.11).

The difference between the matrix and tensor case occurs because a vector is bro-
ken into a matrix, which assigns it a rank (something which made no sense previously).
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=B 6*

5* +=A +4* 3*

Figure 2.11. Face A of the tensor contains more “information” overall, but face B
has the most heavily weighted single outer-product.

2.3.6 The Eigen Tao of TSVD

Begin with a three-tensor Xp×q×r (“an affine tensor of rank three” [54], to be
precise; however, their use of the term “rank” and ours do not agree: often, the word
“rank” is used to indicate the number of dimensions; we have just described our use
of the term in the preceding section). At the risk of confusion, we use the letter p
to represent vectors in the p-dimension, etc. Here is the generalization to the three-
tensor case (using the Eigen Tao approach): maximize the norm of the inner-product
of the rank-one matrix p⊗ q, of unit vectors p and q, and X:

‖〈X, p⊗ q〉‖ = ‖λu‖ = |λ|,
where u is a unit vector. Again note that X is acting as a bounded linear operator
X : IRp ⊗ IRq → IRr. Since the domain is closed, the range will be closed, so the norm
over the range will take a maximum. This will be a maximum iff the following is a
maximum:

〈〈X, p⊗ q〉, 〈X, p⊗ q〉〉 = λ2 (2.3.10)

Adding the requirements that q and p be unit vectors adds two Lagrange multipliers
to the optimization problem: so finally, the objective is to maximize

E(p, q, L1, L2) = 〈〈X, p⊗ q〉, 〈X, p⊗ q〉〉 − L1(q
T q − 1) − L2(p

Tp− 1). (2.3.11)

The left-hand side of equation (2.3.10) is
∑∑∑∑∑

piqjxijkxlmkplqm.
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Differentiating equation (2.3.11) with respect to the pi, qj and L gives a system of
p× q + 2 equations: for the ith component of p

∑∑∑∑

qjxijkxlmkplqm − L2pi = 0, (2.3.12)

and similarly for the qj:

∑∑∑∑

pixijkxlmkplqm − L1qj = 0, (2.3.13)

with the two constraints that

∑

p2
i =

∑

q2
j = 1.

For solution vectors p and q (dotting through by the appropriate vector),

L1 =
∑∑∑∑∑

piqjxijkxlmkplqm = L2,

which means that the two Lagrange multipliers can be replaced by a single one, call
it λ2 (it is obviously positive as the norm square of the vector 〈X, p⊗ q〉).

The first two sets of equations, (2.3.13) and (2.3.12), written in matrix form are
essentially generalized eigenvalue problems for the q and p:

Q(p)q = λ2q

and
P (q)p = λ2p,

or
[

Q(p) 0
0 P (q)

] [

q
p

]

= λ2

[

q
p

]

.

These matrix equations comprise a generalized eigenvalue problem for the four-
tensor XTX:

〈〈Xijk, Xlmk〉, p⊗ q〉 = λ2p⊗ q (2.3.14)

with the last equation again requiring that the solution be a “unit object”: a unit
matrix (two-tensor) of rank one.

Now the question becomes: does it also have a full set of orthogonal solutions?
If so, then we will have found a Tensor Singular Value Decomposition, just as in the
SVD case (or vice versa).
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2.4 Proof of the Existence of the Tensor SVD in Three Di-
mensions

The proof of the existence of the first singular tensor is simple, and is valid in
arbitrary tensor dimensions. Begin with an n−tensor T , of dimensions d1×d2×· · ·×
dn.

We use T to define a natural linear functional, representable as the inner-product
of T and all other elements of the tensor space. The inner product used is the
Frobenius inner-product on the linear tensor space, which is also sometimes called
the Euclidean inner-product:

〈T, S〉 = TijkSijk,

where S is an arbitrary tensor of the same size as T , and where we have used the
Einstein Summation Convention: sum over repeated indices.

Identify T with this functional, since the vector space and the space of such linear
functionals are isomorphic, and consider T as acting on a special subset of the vector
space, the set of rank-one tensors D:

T : D → IR,

where D = Sd1 ⊗ Sd2 ⊗ · · · ⊗ Sdn , and Sdi is the unit sphere in di-space, with

〈T, v1 ⊗ v2 ⊗ · · · ⊗ vn〉 = Ti1···inv
1
i1
· · · vn

in
∈ IR. (2.4.15)

The domain D is a subset of the linear tensor space, but does not constitute a sub-
space, as it is not closed under linear combinations. One can, however, form a basis
for the space from elements of D. This means that the effect of T (as a functional)
on any element of the space can be calculated by knowing its effect on D.

D is closed and bounded as a set (and hence compact), and the operator is contin-
uous and hence bounded, so it must attain a maximum on the domain. Corresponding
to this maximum is an element of D, a rank-one tensor which will be called a princi-
pal singular tensor T1 ≡ v1 ⊗ v2 ⊗ · · · ⊗ vn. The maximum value of the functional
is the principal singular value λ1. Note that λ1 ≥ 0, as T is a linear functional,
i.e.

〈T, v1 ⊗ v2 ⊗ · · · ⊗ (−vj) ⊗ · · · ⊗ vn)〉 = −〈T, v1 ⊗ v2 ⊗ · · · ⊗ vj ⊗ · · · ⊗ vn)〉.
Having established the existence of the first, we now show that T can be suc-

cessively decomposed until at last there are no more singular tensors. Although the
following theorem is only stated in the three-tensor case, it is conjectured that the
TSVD can be extended to arbitrary tensor dimensions.

Theorem 2.4.1. Any three-tensor Tp×q×r, p ≤ q ≤ r, can be written as a sum of at
most pq mutually bi-orthogonal rank-one three-tensors such that

T =

pq
∑

i=1

λiTi ≡
pq
∑

i=1

λipi ⊗ qi ⊗ ri, (2.4.16)
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with coefficients λi ≥ 0, satisfying

‖T −
k
∑

i=1

λiTi‖2 = ‖T‖2 −
k
∑

i=1

λ2
i =

pq
∑

i=k+1

λ2
i ≤ ‖T −

k
∑

i=1

aiRi‖2 (2.4.17)

∀k ≤ pq, ∀{ai}i∈{1,··· ,k} ⊂ IR and {Ri}i⊂{1,··· ,k} ∈ Sp ⊗Sq ⊗Sr, with Sd the unit sphere
in d-space.

Proof: Consider a three-tensor, T , on a space of dimensions p×q×r, where, WLOG,
p ≤ q ≤ r. The existence of the first singular tensor T1 ≡ p1 ⊗ q1 ⊗ r1 has already
been established.

We begin by proving bi-orthogonality. Having found the p1 and q1 vectors of T1,
the r1 vector is determined, by the product 〈T, p1 ⊗ q1〉 = λ1r1. We now show that,
in fact,

T ⊥
(

p⊥1 ⊗ q1 ⊗ r1
)

∪
(

p1 ⊗ q⊥1 ⊗ r1
)

∪
(

p1 ⊗ q1 ⊗ r⊥1
)

; (2.4.18)

for, if not, then (examining, WLOG, the r direction) ∃u ∈ r⊥ (a unit vector) such
that

T (p1 ⊗ q1 ⊗ u) = β1 6= 0.

Therefore one could increase the principal singular value of λ1 by choosing, instead
of r1, the unit vector

r′1 =
λ1r1 + β1u
√

λ2
1 + β2

1

:

when one take the inner-product of that tensor with T , the result is

〈T, p1 ⊗ q1 ⊗ r′1〉 =
λ2

1 + β2
1

√

λ2
1 + β2

1

=
√

λ2
1 + β2

1 > λ1,

which is a contradiction: p1 ⊗ q1 ⊗ r1 maximized the functional T . Therefore, suc-
ceeding singular tensors are at least bi-orthogonal to the first.

Thus the search for the next singular tensor can be restricted to the domain D1,
defined as the set of outer-products bi-orthogonal to T1:

D1 = (p⊥1 ⊗ q⊥1 ⊗ Sr) ∪ (p⊥1 ⊗ Sq ⊗ r⊥1 ) ∪ (Sp ⊗ q⊥1 ⊗ r⊥1 )

= (p⊥1 ⊗ Sq ⊗ Sr) ∪ (Sp ⊗ q⊥1 ⊗ Sr) ∪ (Sp ⊗ Sq ⊗ r⊥1 )

−p⊥1 ⊗ q1 ⊗ r1 − p1 ⊗ q⊥1 ⊗ r1 − p1 ⊗ q1 ⊗ r⊥1 .

Successive domains (intersections of compact subsets) can be written as the set of
outer-products perpendicular to all previously obtained singular tensors, or

Dk =

k
⋂

i=1

(

(p⊥i ⊗ q⊥i ⊗ Sr) ∪ (p⊥i ⊗ Sq ⊗ r⊥i ) ∪ (Sp ⊗ q⊥i ⊗ r⊥i )
)

≡
k
⋂

i=1

Oi,
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where Oi denotes the subset of D bi-orthogonal to the ith singular tensor Ti.
As each successive Dk is compact, a new singular tensor of T is obtained until all

dimensions of the Hilbert space have been exhausted. Thus, in the end, there is a
set of bi-orthogonal tensors. There can be at most pq bi-orthogonal singular tensors,
as is easily seen: since there are at most p independent vectors in the x direction,
and at most q independent vectors in the y direction, there can be at most pq such
bi-orthogonal singular tensors.

Now the question of satisfying the equality of the theorem arises: is it true that

T =

pq
∑

i=1

λiTi,

and does the difference satisfy the minimization constraint of the theorem?
The equality will be shown making use of the following

Lemma 2.4.1.

T −
k
∑

i=1

λiTi ⊥ D −Dk.

Proof: Note first that the actions of T and T − λ1T1 on D1 are the same:

〈T − λ1T1, D1〉 = 〈T,D1〉 − 〈λ1T1, D1〉 = 〈T,D1〉,

as D1 was defined to be orthogonal (bi-orthogonal) to T1. Furthermore T − λ1T1

is orthogonal to D − D1 (the set of elements of D not bi-orthogonal to T1), as T is
orthogonal to all things which are merely orthogonal to T1 (2.4.18), and T−λ1T1 ⊥ T1:

〈T − λ1T1, T1〉 = 〈T, T1〉 − λ1〈T1, T1〉 = λ1 − λ1 = 0.

Therefore, as any element of D−D1 can be written as a sum of elements of the first
and second types, the anchoring case is established:

T − λ1T1 ⊥ (D −D1).

This means that the tensor T has been split into two parts:

T = (T − λ1T1) + λ1T1,

with
T − λ1T1 ⊥ D −D1andλ1T1 ⊥ D1,

and that decomposing T on D1 will be the same as decomposing T − λ1T1 on D1.
Next comes induction: suppose that

T −
j
∑

i=1

λiTi ⊥ D −Dj, ∀j ≤ k.
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Consider the action of T −∑k

i=1 λiTi on Dk; it determines a singular tensor Tk+1.

Construct Dk+1, and consider the three-tensor T −∑k+1
i=1 λiTi. Now

(T −
k
∑

i=1

λiTi) − λk+1Tk+1 ⊥ Dk −Dk+1 = (D −Ok+1) ∩Dk,

by an argument equivalent to the one given in the anchor case: T −∑k

i=1 λiTi ⊥
(D −Ok+1), as is Tk+1, and their effect on Dk is equivalent. But this implies that

T −
k
∑

i=1

λiTi − λk+1Tk+1 ⊥ D −Dk+1,

as one can see by considering

〈T −
k
∑

i=1

λiTi − λk+1Tk+1, D − (D −Dk) −Dk+1〉.

It has already been seen that

〈T −
k
∑

i=1

λiTi, D −Dk〉 = 0,

and Tk+1 is orthogonal to D −Dk as it is in Dk+1. Therefore,

〈T −
k+1
∑

i=1

λiTi, Dk −Dk+1〉 = 〈T −
k+1
∑

i=1

λiTi, D −Dk+1〉 = 0,

which proves the lemma.
What this means, of course, is that when one gets to the last bi-orthogonal tensor,

Tpq,

〈T −
pq
∑

i=1

λiTi, D −Dpq〉 = 〈T −
pq
∑

i=1

λiTi, D〉 = 0;

as Dpq ≡ ∅. This says precisely that

T −
pq
∑

i=1

λiTi = 0,

as was claimed, because the null space of T −∑pq

i=1 λiTi is the entire space of D,
from which one can form a basis of the tensor space (e.g., the Euclidean basis of
outer-products ep

i ⊗ eq
j ⊗ er

k).
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As for the minimization constraint, maximizing 〈T, t〉 over all t ∈ D is equivalent
to minimizing

〈T − λt, T − λt〉 = 〈T, T 〉 − 2λ〈T, t〉 + λ2

for λ (differentiating with respect to λ gives λ = 〈T, t〉). Therefore

〈T − λ1T1, T − λ1T1〉 = 〈T, T 〉 − λ2
1

is a minimum for T1, as λ1 is a maximum over all rank-one tensors: so the minimiza-
tion condition is satisfied for the first singular tensor.

Again use induction: suppose that T −∑j

i=1 λiTi minimizes the norm ∀j ≤ k over

D. Consider T−∑k+1
i=1 λiTi, where Tk+1 was chosen to maximize λ = 〈T−∑k

i=1 λiTi, t〉
over all t ∈ Dk: therefore, by the reasoning above,

‖T −
k+1
∑

i=1

λiTi‖2 = ‖T −
k
∑

i=1

λiTi‖2 − λ2
k+1 = ‖T‖2 −

k+1
∑

i=1

λ2
i ,

which is a minimum over all D, as T −∑k

i=1 λiTi ⊥ D −Dk.
We have therefore shown that there is an optimal, bi-orthogonal decomposition of

a three-tensor, which, by analogy with the Singular Value Decomposition, deserves
the name “Tensor Singular Value Decomposition”.

2.4.1 Special Case: the Bi-Symmetric Three-Tensor

One important special case is when the three-tensor V is symmetric in two of the
three dimensions. This is the case which is especially relevant from the standpoint of
geostatistics, as it represents the problem of decomposing (and then modelling) the
variogram matrix.

In this case, the decomposition of V takes a special form, because of the bi-
orthogonality and symmetry of the decomposition of the symmetric tensor V . In
order to have full bi-orthogonality, the decomposition must take the form

V =
∑

i

∑

j

λijbi ⊗ bj ⊗ rij .

To demonstrate this, consider the following

Question: Can one assume that the most weight is on terms of the form bi⊗ bi⊗rii?
Answer: There are only two ways in which one can have singular tensors in the
symmetric case:

• λiibi ⊗ bi ⊗ rii; and

• λij[u⊗v+v⊗u]⊗rij , where unit vectors u and v are not necessarily orthogonal.
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Note that the second type is really a pair of the first type, as

u⊗ v + v ⊗ u = bi ⊗ bi − bj ⊗ bjwherebi ≡
1√
2
(u + v)andbj ≡

1√
2
(u − v);

note also that bi and bj are not necessarily unit vectors, but are mutually orthogonal.
Thus it might be better to write

λij [u⊗ v + v ⊗ u] ⊗ rij = λij [‖bi‖2β
i
⊗ β

i
− ‖bj‖2β

j
⊗ β

j
] ⊗ rij

and consider the orthogonal unit vectors β = b

‖b‖ instead. So if the most weight were
on terms of the second type, then one could simply rewrite them as two terms of
the first type. Thus the answer is “yes” to the question. In fact, it is clear that one
can reduce the search for successive singular tensors to those of the symmetric form
bi ⊗ bi ⊗ rii.

2.5 TSVD: Rapid Interpolator in Higher-Dimensions

The TSVD, as a generalization of the SVD, is now a rapid interpolator in the
higher-dimensional case, just as the SVD is one in two-space. The idea is exactly the
same, if one keeps one’s attention separately on the singular vectors in each direction.
One interpolates the singular vectors, and reconstructs as much of the original data
as one considers signal, leaving out the noise. One now has a method for quickly
producing a functional interpolator/estimator of a high-dimensional data set defined
on a grid.

Applications include data transmission, where one could reduce the bandwidth
of images by sending first the singular images, and then only the components of
the largest singular tensors needed to achieve a chosen level of reproduction; and in
the medical field, Stytz and Parrott [88] note that “the three estimation methods
typically used for interpolation [of 3D medical images] are nearest neighbor, linear
interpolation, and trilinear interpolation”, and then apply kriging to the interpolation
problem. The TSVD offers another alternative.

2.6 A Solution Algorithm

One of the most obvious ways of obtaining the singular tensors is by a power
method. One can iterate the non-linear matrix equations (2.3.14), starting from
a random rank-one outer-product, and hope to converge on the principal singular
tensor. Then, using deflation (by removing the component of this tensor), one moves
on down through all the singular tensors of the tensor X.

There are problems with this procedure even in the matrix case, so it is only of
limited utility. Still, it often works, and has allowed us to begin experimenting with
decompositions. It is also the only algorithm we currently have! The main problem
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with deflation is that components of once-removed tensors can be reintroduced in
the succeeding steps of the process, through round-off errors. The less deflation an
algorithm requires, the better.

Here is the algorithm used in the Matlab program sympower.m, given in the
appendix, for symmetric three tensors:

• A) Read in the symmetric three tensor Tm×m×n;

• B) Scale the tensor to unit Frobenius norm: T = T
‖T‖ (This doesn’t change the

singular tensors, only the singular values; correct for the scaling at the end.)

• C) for i = 1:m

– 1) Randomize the first unit vector q
i

(hoping it has a component in the
direction of the principal singular vector q

1
);

– 2) Compute the four tensor Am×m×m×m = T TT ;

– 3) for j = 1, maximum iterations

∗ a) Compute the new estimate:

q∗
i

= 〈A, q
i
⊗ q

i
⊗ q

i
〉

∗ b) check for improvement:

q∗
i
=

q∗
i

‖q∗
i
‖

qdiff = q
i
− q∗

i

q
i
= q∗

i

if ‖qdiff‖ << ǫ, goto 4).

∗ c) Choose one of two techniques: either

· orthogonalize q
i

against the previously obtained q
k
, 1 ≤ k < i,

and iterate, or

· Proceed without orthogonalizing. In this case, symmetric pairs
will be found in pairs according to the rule

bib
T
j + bjb

T
i = cic

T
i − cjc

T
j ,

where

ci ≡
bi + bj√

2
andcj ≡

bi − bj√
2

.

Both methods converge to the zero tensor. We have found, how-
ever, that the z-vectors are slightly different if we let the second
method run its course: therefore, it is wise to introduce a routine
to force them to be the same.
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– 4) Compute rii = 〈T, q
i
⊗ q

i
〉, λi = ‖rii‖, and rii =

rii

λi
, and set

T = T − λiqi
⊗ q

i
⊗ rjj

• D) Compute all cross outer-products, and the third dimension vectors rjk and
singular values λij , and rescale the λ values.

The symmetric tensor T will then be decomposed into a sum of (at most) q2

singular tensors of the form

T =

q
∑

i=1

q
∑

j=1

λijqi
⊗ q

j
⊗ rij,

such that the products q
i
⊗ q

j
⊗ rij are mutually bi-orthogonal.

A Matlab program, unsymsort.m, is given in the appendix, with comments, for the
unsymmetric algorithm. Note, however, that in the unsymmetric case the complete
rank-one portions of the orthogonal complements of the vectors already found are
searched first, then a comparison is made between the singular value obtained on
that space and those of matrix subspaces corresponding to projecting out each vector
already in a singular tensor. If a singular value of the subspaces is nearly as large as
that of the singular tensor in the completely orthogonal space, one may take it instead.
This may help avoid the problems of straying into already eliminated components of
the space due to round-off.

Of course, unsymsort.m may be used for the symmetric case as well.
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Chapter 3

Variogram Analysis

3.1 Introduction

Variogram Analysis is a multivariate method designed to determine the rela-
tionship between the covariance structure of the variables in a study, and the spatial
aspects of the problem. As a multivariate method, variogram analysis thus results in
the study of auto-correlations and cross-correlations. It is a non-standard type of mul-
tivariate analysis, in the sense that it is not yet well formalized, and too little-used:
but for phenomena exhibiting spatial correlation (images, for example, or meteoro-
logical problems), it is extremely useful and important.

Variogram analysis is essentially a generalization of Principal Components Anal-
ysis (PCA), which looks at the correlations that exist between variables at the same
site, and between sites on the same variable. Variogram analysis goes beyond PCA,
however, to consider the correlations that exist between different variables at different
sites. This type of analysis allows one to identify directional trends in the data, and
the coherence distance (defined as the distance over which two variables are corre-
lated) of the variables. One can sum up variogram analysis by saying that, through
it, one attempts to establish the relationship of neighboring sites as a function of po-
sition for all pairs of variables. Often this is a precursor to the estimation of values at
a given site using information from only its neighbors, which are weighted according
to the relationships uncovered in variogram analysis.

Geostatistical methods are grounded in the belief that the phenomena of interest
are stationary to some extent. Stationarity will now be made precise. Consider a
single variable, perhaps nitrate, sampled in three-space. Consider the data to be a
non-random sample from one realization of a random function. That is, at each point
in space Ω there is a random variable (e.g. potential nitrate concentration values at
that position), and the collection of these random variables forms a random function.
There is at each point a realized value, the collection of which compose the realization.
Assume that data values are known for N locations, the realized values of the random
variables at those sites.

Now consider the various forms of stationarity. The random function Z has a
marginal at each point in space. Strong stationarity means that the marginals are all
the same, and more generally that

Definition 3.1.1. Z(x) is stationary if, for any h and for any finite number N of
points x1, . . . , xN , the joint distribution of Z(x1), . . . , Z(xN) is the same as the joint
distribution of Z(x1 + h), . . . , Z(xN + h). (See [15], p. 273-276.)
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There are various weaker forms of stationarity (see [68]), among which are:

• Second-order stationarity:

Definition 3.1.2. Z(x) is second-order stationary if cov[Z(x + h), Z(x)]
exists and depends only on h.

Note that stationarity does not imply second-order stationarity: this is not an
inherited property. This form of stationarity implies that Var[Z(x)] and E[Z(x)]
exist and do not depend on x.

• The Intrinsic Hypothesis, which means that the differences of variable Z are
second-order stationary:

Definition 3.1.3. Z(x) satisfies the intrinsic hypothesis if E[Z(x + h) −
Z(x)] = 0 ∀x and h; and γ(h) = 1

2
Var[Z(x +h)−Z(x)] exists and depends only

on h.

• and other forms, such as weak stationarity with drift, and the intrinsic hypoth-
esis of order k (succeedingly weaker stationarity, up to higher differences classes
than variograms, for instance).

In many instances, it is essential to specify exactly which form of stationarity is
required.

3.1.1 Principal Components Analysis and Similar Techniques

Since variogram analysis is a generalization of PCA, it is appropriate to begin
with a description of that technique. Let X be a data matrix, of N sample locations,
each with p measurements which represent different variables. Principal Components
Analysis is a technique used to study the variables and cases of a matrix by studying
the matrix decomposition (or the decomposition of a related matrix) by SVD.

Begin with a transformation of X, computing the means and standard deviations
of the variables (usually the columns of the matrix), then centering the matrix so
that variables have mean 0 and variance 1. Let

σ = diag(Σ)
1
2

be the matrix of standard deviations of the variables; then let

A ≡ (IN×N − 1

N
1N1T

N )Xσ−1.

(The first multiplication centers the matrix X, whereas the second scales it. This is
done to make the components unique: otherwise, a change of units would affect the
components obtained. One consequence is that it weights the variables equally in the
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decomposition. Notice, however, that this is not true of the sites: that is, that the
technique is not so even-handed in the rows as it is in the columns.) The SVD then
provides the decomposition

A = Q1ΛQ
T
2 .

This decomposition may be useful for exploratory reasons: one may be interested
in seeing how variables are correlated, and hope to get some insight by viewing the
singular vectors as representative sites or variables. Just as images may be decom-
posed via a series of singular images, so can a data matrix be decomposed. One may
find some process to associate with certain of the Schmidt Pairs.

One might use PCA as a means of “improving” the representation of the infor-
mation contained in the matrix X:the matrix X, with its p variables, is exchanged
for the matrix Q1, with its p (or fewer, depending on the rank) variables, which are
just linear combinations of the original p variables (linear combinations which serve
to make the new variables perpendicular in p-space).

Comparisons are made horizontally and vertically in the matrix, but no compar-
isons are made in other directions (diagonally, say). Each site’s variable u is compared
with every other site’s u, and variables u and v of a given site are compared; but the
comparison ends there. Often (and particularly outside of geostatistics) this makes
sense, as entries in different rows and columns (my cholesterol level and your pulse)
are expected to be independent. But samples may represent wells, for example, in
which case spatial proximity may correspond to correlation (Jack’s well’s nitrate level
and Jill’s well’s sodium level). Incorporating this type of comparison means that one
must look beyond the “zeroth lag”: that is, comparisons between different sites using
distance and angle as a guide are required. This is the task of variogram analysis.

A technique related to PCA, Correspondence Analysis (CA) [6], proceeds in a
similar way: the following matrix operations are performed prior to decomposition:
given a matrix X with positive entries, one first sums up all entries and divide to get
what looks like a frequency matrix, F : defining

x̂ ≡
N
∑

i=1

p
∑

j=1

x(i, j),

F ≡ 1

x̂
X.

Compute row and column sum vectors, f
N

and f
p

by

f
N

= F1p,

and
f

p
= F T 1N ,
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and create a pair of diagonal matrices DN and Dp by setting DN =diag(f
N

) and
Dp =diag(f

p
). Then the matrix A, defined below, is decomposed, using the SVD:

A = D
− 1

2
N (F − f

N
fT

p
)D

− 1
2

p = Q1ΛQ
T
2 . (3.1.1)

The Q1 and Q2 matrices are not quite the matrices which represent the coordinates
which are often plotted in CA analysis: they are, however, up to a final matrix
multiplication. The matrix generally studied and plotted is

P = Λ−1QT
2D

− 1
2

p ,

but this is essentially a set of scaled singular vectors.
The components can be treated as a variation from independence (which is re-

moved in the subtraction of (3.1.1)). CA is even-handed in its treatment of rows and
columns because of the complete symmetry in the process, in contrast to PCA.

The steps of these (and other) matrix analysis techniques can be summarized as
follows:

• make the matrix transformations of interest,

• perform the SVD on the resultant matrix, and

• interpret the singular vectors and values based on the results expected by the
transformations performed.

Once again the SVD proves its value in important statistical, and geostatistical,
techniques.

3.1.2 What is the Variogram, and Why Use It?

When estimating at an unsampled location one uses information obtained from
neighboring locations (neighbors), which must be weighted according to some scheme.
In a truly random field, neighbors are equally helpful (they each contribute to the
sample mean surface, which might well be used as the estimate); in a spatially well-
correlated one, near neighbors may prove to be more reliable estimators of the values
at a site, and so they may be valued more (weighted more) than farther sites. The
job of variogram analysis is to determine where a given case lies between these two
extremes, and then to suggest models for the weight function.

The principal geostatistical assumption in variogram analysis is that the correla-
tion structure of variables, which variogram analysis uncovers, is a function of distance
and direction. The forthcoming analysis will generally be concerned with increments
(the distance and angle between points): thus, it is often preferable to think in terms
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of loss-of-correlation functions, which are called variograms, in the case of a sin-
gle variable, and cross-variograms when the effect of variables on each other is
considered.

Variograms are characterized by features which may include a range, a nugget,
and a sill, as well as by evidence for what are called drift and anisotropy. In
addition, they may exhibit inflection points, infinite growth, and other features which
are related to model type.

All of these characteristics of the variogram have some relationship with the under-
lying phenomenon: the range quantifies the distance over which sites are correlated;
the nugget may tell indicate how much noise there is in the data, or the extent to
which sampling has not been carried out at the smallest distance scales; the sill re-
lates to the variance of the variable; drift and anisotropy will be described in a section
below, but roughly describe the role varying direction plays in the phenomenon of
interest; and model type has in some cases been identified with certain types of spatial
interaction (as a spherical model has been shown to be natural for certain Poisson
processes).

The word “trend” is sometimes used in place of “drift”, but this is unfortunate:
trend is usually found via a least-squares procedure on the data, using a set of inde-
pendent functions and the position coordinates, whereas drift is the (non-constant)
mean surface structure of the random function [41]. Drift is sometimes estimated
with the trend surface, which only contributes to the confusion.

The theoretical variogram matrix is defined as

Γ(h) =
1

2
E
[

(z(x+ h) − z(x))(z(x+ h) − z(x))T
]

(3.1.2)

where z is a centered data vector (that is, its mean has been subtracted off), and x
and h are vectors relating positions in space. Variograms lie on the diagonal, and
cross-variograms off the diagonal (for variables i and j in element Γij), and E is the
expectation function. One may attempt to model this variogram matrix function
after inspecting the sample variogram matrices obtained from the data.

One thing to note is that the variogram matrix function is nonnegative definite
at each lag (that is, for each value of h), as it is the expected value of nonnegative
definite matrices (rank-one outer-products). Nonnegative definite matrices form a
positive cone in the vector space of matrices of the given size.

On the other hand, Matheron [58] showed that the variogram γ of an individual
variable is a conditionally negative definite function (CND), satisfying

−
∫ ∫

dµ(x)γ(x− y)dλ(y) ≥ 0 if

∫

dµ(x) =

∫

dλ(y) = 0 (3.1.3)

for any non-zero measures λ, µ with finite support. It must also satisfy the limit
condition

lim
|h|−→∞

γ(h)

|h|2 = 0.



59

(A good overview of positive definite functions can be found in Stewart [86], although
he does not treat these additional forms.) Satisfying these two positive definite con-
ditions will constitute our biggest modelling headache.

A variogram is, quite simply, a spatial decomposition of the variance. Inspection
of the variogram allows one to spot distances or directions at which variance is small
(that is to say, variables are well-correlated). It is natural to presume that sites
located at positions for which the variance is low will be more reliable predictors of
values at the site of interest. Similarly, cross-variograms are spatial decompositions
of the covariance of two variables, as shown below.

3.2 The Variogram: Spatial Decomposition of Variance

We derive this decomposition as follows, starting with the sample variance S
computed by the usual formula:

S =
1

N − 1

N
∑

i=1

(zi − z)(zi − z)T

Replacing the mean vector z by the sum which defines it,

S =
1

N2(N − 1)

N
∑

i=1

N
∑

j=1

N
∑

k=1

(zi − zj)(zi − zk)
T .

Adding an appropriate form of zero,

S =
1

N2(N − 1)

N
∑

i=1

N
∑

j=1

N
∑

k=1

(zi − zj)(zi − zj + zj − zk)
T ,

which is

S =
1

N(N − 1)

N
∑

i=1

N
∑

j=1

(zi − zj)(zi − zj)
T − 1

N2(N − 1)

N
∑

i=1

N
∑

j=1

N
∑

k=1

(zj − zi)(zj − zk)
T .

Notice that the second sum as exactly S, so finally

S =
1

2N(N − 1)

N
∑

i=1

N
∑

j=1

(zi − zj)(zi − zj)
T ,

or

S =
1

2Np

N
∑

i=1

N
∑

j=i+1

(zi − zj)(zi − zj)
T ,
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where Np is the total number of distinct pairs of data positions, of which there are
N(N−1)

2
.

Now each pair of data locations is placed into a “lag class”, determined by a vector
h, which means that the two points are separated by (roughly) h. Define Nc classes,
each described by a set Ph of pairs of indices, such that

(i, j)ǫPh ⇐⇒ d(xi, xj) ≈ h

where d(a, b) gives the difference vector between data locations.
The moment estimator of the variogram function for lag h is

Γ∗(h) =
1

2Nh

Nh
∑

(i,j)ǫPh

(zi − zj)(zi − zj)
T , (3.2.4)

where Nh is the number of distinct pairs of data values, placed in the set Ph (pairs
displaced by the vector h) 1.

Thus the sample variance, S, can be written as a weighted sum

S =

Nc
∑

c=1

Nh

Np





1

2Nh

Nh
∑

(i,j)ǫPh

(zi − zj)(zi − zj)
T



 ,

or

S =
Nc
∑

c=1

Γ(h)

(

Nh

Np

)

. (3.2.5)

Or, even more generally,

S =

∫

V

Γ(h)dµ(h),

where µ(h) is a measure which represents the “number” of distinct pairs of a certain
lag class. In the case of the finite measure,

dµ(h) =
Nh

Np

.

To demonstrate this explicitly, consider a realization of a continuous random func-
tion defined on a continuous interval (which can be taken as [0, 1], WLOG). The
experimental variogram s2(h) is defined by

s2(h) =

∫ 1−h

0
(z(x+ h) − z(x))2dx

2
∫ 1−h

0
dx

,

1In reality this is only approximately true, of course: one generally groups all pairs to get a finite,

relatively small number of lag classes.
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or

s2(h) =
1

2(1 − h)

∫ 1−h

0

(z(x+ h) − z(x))2dx.

The sample variance s2 is

s2 =

∫ 1

0

(z(x) −
∫ 1

0

z(h)dh)2dx =

∫ 1

0

(
∫ 1

0

(z(x) − z(h))dh

)2

dx.

Therefore

s2 =

∫ 1

0

dx

[
∫ 1

0

(z(x) − z(h))2dh+

∫ 1

0

∫ 1

0

(z(x) − z(h))(z(h) − z(y))dhdy

]

=

∫ 1

0

∫ 1

0

(z(x) − z(h))2dxdh− s2.

Thus,

s2 =
1

2

∫ 1

0

∫ 1

0

(z(x) − z(y))2dxdy,

from which one concludes that s2 is the mean of all pairs of data differences squared.
Now

∫ 1

0

∫ 1

0

f(x, y)dxdy = 2

∫ 1

0

∫ 1−h

0

f(x+ h, x)dxdh

for symmetric functions, i.e. f(x, y) = f(y, x). So

s2 =

∫ 1

0

∫ 1−h

0

(z(x+ h) − z(x))2dxdh,

=

∫ 1

0

[

1

2(1 − h)

∫ 1−h

0

(z(x+ h) − z(x))2dx

]

2(1 − h)dh,

=

∫ 1

0

s2(h)[2(1 − h)dh],

or

s2 =

∫ 1

0

s2(h)µ(dh). (3.2.6)

This demonstration should put to rest a common error, the assertion (see Freek
[89], for example) that “...the sill is equal to the variance in the data set.” This is
obviously incorrect for monotonically increasing variogram models, as the sill (the
mean of all variogram values) would be greater than all the variogram values of the
sample population! It is true that the sill of a variogram is equal to the population
variance in the second-order stationary case, as Barnes [8] shows. He also discusses
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the conditions under which one may properly use the sample variance in estimating
the sill, but suggests rather that one might consider using an obvious sill to estimate
the population variance!

If the range of a spatial phenomenon is finite, then the far variance (that is, the
contribution to the variance corresponding to pairs found at large lags) has to be
greater than the average variance, in order for it to compensate for the short range
(low) variance. It is possible, of course, for this effect to be washed out: as the range
tends to zero compared to the spatial extent of a (stationary) phenomenon, the sill
will tend to the variance.

One may now put what I call the “fundamental equation of geostatistics” (either of
equation (3.2.5) or equation (3.2.6)) to work in the following way: given a problem,
for which a model has been chosen, compare the computed sample variance with
the sample variance we obtain from the model, using the appropriate fundamental
equation. Or, from [8],

E(s2) =
1

N2

N
∑

i=1

N
∑

j=1

γ(xi, xj).

Noting that the fundamental equations are linear in the sill of the variogram model,
one might, then, adjust the sill of the model so that the two match up; or one could
match the model sample variance to some other estimator of the population variance
(as the model is presumed valid for the whole population). This is an example of a
reasonable constraint that one could introduce easily into a model.

Returning to the estimator of the variogram matrix function (Equation (3.2.4))
for a moment, each pair has a place in some lag; in fact, the whole procedure could
be described as exchanging the population of data for the (much larger) population
of all differences of pairs, each associated with a position vector h. One then asks
to what extent is the variance of the population related to position. The variogram
estimator can be written in this sense as

Γ∗(h) =
1

2Nh

DT (h)D(h), (3.2.7)

where D(h) represents all the differences falling (approximately) into the class given
by h. This representation will prove handy later on, when we discuss results of the
chapter on interpolation.

The use of the sample variogram has been questioned and criticized, especially by
Cressie ([19, 36]), but by others as well; this is because of its sensitivity to “outliers”
(that is, extreme-valued data, which may be the result of errors which are then
propagated heavily through the analysis). This is due to the squared nature of the
variogram. Cressie and others, such as Journel ([47]), have proposed using exponents
other than 2 in the spatial correlation function (e.g. the rodogram, with exponent
.5, or the madogram with exponent 1). Obviously the variogram is serving as some
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Figure 3.1. Abe Lincoln has his sample variance decomposed by the variogram. The
variogram, weighted by the measure of the distribution of pairs, gives the variance.
The panel at bottom-right represents the integrand, the product of the variogram and
the measure.
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sort of “metric”, by which to weight pairs at different distances, and the choice of the
metric will play an important role in the estimation problems to be described later
on.

In spite of the non-robustness of the variogram, its intuitive definition, relationship
to the variance, etc. make it the obvious choice for most problems, especially where
data quality is high.

3.3 Variogram Analysis as a Multivariate Analysis Tool

Journel [46] (p. 126) notes that “Any serious practitioner of geostatistics would
expect to spend a good half of his or her time looking at all faces of a data set, relating
them to various geological interpretations, prior to kriging; he or she may even decide
not to do any kriging!”

This remark illustrates the importance of variogram analysis beyond its role in
the kriging equations. One must examine the variograms and cross-variograms for
features which one can identify with the problem at hand:

• whether to assume isotropy or anisotropy;

• the degree of stationarity (or rather, the degree to which the distribution of
values is independent of position);

• the “shape” of the spatial correlation, and whether it is indicative of known
processes; and

• the relationship between variables, one to another.

The sample variograms and cross-variograms can help one to answer these and other
important questions, and guide one in deciding whether to krige, cokrige, or to leave
off kriging all together (as Journel suggests one may).

We differ, though, with him [45] (p. 6) when he argues that “...geostatisticians
never consider experimental variograms beyond one-half of the maximum experimen-
tal inter-distance available”. As just seen, the sample variogram, weighted by pair
numbers per class, shows “where the variance is”, and in this case it would be foolish
to ignore the contributions that come from the back half of the distance classes.

His comment reflects his concern about several potential problems: there is an
aliasing effect which is likely to occur if one goes beyond the halfway point. Also, the
number of pairs that occur at great distance may decrease dramatically, meaning that
the reliability of the sample variogram values as an estimator of the true variogram at
those lags may not be good. Furthermore, if the study region is strangely shaped, then
pairs at great distance may all come from the same direction, leading to overemphasis
on that directions if one is inspecting isotropic variograms; this will not be a problem
if one inspects variograms while including angle information.
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h

h

Figure 3.2. Data are compared at sites separated by (roughly) the same angle and
distance.

In contrast to PCA, described above, variables are now compared at sites separated
by a vector h, representing both a distance and an angle (Figure (3.2)). If one finds
that the angle is essentially irrelevant, then one may choose to assume isotropy. In
the figure of Abe and his decomposed variance (Figure (3.1)), the variogram seems
to have a valley along which it is small, and two (fairly symmetric) hills. There is
obviously some anisotropy there, which can be understand as follows: Abe’s face is
much more similar along the vertical direction than it is along the horizontal direction.
Although one may encounter a chin, or a nose, one doesn’t see the sharp differences
in the same number of pixels that one does in the horizontal direction, where one can
go from a nose to an ear in a few pixels. The aliasing effect is evident in the two hills:
because the variogram is drawn the full distance to the left and to the right (facing
Abe), there is an approximately 70 pixel difference in the variogram image, compared
to only 36 pixels of Abe in the horizontal direction. This has led to dual humps in
the variogram. If the distance classes had been restricted to only 18 pixels to the
left and right, the edges would have been cut out, from y ∈ [0, 18] and y ∈ [54, 70].
(By the way, we left out the “front half” of the variogram, as it is symmetric: the
angle/distance classes from [0, 180]-degrees are merely repeated from [180, 360].)

3.4 Modelling the Variograms and Cross-Variograms

Variogram analysis is both an art and a science. In the early going of a study, one
may simply be looking at variograms and cross-variograms in the hopes of discovering
unanticipated structure in the phenomenon being studied. Much may be learned from
even a very cursory inspection: for example, if the variogram of a variable is flat over
distance, for all directions, then spatial analysis will provide no benefit over traditional
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statistics. This is obviously an important insight, quickly and easily determined by
simple inspection.

In the multivariate (non-univariate) case (that is, number of variables ≥ 2), one
inspects the experimental variograms and cross-variograms of the variables of interest
seeking similar features. If possible, one would like to deduce physical relationships
(such as chemical pathways, for example) from any similarities that one might find.
However, the interpretation of the sample variogram matrix is still something of an
art.

Variogram and cross-variogram modelling (of the sample variogram matrix) is not
easy, which may account for the fact that the techniques of kriging and cokriging
have not been more widely used. Cokriging in particular is more complicated (than
kriging) because it requires cross-variogram modelling.

Variogram modelling is only necessary if one is going to use the information con-
tained in them for some further step (e.g. interpolation or simulation). If one is
merely using the sample variogram as a multivariate analysis tool, then this step may
be skipped entirely.

3.4.1 Variograms

We will begin with variograms, as they are essential for both kriging and cokriging,
and serve as a good jumping off point to the messier problem of cross-variograms.

The constraint that the variogram be conditionally negative definite (CND) opens
the door to a group of models which are commonly used to fit sample variograms.
Any function which is CND can be used as a model: however, to ensure that the
kriging system is invertible, it is essential that the CND function be strictly CND.
The isotropic models (provided in the popular public-domain geostatistical software
package Geo-EAS [24]) are:

• the nugget model:

γ(h) =
{

0, h = 0; n, h > 0 (3.4.8)

• the linear model:

γ(h) =

{

0, h = 0;

ch, h > 0
(3.4.9)

• the gaussian model:

γ(h) =







0, h = 0;

c

(

1 − e− ln(20)h2

r2

)

, h > 0
(3.4.10)
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• the spherical model:

γ(h) =











0, h = 0;

c h
2r

(

3 − (h
r
)2
)

, 0 < h < r;

c, h > r

(3.4.11)

• the exponential model:

γ(h) =

{

0, h = 0;

c
(

1 − e− ln(20)h
r

)

, h > 0
(3.4.12)

(The factor of ln(20) in the gaussian and exponential models appears because the
range r of those models is defined as the point at which the model attains 95% of its
sill, c.)

Since conditionally negative definite functions form a positive cone in the space
of functions (which is to say that positive linear combinations of such functions are
again conditionally negative definite), one strategy for modelling variograms is to use
positive combinations of known valid models to fit sample variograms. No one has
yet developed, to our knowledge, a more general method.

Cressie [18] describes a weighted-least squares method for determining a nested
model of variograms that best-fits a sample variogram. Although Cressie’s method
is described in the literature, a brief description is included here. The method is
designed to give more weight to close pairs, and to distances associated with many
pairs. This philosophy is incorporated into the minimization function

C(γ(h;λ)) ≡
k
∑

j=1

Nh(j)

[

γ∗(h(j))

γ(h(j);λ)
− 1

]2

, (3.4.13)

where γ(h(j);λ) is the value of the model with parameters λ at the angle/distance
given by h(j), and γ∗(h(j)) is the sample value at the same lag; Nh is the number of
distinct pairs at lag h; and k is the number of lag classes.

The Geostatistics Group at the University of Arizona ported Geo-EAS to UNIX,
and incorporated a modified version of Cressie’s variogram-fitting method into the
UNIX version, allowing one to take advantage of the greater power of the workstation.
The UNIX version is public domain, and requests for software and assistance have
come from many places, including universities and government agencies throughout
the United States and Europe.

A brief description of the relevant features of the UNIX software is appropriate, as
it contributed heavily to this dissertation. The software is (for the moment, anyway)
restricted to two spatial dimensions.
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It is not possible to do general anisotropic modelling with the software, as released.
It would be necessary to add several modules to the package in order to get to that
point. On the other hand, Geo-EAS permits one to inspect sample variograms along
different directions, so that in principle, one could model directions separately and
attempt (on one’s own) to deduce geometric anisotropy information (essentially an
ellipsoidal shape in the variogram of the phenomenon).

Consider, therefore, only the isotropic case:

• A pair of optimization methods is used to model the sample variogram, but
they require some start-up information. Basic characteristics of variograms (as
mentioned above) were used to estimate bounds for the nugget, range, and sill.

• A Monte-Carlo method is used first, testing several of the most popular models
(spherical, exponential, and gaussian) to find a linear combination of these
models (with variable parameter values, within the limits set out in the first
step) which minimizes the Cressie function (3.4.13).

• Steepest descents follows, altering the parameters so as to achieve a minimum
of (3.4.13).

• An additional “refine” procedure is included, which starts with a model (which
the user may supply) and uses only the steepest descent algorithm to get to a
better model. This is handy for those who want to dictate a model, because of
some a priori information for example.

In the case of models used for the Nitrate study, additional software, which has not
been released for the general public, was used in a final attempt to improve the model
for the variogram: a sort of crude genetic algorithm, in which additional models were
added to compare against those already in the mix, existing models were removed (as
their sills approach zero relative the the other sills), and models coalesced as their
parameters tended to the same values.

Results for several variograms are presented in Figure (3.3), for variables from the
Nitrate study data set discussed in a later chapter. These variogram models were
derived using only the automated variogram fitting of the UNIX Geo-EAS software.

Example: Variogram of a Weiner Process

We mentioned that some models have been shown to correspond to certain phe-
nomena. For an explicit example, consider the model corresponding to Brownian
motion (see [25], page 98) in a single dimension.

For a Weiner process, z(x + h) − z(x) ∼ N(0, σ), where σ2 = ǫ2(h) represents
the variance for the h differences. The expected value of the square of this random
variable is elementary: it is the variance, since the mean is zero. Thus

γ(h) =
1

2
E[(z(x + h) − z(x))2] =

1

2
ǫ2(h).
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Figure 3.3. Model variograms (of variables from the Nitrate Study), calculated and
modelled using the Geo-EAS automated technique.
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The beauty of this result is that the sample variogram of a Weiner process is an
estimator of the variance structure of the motion: i.e., 2γ∗(h) estimates ǫ2(h).

For Brownian motion, z(x+ h)− z(x) ∼ N(0, σ2|h|), where σ2 = ǫ2(h) represents
the variance for the h differences. Thus

γ(h) =
1

2
E[(z(x+ h) − z(x))2] =

1

2
σ2|h|,

gives a linear variogram. Therefore, if one finds in the course of a variogram analysis
that the variogram appears linear, one should ask whether Brownian motion is an
appropriate model for the phenomenon under study.

3.4.2 Cross-Variograms

Cross-variogram modelling is really only necessary for cokriging, or multivariate
simulations, or other purposes for which a model is an essential component. Oth-
erwise, inspecting the cross-variograms for interesting identifiable features may be
enough. One should keep in mind what is being modelled: as was shown above, the
cross-variogram is a spatial decomposition of the covariance of two variables.

Myers [66] described a method whereby these functions could be modelled as linear
combinations of models of variograms: i.e.,

γij(h) =
1

2
[γ+(h) − γii(h) − γjj(h)], (3.4.14)

which, as he later showed, could also be represented as

γij(h) =
1

2
[γii(h) + γjj(h) − γ−(h)],

or, putting those two together,

γij(h) =
1

4
[γ+(h) − γ−(h)].

γij is the cross-variogram of variables i and j, γ+ is the variogram of the sum of
variables i and j, and γ− is the variogram of the difference of variables i and j. This
method is an important first step, at least: it permitted data analysts to get the ball
rolling, as methods for modelling variograms were already in use and could be called
into service for estimating cross-variograms. Some [33], however, have criticized the
method, as it operates in a pairwise fashion, and does not ensure that the Cauchy-
Schwartz condition,

|γij(h)| ≤
√

γii(h)γjj(h), (3.4.15)

is satisfied. As Myers noted, one must verify that separately. Furthermore, however,
Goovaerts [34] gives an example in the three-variable case where the variables satisfy
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Figure 3.4. Automated cross-variogram modelling in action. This cross-variogram
was obtained by software automatically modelling the variograms of the two variables,
their sum and difference, and choosing the best of the three possibilities according to
Myers’s scheme.

the Cauchy-Schwarz condition pair-wise, but the 3 × 3 variogram matrix function
fails to be nonnegative definite. Thus, checking the Cauchy-Schwartz conditions for
variables pair-wise does not suffice to guarantee that the variogram matrix function
model is nonnegative definite at an arbitrary lag.

One of the advantages of Myers’s method is that it gives three different ways to
model the cross-variogram, so all three can be used and compared, to see which seems
best, how much they vary, etc.

3.5 TSVD and TSVD-like Methods in Variogram Analysis

One approach to the problem of variogram matrix modelling is the method of
“Coregionalization” (see [94] and [90]), in which one assumes a matrix model of the
form

V (h) =
s
∑

k=1

γk(h)V
k. (3.5.16)

The variogram matrix function V (h) is given as a sum of s products of valid variogram
models (the γk(h)) and nonnegative definite matrices V k (the superscript is an index,
not an exponent).

The use of this model requires the hypothesis of intrinsic stationarity, and assumes
that each γk(h)V

k represents the correlation structure of an underlying spatial mul-
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tivariate process, with the ranges of the associated variograms indicating the range
of influence of each particular process [94].

As one can see, the cross-variograms are indirectly modelled as sums and differ-
ences of variogram models, as in Myers’s method, but the coefficients are determined
in another manner (and, in particular, a method which never actually models more
than variograms):

Vij(h) =

s
∑

k=1

γk(h)V
k
ij .

Therefore, by using the coregionalization model, one has only replaced the problem
of how to model cross-variograms with that of choosing the number of structures s,
the nonnegative definite matrices V k, and then modelling the variograms for each
structure.

Some authors have proposed computational methods ([10] and [92], with exam-
ples), but have done so by assuming that the number and type of structures (i.e.
variograms) have been identified, proceeding from there to the estimation of the cor-
responding V k. We now describe ways of picking out the matrices first, leading to
the modelling of the variogram matrix function and coregionalization.

Flury [26] in his book “Common Principal Components”, presents the following
problem: given a set of p × p correlation matrices, what is the best single matrix
approximation to them all? To turn this question into a problem of TSVD-type,
“What is the best rank-p symmetric (in two of the three dimensions) three-tensor
approximation to the three-tensor given by the stack of matrices?” Flury uses one
definition of “best”, while the TSVD uses another; and while the two are different
each is applicable to the same task, namely variogram analysis.

The first question to ask, then, is “best in what sense?”. Flury’s approach, which
translated into tensor form, uses the Frobenius norm of the three-tensor of off-diagonal
elements of BTBT − T ∗, where

T ∗ =

p
∑

i=1

bi ⊗ bi ⊗ 〈T, bi ⊗ bi〉,

and where B is an orthogonal matrix. The correlation matrices themselves are non-
negative definite (ND), which is also a relevant consideration.

This is equivalent to the problem of near-simultaneous diagonalization of matrices:
Flury seeks to find an orthogonal matrix B such that the stack of matrices given in
T , when multiplied on the left by B and on the right by BT , leads to a stack of
nearly-diagonal matrices: i.e.,

Dmnk ≡ 〈〈Bmi, Tijk〉, Bnj〉,

where the tensor D has most of its weight on its “diagonal” (components dmmk).
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Flury addresses the usefulness of this particular decomposition in his book, so
we will not do so here. However, that is not the only use for his near-simultaneous
diagonalization of matrices.

Xie [98] used Flury’s method for variogram matrix modelling: he took the sequence
of sample variogram matrices at 50 lags, which constitute a spatial decomposition of
the sample covariance matrix, and computed the single best full-rank matrix approxi-
mation to the sequence. That is, he found that matrix A which best approximates the
stack of matrices in the sequence (which he could have weighted, but did not weight,
by some distance scheme, to emphasize those matrices nearest to lag zero and those
having the most neighbors, and hence presumably greater validity). The matrix A
has SVD

A = BΛBT ,

so he defined a new sample variogram sequence

Di = BTViB,

which he found to be essentially diagonal in the sense described above.
In the following Xie’s solution to the variogram modelling problem is compared

to the solution of a particular TSVD problem, and we demonstrate that the two
solutions are very similar.

Consider the isotropic case: start with a three-tensor of sample variogram matrices
V (h) (which will also be called V ), where h ∈ {1, · · · , L} is the lag value, which serves
as an index in the third-dimension. Since each V (h) is ND,

V (h) =

p
∑

i=1

µi(h)qi(h) ⊗ qi(h).

Xie, et al., seek to diagonalize tensor V (or some weighted version of it) in the sense
described above, finding an orthogonal matrix B such that

φ(B) ≡ ‖BV BT − diag(BV BT )‖2 (3.5.17)

is minimal (in the sense of the Frobenius norm). The tensor products BV BT are
to be understood as B and BT acting on each layer of V . Note that if tensor V is
diagonalizable, then the quantity 3.5.17 will be zero. If one considers B = I, then
initially ‖V − diag(V)‖: the Frobenius norm of the off-diagonal elements of V .

Let B =
∑p

i=1 bi⊗bi, with bi mutually orthogonal (i.e., B is an orthogonal matrix),
and seek B which minimizes the off-diagonal entries of BV BT . Now

φ(B) = ‖BTBV BTB −BT diag(BVBT)B‖2,

since the Frobenius norm of a product of a matrix or tensor with an orthogonal matrix
is unchanged:

‖OM‖ = ‖M‖,whereOisorthogonal.
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Hence this problem can be rephrased as finding the “largest” diagonal tensor to
BV BT : minimize

φ(B) = ‖V − BT ΛB‖2 =
∑

h

‖V (h) − BT Λ(h)B‖2 =
∑

h

‖V (h) −
p
∑

i=1

λi(h)bib
T
i ‖2,

over all B, where Λ is the “diagonal” tensor diag(BV BT ).

φ =
∑

h

[

p
∑

i=1

µ2
i (h) − 2〈

p
∑

i=1

µi(h)qi
(h)q

i
(h)T ,

p
∑

j=1

λj(h)bjb
T
j 〉 +

p
∑

k=1

λi(h)
2

]

,

which means that

∑

h

[

p
∑

i=1

µ2
i (h) − 2

p
∑

i=1

p
∑

j=1

µi(h)λj(h)〈qi
(h), bj〉2 +

p
∑

k=1

λi(h)
2

]

.

To minimize this expression with respect to the values of λ(h) (unconstrained
optimization) differentiate with respect to λj(h), and set the results equal to zero (to
obtain a minimum):

−2

p
∑

i=1

µi(h)〈qi
(h), bj〉2 + 2λj(h) = 0.

This is solved, to give

λj(h) =

p
∑

i=1

µi(h)〈qi
(h), bj〉2 = 〈V (h), bj ⊗ bj〉

Substituting these values back into the function φ,

φ =
∑

h

[

p
∑

i=1

µ2
i (h) − 2

p
∑

j=1

〈V (h), bj ⊗ bj〉
p
∑

i=1

µi(h)〈qi
(h), bj〉2 +

p
∑

j=1

〈V (h), bj ⊗ bj〉2
]

= ‖V ‖2
∑

h

[

−2

p
∑

j=1

〈V (h), bj ⊗ bj〉2 +

p
∑

j=1

〈V (h), bj ⊗ bj〉2
]

= ‖V ‖2 −
∑

h

p
∑

j=1

〈V (h), bj ⊗ bj〉2

= ‖V ‖2 −
p
∑

j=1

‖〈V, bj ⊗ bj〉‖2.
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Thus φ is minimized by maximizing

p
∑

j=1

‖V (bj ⊗ bj)‖2.

This as precisely the condition of maximizing the inner-product of tensor V with
respect to a set of p mutually bi-orthogonal symmetric tensors of rank-one, and the
best ND matrix approximation to V will be given by those p outer-products

Si = bi ⊗ bi.

The rank-one tensors will be given by

Ti = 〈V, Si〉 ⊗ Si ≡ γ
i
⊗ Si,

where new variogram structures γ
i
have been defined. The norm of the approximation

is given by
p
∑

i=1

‖Ti‖ =

p
∑

i=1

‖Si ⊗ γ
i
‖ =

p
∑

i=1

√

√

√

√

L
∑

h=1

γ2
i (h);

that is, by the sum of squares of the values of the new variogram structures γi.
This procedure has therefore led to the following coregionalization: calling the

models of the diagonal elements γ1, γ2, · · · , γp, then (using a more standard notation)

V (h) =

p
∑

i=1

γi(h)bib
T
i ≡

p
∑

i=1

γi(h)Si,

where each Si is a nonnegative definite matrix (of rank-one). Recall that this is the
definition of a coregionalization model (equation (3.5.16)).

In very similar fashion, the TSVD can be used as a means to coregionalization
also. The difference is in the quantity maximized: rather than the quantity φ (3.5.17)
of Xie, TSVD uses the quantity

ψ = max‖〈V, b × b〉‖,

finding b1, then b2 orthogonal to b1, etc., until a basis is obtained (which gives an
orthogonal matrix B).

While the two approaches are similar, they do not achieve the same thing. Xie’s
procedure is better “balanced” than the TSVD: it will sacrifice some weight on the
first singular tensor in order to get a better second singular tensor. The TSVD method
results in as much weight as possible on the first, and then as much as possible on
the second, orthogonal to the first, etc.; the TSVD method does not require that the
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first p singular tensors be symmetric and bi-orthogonal in the two symmetric spaces
(bi-orthogonality could come about using the long dimension, instead).

Thus, if a multivariate process is rank-one (leading to a single variogram for all
variables), then the TSVD would be best: if, on the other hand, the phenomenon is
thought to require a set of differing variogram models (true coregionalization), then
one might prefer Xie’s method. However, as shown below (in a case taken from real
data), it made very little difference which of several methods we used, including some
spurious-seeming and unmotivated ones!

A Comparison of Results
Xie [98] applied his method to the variogram matrix of three variables (which, not

uncoincidentally, came from the Nitrate Study which is the subject of Chapter Six).
He found that the following matrix nearly simultaneously diagonalized the sample
variogram tensor:

B =





0.4013 −0.9145 −0.0502
0.6194 0.3114 −0.7207
0.6747 0.2581 0.6915



 (3.5.18)

The matrix B gave a diagonalization efficiency, defined as

efficiency =

∑

i

∑

h(b
T
i V(h)bi)

2

‖V‖2
,

of 0.99280.
Using the power method as implemented in the matlab code sympower.m (found

in the appendix), and requiring successive orthogonality of the singular tensors, the
TSVD gave the matrix

B =





0.4023 −0.9140 −0.0518
0.6192 0.3134 −0.7200
0.6743 0.2576 0.6921





which also had an efficiency of 0.99280. The tensor results are almost identical: that
is, the diagonalized tensors which result are essentially indistinguishable. The TSVD
method was also implemented in a fortran code, using double-precision arithmetic,
to compare it with Xie’s which was likewise in double-precision fortran: results were
the same.

However, several reasonable alternative tensor decomposition methods gave the
same results! For example, constructing a block circulant matrix using the 3×3 layers
of the sample variogram tensor, or taking the mean 3 × 3 layer, computing its SVD,
and deducing the TSVD, gave the result:

B =





0.3974 −0.9163 −0.0502
0.6194 0.3083 −0.7220
0.6770 0.2558 0.6900
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Figure 3.5. Five 3 × 3 × 50 tensors shown in columns: diagonalized tensor; rank
1,2, and 3 reconstructions; and the original tensor at right. Since the 3 × 3 matrices
are symmetric, only 6 components appear.

with an efficiency of 0.99278 (essentially identical). Using Geladi, et al.’s method
([30]), i.e. taking the SVD of 〈T, T 〉 (the inner-product resulting in a p× p matrix),
and using the symmetric tensors formed of those singular vectors,

B =





0.4028 −0.9139 −0.0505
0.6190 0.3126 −0.7205
0.6742 0.2589 0.6917





with an efficiency of 0.99280. However, as mentioned, these three additional methods
(circulants matrix, average layer, Geladi) have not been explored in this dissertation:
they were simply tried on an ad hoc basis for comparison; and as the comparison
shows, all five of these methods give essentially the same results!

Judging from that example, one might think that all methods are equivalent;
however, other problems showed that it definitely does matter which method one
uses. The reason that these methods gave such similar results is certainly indicative
of the structure of the variogram tensor. It could, for example, indicate that there is
drift appearing in the sample variogram (computed assuming constant mean), which
then leads to “spurious” correlation between the vectors of the variogram tensor in
the lags; it is also surely the case that sample variogram tensors already have most
of their weight piled onto the variogram (diagonal) terms, which disposes them to
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Method W1 W2 W3 W4 W1 + W2
TSVD: 1.8349 0.5518 0.1782 0.1782 2.3867
Xie’s: 1.7670 0.7111 0.1325 0.1325 2.4780
SVD: 1.6922 0.3923 0.3923 0.2664 1.9586

Average Layer: 0.8660 0.5775 0.5277 0.5277 1.4435

Table 3.1. Example results: weights on rank-one tensors, and best pair.

near-diagonalization, and into three symmetric components this way; furthermore,
the variogram matrix function layers are nonnegative definite, which is not true in
the general symmetric case.

So the test was applied to a strange example. On the other hand, geostatisti-
cians seeking coregionalizations will always have sample variogram tensors with these
properties, so that it may be that they will have their choice of methods for diago-
nalizations.

In order to demonstrate that things are not always so simple as in the example
above, consider a case for which the methods give very different results. An arbitrary
symmetric tensor was formed as the sum of two rank-one tensors, i.e.

T =
2
∑

i=1

λipi
⊗ p

i
⊗ ri,

where the pairs were

P = R = lambda =

0.2900 0.7986 0.1351 0.0600 1.4142 1.0000

0.5160 -0.2521 -0.5944 0.2730

-0.8060 -0.5465 0.4155 -0.1834

0.0482 0.3548

-0.1578 -0.7781

-0.4128 0.3256

0.0618 0.1313

0.5044 -0.1833

As shown in Table (3.5), the most weight appeared on the singular tensor found
by the power method; but the most weight for a rank-two approximation of the form
Xie sought is given by his method: 2.4780 versus 2.3867 for the power method.

This is typical: the power method finds the best single tensor with which to re-
compose, while Xie’s method finds the best set of p such tensors. As a tensor decom-
position, Xie’s method suffers the disadvantages of being valid only for symmetric
matrices (Flury’s method, as originally given, was only valid for Positive Definite
matrices). The TSVD works on stacks of general matrices.
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Given that the TSVD works on tensors more general than those of the problem of
coregionalization, applications beyond the variogram modelling problems of geostatis-
tics are being sought. Another occasion for an application, treated in Chapter Six,
involves looking at samples from the same wells over time. In such a case, one has a
three-tensor T (samples,wells,time), which one could decompose to look for rank-one
objects representing the best single sample profile over all wells over all time. The
diagonalization is carried out in Chapter Six, and the improvement in information
representation by rank discussed.

Finally, consider the anisotropic variogram matrix modelling problem, and how
one might generalize this method of obtaining a linear coregionalization to cover it.
One could approach the problem by using the following process:

• stack together all sample variogram matrices, by direction of interest;

• solve for the TSVD coregionalization corresponding to each direction;

• use univariate anisotropic modelling methods on the many univariate vari-
ograms on the diagonals;

• identify common structures, determine the ellipsoid in space which best de-
scribes the geometric anisotropy; and

• rescale space, reverting to the isotropic case.

3.6 Choosing Variables for Combined Analysis

We know that one of the applications of variogram analysis is as a precursor to
kriging or cokriging, i.e. estimation or interpolation. How do we know if two variables
will be better modelled together than separately? How do we know if multivariate
analysis will be an improvement over univariate analyses? In particular, when do we
cokrige two variables, say, rather than krige them separately?

To this last question we hypothesize an answer: for maximum benefit the correla-
tion of the two variables should be strong locally, and fall off. That is, the correlation
is “packed up” locally, and not spread all around. We also propose that, in order to
determine this, one consider what might be called a “corhogram”, defined as

ρij(h) ≡
γij(h)

√

γii(h)γjj(h)
.

As one can see, ρij(h) ≤ 1 for valid models (a restatement of the Cauchy-Schwartz
condition). Matheron [57] calls this the “codispersion coefficient”, and Goovaerts
[33, 35] and Wackernagel [93] have recently begun to study it as an aid in multivariate
analysis. Wackernagel [91] showed that for second-order stationary phenomena, ρij(h)
tends to the correlation coefficient as h tends to infinity.
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This spatial statistic shows how close to the “Cauchy-Schwartz Envelope” two
variables come: that is, how close they are to complete dependence. If two variables
push the envelope (if ρij(h) ≈ 1), then they are almost completely correlated, and are
hence surrogates (and certainly well-adapted to simultaneous interpolation in the case
where one of the two variables is undersampled (due to expense or other constraints,
for example the measurement of rainfall by ground gauges and by radar [7])). On the
down side, using both could lead to a degeneracy in the kriging equations (as we will
see); for example, by using the same variable twice: in that case, ρ(h) ≡ 1, but then
the kriging equations will be degenerate.

Figure (3.6) shows the corhogram models for the pairs of variables deemed most
successful in cokriging in the Nitrate study (to be discussed in Chapter Six). The
examples demonstrate the “pile up” of correlation that occurs at short lags. All
sample corhograms are plotted in the appendix, and as one can see by inspection, the
corhograms for these best cokriging variables are at least as “piled up” as the others.

We also show, in Figure (3.7), all corhograms obtained from a study by Wack-
ernagel [90], who used a very simple coregionalization model, consisting of only a
nugget model and a spherical model. Notice the wide variation that occurs between
the corhograms of the nine variables, and also note that only a few appear to be
“piled up”.

Corhograms failing to satisfy the rule above may give an improvement, although
the best cokriging improvements in terms of cross-validation statistics in the Nitrate
study (see Chapter Six) were achieved with corhograms having this property. For
example, Carr et al. [13] demonstrated that they achieved improvement in estimation
with cokriging, showing that estimates on one of two variables were better (in a mean-
square sense, say) than those obtained by kriging. This was true in spite of the use
of an invalid cross-variogram model, leading to the invalid corhogram of Figure (3.7).
Marcotte [55] pointed out that the cross-variogram model was invalid. However, the
second variable was more poorly reconstructed (again, using a mean-square criterion),
which was not noted (mean-square difference of 11.74 for cokriging, versus 11.43 for
kriging).

We will show in the chapter on interpolation methods that, if the corhogram of
two variables is constant, no matter how large its value, there may be absolutely no
gain in using both in the cokriging system; and we speculate, based on the results of
the Nitrate study, that if the corhogram is not “piled up” near zero, cokriging will
offer little or no gain over kriging.
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only nugget and spherical models (from a study by Wackernagel). Right: invalid
corhogram for which cokriging seemed to lead to a substantial improvement over
kriging (from a study by Carr et al.).
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Chapter 4

Interpolation/Estimation Methods

4.1 Historical/Kernel Methods - Simple, Fast, Stable

Historically, kernel methods were employed whenever estimation or interpolation
of a data set was needed. This was necessitated by the lack of computing power
at the time. The most popular method then (still used today!) was some form of
inverse-distance weighting: the estimate of z at the point x0, z

∗
0 , is given by

z∗0 =
1

T

N
∑

i=1

1

(xi − x0)p
zi

where p ≥ 0 determines the rate at which the weights falls off with distance, and

T ≡
N
∑

i=1

1

(xi − x0)p
(4.1.1)

is introduced to make the scheme unbiased (in the sense that the mean of the estimates
is the same as the mean of the data, provided all data are used for every estimate).
The extrapolatory nature of the kernel is clear: far from the data locations, the
weights converge to a common value, which means that the estimate will be given by
the arithmetic average of the data.

The value of N was not specified above: it could be the number of data loca-
tions, but historically N was some small number (perhaps four) which allowed for
calculations to be carried out in an age without much computing power. Using only
part of the data set will obviously affect the unbiasedness described above, as some
points may be used more in the interpolation than others, which would lead to their
influence being greater overall. One way to nullify this effect is to focus on the neigh-
borhood size, rather than the nearest N neighbors: that is, to take all locations within
a certain neighborhood, rather than a certain number of closest neighbors.

There are still those who use simple and unmotivated methods such as that de-
scribed above. Kane et al. [49] explored models of this form for geochemical problems,
developing an algorithm and program for optimizing the choice of p and neighborhood
size (which affects the value of N) for a multivariate data set centering on uranium.
They found that the values of p obtained varied widely from variable to variable, and
even from place to place for the same variable.

The continued use of kernel methods is not hard to understand: these methods
are easy, fast, and well-conditioned. Unfortunately, these three selling points do not
necessarily add up to good maps!
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What is a good map? A good map should reflect, as accurately as possible, the
actual values of the quantity being mapped. That is, if one measures the quantity at
unsampled locations, the correspondence between the measured values and the values
represented on the map should be the best obtainable from the information that one
had to make a map. Certainly differing measures of “correspondence” will lead to a
variety of schemes, but a common measure is the square-root of the mean of squared
differences:

Error =

√

√

√

√

1

n

n
∑

i=1

(z∗i − zi)2,

where n is the number of locations at which one has tested what one might call the
“map hypothesis”.

With the advent of the computer, and, in particular, computer access, more so-
phisticated methods became available. Better and faster algorithms for the solution
of linear systems meant that methods based on some principal of optimality became
tractable. As is usual in any area of human endeavor, however, application has lagged
far behind theory (as demonstrated by those who continue to use methods such as
inverse-distance weighting).

One of the serious problems with kernel methods is that they do not take the
sampling pattern into account, which means that they can be “snowed” by data
which are surrogates for one another. For example, if the four neighbors used in a
hypothetical case happen to come from a common tiny area, and estimation is taking
place far from that site, then those four values may effectively represent only a small
region; in such a case it might be wise to average those four and use three additional
(better dispersed) sites for an estimate at the location of interest.

Data redundancy and other shortcomings are remedied by the kriging method,
and the multivariate version called cokriging. Other methods also take these factors
into account, but we will concentrate on these two.

Warrick et al. [95] made a comparison of kriging with other schemes, in particular
inverse distance weighting with p = 2, on five separate data sets. They found that
kriging was in all cases as good or better than the other methods. We obtain similar
results in Chapter Six, where we include cokriging as well.

4.2 Kriging and Cokriging - Complex, Slow, Risky

4.2.1 Kriging

We begin by examining the interpolation procedure known as kriging, as it is a
little simpler than cokriging, and serves as a good introduction. Given the title of
this section, it is a wonder that anyone kriges at all! However, the fact that kriging
is optimal in a sense to be described, and also has many good properties, justifies its
use.
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The usual scenario leading up to kriging is this: one is interested in a quantity,
distributed in space, for which a non-random sample (the data) exists. Estimates of
the values of the quantity at sites where there are no data are desired.

Kriging is based on a probabilistic assumption: that the data are a non-random
sample of one realization of a random function, satisfying a stationarity condition.
What this means, in the very strongest case, is that the random variables which occur
at each point in space (giving rise to data sets, which are the non-random samples of
a realization) are distributed according to the same (fixed) distribution everywhere
in space.

The justification for the application of the probabilistic theory of regionalized
variables - of attempting to estimate values of a single realization of a random variable
- has been attacked upon occasion (see [81], and especially Philip and Watson [73]).
These attacks have been met by responses from (Myers in [68], Journel in [44] and
[46]), and by Matheron himself [63]. Matheron’s “defense” [61] was actually written
long before the cited attacks (1978), but Hasofer translated it into English because
of “the appearance ... of a virulent attack on probabilistic models in Geostatistics ...
by Philip and Watson.”

Our interest in this dissertation is not particularly in arguing about the founda-
tions of geostatistics, however: we do not seek to either prop up or tear down the
structure, per se, but only to elaborate some methods for improving techniques which
geostatisticians will use anyway.

First the ordinary kriging equations are derived, using the weakest stationarity
assumption, i.e. intrinsic, which allows for the estimation of the theoretical variogram
from the sample variogram. The kriging equations are obtained in the course of finding
the best unbiased linear interpolator of a variable which minimizes its estimation
variance: that is,

z∗(x) =

N
∑

i=1

bi(x; {xj})zi, (4.2.2)

such that
Var(z∗(x) − z(x))isaminimumand

N
∑

i=1

bi(x; {xj}) = 1(unbiasedness).

One proceeds via constrained optimization: taking advantage of the constraint,
note first of all that

E[z −
N
∑

i=1

bizi]
2 = E

[

N
∑

i=1

bi(z − zi)

]2

,
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where the reliance of the b on x and xj has been suppressed. Minimize the function

E

[

N
∑

i=1

bi(z − zi)

]2

− 2µ(1 −
N
∑

i=1

bi), (4.2.3)

where z(x) is the true value of the realization at the location x. Expanding the sum

E

[

N
∑

i=1

bi(z − zi)

]2

=
N
∑

i=1

N
∑

j=1

bibjE[(z − zi)(z − zj)],

note that
E[(z − zi)(z − zj)] = γ(xi − x) + γ(xj − x) − γ(xi − xj).

This follows from the expansion

γ(xi − xj) =

1

2
E[z(xi) − z(xj)]

2 =
1

2
E[z(xi) − z(x) + z(x) − z(xj)]

2 =

1

2
E[z(xi) − z(x)]2 + E[(z(xi) − z(x))(z(x) − z(xj))] +

1

2
E[z(xj) − z(x)]2 =

γ(xi − x) − E[(z(xi) − z(x))(z(xj) − z(x))] + γ(xj − x),

which is solved for E[(z(xi) − z(x))(z(xj) − z(x))].
Thus

E

[

N
∑

i=1

bi(z − zi)

]2

=

N
∑

i=1

N
∑

j=1

bibj [γ(xi − x) + γ(xj − x) − γ(xi − xj)],

which reduces to

E

[

N
∑

i=1

bi(z − zi)

]2

= 2

N
∑

i=1

biγ(xi − x) −
N
∑

i=1

N
∑

j=1

bibjγ(xi − xj).

So the function to minimize is

2
N
∑

i=1

biγ(xi − x) −
N
∑

i=1

N
∑

j=1

bibjγ(xi − xj) + 2µ(1 −
N
∑

i=1

bi).

Differentiating with respect to the bi and µ leads to the following linear system:

N
∑

i=1

γ(xk − xi)bi + µ = γ(xk − x) and

N
∑

i=1

bi = 1 (4.2.4)
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This system can be written in the matrix form
[

Γ 1
1T 0

] [

b
µ

]

=

[

γx

1

]

, (4.2.5)

where Γ is the matrix of variograms (Γij = γ(xi − xj)), 1 is a column vector of 1’s,
and γx is a vector of variogram values relating the position at which one wishes the
estimate (x) to the data locations (xi): γ

x
i = γ(xi − x). Myers [66] has shown that

this system can be extended in a very simple manner to the matrix (cokriging) case
by replacing variograms where they appear in the kriging equations by variogram
matrices, and the 1’s by identity matrices of the proper size.

There are many forms of kriging (and cokriging):

• simple - assumes known mean;

• ordinary - estimates mean (the name comes from the fact that this is the most
commonly used form [42]);

• universal - estimates drift, or mean surface, as a linear combination of a set of
given linearly independent functions (ordinary is the special case of using only
one function, a constant) [21];

• local - uses a moving neighborhood from which to choose locations;

• global - uses all data locations (the advantages of which are explored in [20]);

• disjunctive - a non-linear transformation of the data is carried out via Hermite
polynomials to “normalize it”, followed by a modified system of equations [60,
5, 77];

• indicator - a transformation of the data values to the set {0, 1}, which is useful
(for example) when one is only interested in whether a quantity exceeds a certain
threshold [43, 83];

• factorial - cokriging applied to chosen linear combinations of the original vari-
ables, usually obtained from principal components analysis [79, 28];

• point - values are assumed to come from point sources, and point values else-
where are estimated;

• block - estimation of spatial averages, rather than point values;

and the list goes on. Some of these types of kriging are generally combined, e.g.
local and ordinary; others represent transformations of the data which are carried
out before the kriging process begins, according to the standard kriging equations
(e.g. factorial, indicator).
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While Matheron is credited with developing kriging, under the theory of region-
alized variables, it is interesting to note that kriging arose at about the same time in
meteorology: according to Cressie [17], Gandin in the Soviet Union developed some
of the same concepts as those found in geostatistics under the name of “Objective
Analysis”. In place of the variogram, they use the “homogeneous structure function”;
in place of simple kriging, “optimum interpolation”; ordinary kriging is “optimum in-
terpolation with normalization of weighting factors”; and simple cokriging is called
“optimum matching fields”.

Myers [67] proved that strict conditional negative definiteness of the variogram
model implies invertibility of the coefficient matrix of the kriging system. The proof
is worth including. A conditionally negative definite function G is one satisfying

∑∑

λiλjG(xi − xj) ≤ 0, ∀{λi} ∋
∑

λi = 0;

a strictly conditionally negative definite function G satisfies

∑∑

λiλjG(xi − xj) < 0

under the same conditions, with equality only if λ ≡ 0.

The system (4.2.5) is non-invertible if and only if ∃ non-zero vector

[

U
V

]

∋

[

Γ 1
1T 0

] [

U
V

]

=

[

0
0

]

.

This is true if and only if

ΓU + 1V = 0and1TU = 0.

These two equations imply that

UT 1 = 0andUTΓU + UT1V = UTΓU + 0V = UTΓU = 0

But 1TU = 0 means that the weights U satisfy the constraint of conditional negative
definiteness, and strict conditional negative definiteness means that

UT ΓU = 0 =⇒ U = 0;

and consequently that
1V = 0,=⇒ V = 0.

Thus, only the zero vector is in the null-space, which means that the system is in-
vertible. Note, however, that invertibility does not imply that the system is well-
conditioned! In fact, it is known that for certain standard models, e.g. the gaussian
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Figure 4.1. Histograms of Abe’s pixel values (original data) and the transformed
data of the dual kriging equations.

without a nugget, the coefficient matrix of the kriging system may be very poorly
conditioned indeed [74, 71].

The estimate at position x is then given by:

z∗(x) =
[

zT 0
]

[

b
µ

]

=
[

zT 0
]

[

Γ 1
1T 0

]−1 [
γx

1

]

. (4.2.6)

In practice it may be best to compute what we call the “transformed data”, by first
multiplying

[

zT 0
]

[

Γ 1
1T 0

]−1

≡
[

ẑ m
]

:

by doing so, the interpolating function is expressed in the following simple form:

z∗(x) = 〈ẑ, γx〉 + 〈m, 1〉 =

N
∑

i=1

ẑ(xi)γ(x− xi) +m. (4.2.7)

The variogram thus serves as a kernel function for z using the transformed data ẑ,
and that the mean of the realization is also estimated. This form of the estimator is
called the dual form. Estimation is cheap using the dual form: estimation at x occurs
at the cost of an inner-product of two N -vectors, one of which must be calculated
from the variogram model; plus the addition of the computed mean. Figures (4.2) and
(4.1) show the form the transformed data takes for a well-known figure in American
history.

Notice that the variogram is actually weighting locations which are far from the
point at which the estimate is desired more than nearby locations. This is exactly the
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Figure 4.2. A sample of Abe Lincoln’s face was used to estimate the missing
portion. The dual form required the computation of the transformed data, which is
obviously not as smooth as Abe! The variogram acts as an interpolating kernel on
this transformed data, while the data weights are used with the actual values of Abe’s
face to get the estimate (here taken in the upper left corner, in his hair).



91

opposite of the data weights, which are larger for nearby locations. Furthermore, the
variogram of the transformed data has a very interesting property(Figure (4.3)): it
is highest at the origin! This very peculiar behavior indicates that close neighbors in
the transformed data are actually correlated less than neighbors farther apart: there
is an “opposites attract” interaction.

The dual form of the kriging equations also may be put to good use in other ways
[29, 78, 75]. For example, it shows that the interpolating function is as differentiable
as the variogram model. This is an important consideration if one has some insight
into the differentiability of the underlying random function. Thus, while there may be
little apparent difference in using a spherical model rather than an exponential model
(both monotonically increasing without inflection points, tailing off quickly to their
sills), one model has zero fourth derivative, and the other has non-zero derivatives of
all orders. This provides more insight into the importance of the variogram modelling
step.

The estimator of a realization thus also gives us estimates of the derivatives. For
general models such as the gaussian, exponential, etc., one obtains derivatives of all
orders, which may be necessary for groundwater modelling, say, and thus may need
to be estimated anyway.

One can also show that the kriging situation reduces to easily understood forms
in certain cases. An example follows.

Example 1: One-dimensional linear model
The linear model has the form

γ(x− y) = c|x− y|.
The dual form of kriging indicates that, after solving the global kriging system, the
interpolating function will be

z∗(x) = c
∑

ẑi|x− xi| +m(x).

But this interpolator is linear in x, and must pass through the data points, which
means that one need only play “connect the dots”, indicating that solving the kriging
equations is unnecessary.

One also sees that the interpolator will not be differentiable (in general) at the
data locations: its derivative is

(z∗)′(x) = c
∑

ẑiH(x− xi).

Thus, the transformed data value ẑi represents the magnitude of the jump disconti-
nuity for the linear model at xi.

Example 2: One-dimensional model with nugget
What is the effect of a nugget? The dual form of the kriging equations for an

arbitrary variogram model γ with a nugget n is

z∗(x) =
∑

ẑi(n(x− xi) + γ(x− xi)) +m, (4.2.8)
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Figure 4.3. Top-left: Abe’s isotropic sample variogram; top-right: transformed data
sample variogram. Notice that the transformed data variogram is better correlated
at mid-range, which makes it rather strange as variograms go. Abe’s is much more
typical. The corhogram (of Abe and Abe transformed) (bottom-left) is also striking,
quite piled up, and more open to interpretation than the ill-mannered cross-variogram
(bottom-right).
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where

n(h) =

{

n, h 6= 0,

0 h = 0.

Rewriting (4.2.8) (relying on the fact that
∑

ẑi = 0),

z∗(x) =

{

c
∑

ẑiγ(x− xi) +m x 6= xi ∀i
c
∑

ẑiγ(x− xi) +m− nẑi x = xi.

One remarks that, although kriging is an exact interpolator, there will be a disconti-
nuity at data points whenever a nugget is used (which is frequently the case in models
found in the literature). Thus, the “kriging surface” (i.e., the surface of the function
one obtains by estimating at all points) need not be continuous, and pass through the
data; kriging in this case basically smooths, but may leap up discontinuously from
the smooth surface at data locations to reach a data value [75].

The jump discontinuities at the data locations are given by the value of the trans-
formed datum times the (negative of the) nugget. This provides an intuitive under-
standing to the values of the transformed data: the absolute value of transformed data
represents the deviation of that location from the “estimation surface” (i.e. the lim-
iting value kriging would attribute to a data location arbitrarily close to xi). Thus,
where transformed data are higher, there is less of what one tends to think of as
smooth interpolation taking place (see Figures (4.2)) and (4.1): the nugget in Abe’s
case was about 1.41, so, since the transformed values were between -.5 and .5, expect
jumps of at most .7 in the map of Abe; this is rather small given Abe’s pixel values).

By virtue of the condition used to derive the kriging equations, the minimized
estimation variance at x is obtained, which is called the kriging variance. It is
given by

krigingvariance(x) =
[

(γx)T 1
]

[

Γ 1
1T 0

]−1 [
γx

1

]

(4.2.9)

=
[

(γx)T 1
]

[

b
µ

]

=
N
∑

i=1

biγ(x− xi) + µ.

The number of operations required to calculate the kriging variance is much larger
than the number required for the estimates, unfortunately: one must actually obtain
the weights (rather than using the transformed data) for each value of x, which means
storing the matrix inverse (which is (N + p) × (N + p)), and multiplying the inverse
and the weight vector for each estimate.

The name “variance” is a misnomer of sorts: it obviously depends on the model
chosen for the kriging, which makes it liable to errors in modelling. It is the true
estimation variance only if the model chosen actually corresponds to the random
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function which gave rise to the realization. One notes also (from equation (4.2.9))
that the kriging variance is completely independent of the data values.

On the other hand, the kriging variance can give us some insight into the sampling
pattern: it is low where there is much data, typically, and high where there is not
much data, so it shows us problem spots in the sampling pattern. The variances will
also be used in the calculation of theoretical characteristics of the cross-validation
results, which are discussed later.

Issues and Problems:

• Note that, for second-order stationary phenomena, one can write c(xi − xj) =
c(0) − γ(xi − xj), and so one can rewrite the equations (4.2.4) in terms of the
covariances.

• The dual form is equivalent to radial basis function interpolation, with the
variogram serving as the natural kernel function on transformed data. Radial
basis function users usually make their choice for a kernel arbitrarily (based on
“visual pleasure” in the fit, or the like), rather than on a spatial statistic like
the variogram. Myers [70] has shown the equivalence, and that cokriging is a
natural generalization of radial basis functions in multivariate problems.

• The variance one obtain in the course of kriging is a function of the model
choice, and it is independent of the sample values. It should be interpreted
with these factors in mind.

• Global kriging may lead to large linear systems; the matrix condition number
may become large, even infinite, leading to solver problems; but the interpolator
which results is easy to use from a computational standpoint.

• Local kriging requires that one sort data into the local neighborhoods, form
a linear system (and solve it) for each estimate desired. It also may lead to
discontinuities in the computed drift surface.

• Kriging is not restricted to interpolation: for example, Yfantis et al. [100] used
it in the problem of data compression (comparing it with the JPEG procedure,
another lossy algorithm). They found that their kriging compression algorithm
gave more “graceful degradation” than the JPEG scheme; however, since kriging
involves some variogram analysis prior to compression, the kriging method was
slower.

Certainly there exist other, better references for this development. The point
of this introduction is not to show the derivation of the kriging equations, per se,
however, but rather to give the reader some of the flavor of the technique before we
delve into it more deeply.

We now consider the cokriging equations, but do so in the context of a new
formulation which constitutes one of our contributions to this subject.
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4.2.2 A Better Algorithm for Cokriging

Myers [66] gave form to the cokriging equations, but, as will be shown, a form
which suffers from the unfortunate property that it entails the solution of a system
of equations much larger than necessary. We transform Myers’s system into a set of
smaller systems, whose solution provides simultaneously both the kriging and cokrig-
ing results.

The ultimate cokriging method would solve a p-way cokriging system by giving the
results of all p−1, p−2, · · · , 1-way (kriging) systems as well, in which case one would
simply cokrige all variables, and, based on cross-validation results of each subset of
cokrigings, choose that combination which did the best. While still short of that
goal, the new formulation leads to one set of p− 1, p− 2, · · · , 2−way, and all kriging
solutions in the process of cokriging a set of p variables.

The Two Variable Case
The universal cokriging estimator for the intrinsic vector-valued random function

z is given by the equations

z∗(x0) =
N
∑

i=1

ΓT
i z(xi),

where the weight matrices Γi satisfy the conditions that

N
∑

i=1

Fl(xi)Γi = Fl(x0), l ∈ {1, . . . .p}; (4.2.10)

where the p matrices Fl are given by

Fl(x) = fl(x) ∗ I,
and the fl(x) are independent functions forming a basis for the drift surface [66]. The
weight matrices are determined by the N+p sets of equations given by the constraints
(4.2.10), and the sets of linear equations

N
∑

i=1

V (xi − xj)Γjz(xi) +

p
∑

l=1

Fl(xi)µl = V (xi − x), i ∈ {1, · · · , N}.

V is the variogram matrix function, and the µl are matrices of Lagrange multipliers.
Note that this is precisely the form of the universal kriging equations, where scalar
quantities have been replaced by matrices.

Consider first at the two-variable case (that is, cokriging two variables), in order
to determine what change is involved. Myers’s formulation, i.e. the system of size
2(N + p) × 2(N + p), is given by

[

V F
F T 0

] [

Γ
µ

]

=

[

V0

F0

]

, (4.2.11)
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where the elements of V are the block variogram matrices (which, at the risk of
confusion, will also be called V ) made up of the variograms and cross-variogram of
the two variables for each pair of data locations, and F is the matrix function of
p linearly independent Fl matrix functions (whose coefficients are to be determined
by cokriging). On the right-hand side is the “column matrix” of variogram matrices
referred to x0, the location at which the estimate is desired; and similarly for Fx.
This is represented (in all its glory) by
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6
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V (x1 − x1) V (x1 − x2) · · · V (x1 − xN ) F1(x1) · · · Fp(x1)
V (x2 − x1) V (x2 − x2) · · · V (x2 − xN ) F1(x2) · · · Fp(x2)

.

.

.

.

.

.
. .

.
.
.
.

.

.

.
. .

.
.
.
.

V (xN − x1) V (xN − x2) · · · V (xN − xN ) F1(xN ) · · · Fp(xN )
F1(x1) F1(x2) · · · F1(xN ) 0 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
Fp(x1) Fp(x2) · · · Fp(xN ) 0 · · · 0

3

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

4

Γ1
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.
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=
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V (x1 − x0)
V (x2 − x0)

.

.
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V (xN − x0)

F1(x0)

.

.

.
Fp(x0)

3
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7
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,

where the subscripts refer to the data points determining the distance used by the
matrix variogram function.

The trick is simply to permute rows and columns of this large matrix so that the
variograms (diagonal elements of the block matrices of V ) and cross-variogram (off-
diagonal elements) get separated. For two variable cokriging, define the permutation
matrix

P ≡



































1 0 0 0 0 0 · · · 0 0
0 0 1 0 0 0 · · · 0 0
0 0 0 0 1 0 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 1 0
0 1 0 0 0 0 · · · 0 0
0 0 0 1 0 0 · · · 0 0
0 0 0 0 0 1 · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 0 0 0 0 0 · · · 0 1



































,

or
P ≡

[

e1 eN+p+1 e2 eN+p+2 · · · eN+p e2(N+p)

]

,

where ei is the Euclidean unit vector with 1 in the ith place, and zeros elsewhere. The
generalization is obvious for other numbers of variables, and the result is the same, in
the sense that the variables get separated similarly. The choice of this permutation
is motivated by considering a cokriging matrix which has all cross-variogram terms
zero: it is obvious that it can be split into two separate kriging matrices, and P is
the permutation matrix which accomplishes that.

Define

X ≡ P

[

V F
F T 0

]

P T ≡
[

K1 C
C K2

]

,
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where K1 and K2 represent the coefficient matrices of the kriging systems for the two
variables, and C represents the cross-variogram information given in off-diagonal of
the variogram matrix model. The inverse of the matrix X is given simply in terms of
the matrix inverses of K1 and K2 (which are needed to get the kriging results) and
the matrix inverses of two other N ×N matrices:

M1 ≡ I −K−1
1 CK−1

2 C (4.2.12)

and
M2 ≡ I −K−1

2 CK−1
1 C. (4.2.13)

The form of these matrices and their consequences of their invertibility suggest a link
to the Cauchy-Schwartz condition, which, for a pair of variables, is

σ2
12 ≤ σ2

1σ
2
2,

where σ12 is the covariance of the two, and on the right-hand side are the variances
σ2

1 and σ2
2. Rewrite that as

m1 ≡ 1 − (σ2
1)

−1(σ12)(σ
2
2)

−1(σ12)

with the condition that
m1 ≥ 0.

Comparing m1 and (4.2.12) shows that the kriging matrices are playing the roles
of the variances (appropriately enough, as the variogram is the decomposition of
the variance) and the cross-variogram matrix is playing the role of the covariance.
The Cauchy-Schwartz condition, reflected in the inequality above, guarantees strict
positive definiteness in a 2 × 2 matrix, which guarantees unique solvability of the
system. How is the inequality reflected in this matrix case?

M1 is non-invertible iff ∃x ∋

M1x = 0, ⇐⇒ K−1
1 CK−1

2 Cx = x.

This does not happen if
1 − ‖K−1

1 CK−1
2 C‖2 ≥ 0,

and similarly for the case of (4.2.13).
Invertibility of the coefficient matrix is therefore possible (provided the kriging

systems are invertible) only if the largest singular values of the matrices K−1
1 CK−1

2 C
and K−1

2 CK−1
1 C are less than 1.

One can gain some appreciation for this by starting with two independent vari-
ables, in which case C is zero: then the two matrices K−1

1 CK−1
2 C and K−1

2 CK−1
1 C

are also zero. Now, as correlation is “added”, via the cross-variogram, allowing the
norm of the matrix C to increase, the singular values of K−1

1 CK−1
2 C and K−1

2 CK−1
1 C
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move continuously on the real line, out from zero (the “singular value” of the zero
matrix). At some point, the largest singular value (and hence the norm of these ma-
trices) may increase beyond 1, at which time the system will no longer be invertible
for all right-hand sides.

If the kriging matrices and M1 and M2 are invertible, then inverting X is easy:
[

K−1
1 0
0 K−1

2

] [

K1 C
C K2

]

=

[

I K−1
1 C

K−1
2 C I

]

,

and
[

I −K−1
1 C

−K−1
2 C I

] [

I K−1
1 C

K−1
2 C I

]

=

[

M1 0
0 M2

]

Let
A1 ≡ K−1

1 C

and (4.2.14)

A2 ≡ K−1
2 C;

then

X−1 =

[

M−1
1 0
0 M−1

2

] [

I −A1

−A2 I

] [

K−1
1 0
0 K−1

2

]

.

Computation of Estimates
The kriging estimates are

z∗k(x0) =

[

V T
10 0
0 V T

20

] [

K−1
1 0
0 K−1

2

] [

d1

d2

]

,

whereas the cokriging estimates are given by

z∗c(x0) =

[

V T
10 CT

0

CT
0 V T

20

] [

M−1
1 0
0 M−1

2

] [

I −A1

−A2 I

] [

K−1
1 0
0 K−1

2

] [

d1

d2

]

.

In either case one must compute
[

δ1
δ2

]

≡
[

K−1
1 0
0 K−1

2

] [

d1

d2

]

.

Then the kriging results are given by the simple dot products

z∗k(x0) =

[

V T
10 0
0 V T

20

] [

δ1
δ2

]

=

[

V T
10δ1
V T

20δ2

]

,

while the cokriging estimates can be simplified still further:

z∗c(x0) =

[

V T
10 CT

0

CT
0 V T

20

] [

M−1
1 0
0 M−1

2

] [

I −A1

−A2 I

] [

δ1
δ2

]
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=

[

V T
10 CT

0

CT
0 V T

20

] [

B1 −B1A1

−B2A2 B2

] [

δ1
δ2

]

,

where
B1 ≡ M−1

1 and B2 ≡ M−1
2 .

All this can be stored in the same size matrix as originally given, once the matrix
products have been carried out.

That is followed by one last multiplication, so that, in the end, cokriging at a
particular site will take twice the computation that kriging requires:

z∗c(x0) =

[

V T
10 CT

0

CT
0 V T

20

] [

∆1

∆2

]

,

in a form entirely analogous to that of the kriging estimates, with

[

∆1

∆2

]

≡
[

B1 −B1A1

−B2A2 B2

] [

δ1
δ2

]

.

One of the advantages of this scheme is that the inversion of the 2(N+p)×2(N+p)
matrix is replaced by the inversion of four (N + p)× (N + p) matrices (the “Cauchy-
Schwartz” matrices M1 and M2 in addition to the two (N + p) × (N + p) kriging
matrices). The kriging matrices will need to be calculated anyway, however, so this
is really quite a savings.

In the appendix is an example, using a Matlab code, demonstrating that cokriging
using Myers’s approach involves the inversion of a large matrix with high condition
number, whereas the procedure described herein means the inversion of the kriging
systems (which is presumably necessary anyway), which may have condition numbers
on the same order, but somewhat smaller, followed by the inversion of two matrices
with small (≈ 1) condition numbers.

This also suggests that experimenting with various cross-variograms is easier than
before: the kriging systems are solved once and for all, then the variety of cross-
variograms of interest can be tried with much less computation.

First-Order Approximation of Cokriging Improvement
If ‖A1A2‖ << 1 and ‖A2A1‖ << 1, then

B1 = M−1
1 = (I − A1A2)

−1 ≈ I + A1A2;

and similarly for B2. Then
z∗c(x0) ≈

[

V T
10 CT

0

CT
0 V T

20

] [

I + A1A2 0
0 I + A2A1

] [

I −A1

−A2 I

] [

K−1
1 0
0 K−1

2

] [

d1

d2

]
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=

([

V T
10 0
0 V T

20

]

+

[

0 CT
0

CT
0 0

])([

I 0
0 I

]

+

[

A1A2 0
0 A2A1

])

×
([

I 0
0 I

]

−
[

0 A1

A2 0

])[

K−1
1 0
0 K−1

2

] [

d1

d2

]

=

([

V T
10 0
0 V T

20

]

+

[

0 CT
0

CT
0 0

])

×
([

I 0
0 I

]

+

[

A1A2 −A1(I − A2A1)
−A2(I − A1A2) A2A1

])

×
[

K−1
1 0
0 K−1

2

] [

d1

d2

]

= z∗k(x0)

+

([

V T
10 0
0 V T

20

]

+

[

0 CT
0

CT
0 0

])[

A1A2 −A1(I − A2A1)
−A2(I − A1A2) A2A1

]

×
[

K−1
1 0
0 K−1

2

] [

d1

d2

]

+

[

0 CT
0

CT
0 0

] [

K−1
1 0
0 K−1

2

] [

d1

d2

]

= z∗k(x0)+
[

V T
10 CT

0

CT
0 V T

20

] [

K−1
1 0
0 K−1

2

] [

CK−1
2 C −C(I −K−1

2 CK−1
1 C)

−C(I −K−1
1 CK−1

2 C) CK−1
1 C

]

×
[

K−1
1 0
0 K−1

2

] [

d1

d2

]

+

[

0 CT
0

CT
0 0

] [

K−1
1 0
0 K−1

2

] [

d1

d2

]

= z∗k(x0) +

[

CT
0 K

−1
2 d2

CT
0 K

−1
1 d1

]

+

[

V T
10 CT

0

CT
0 V T

20

] [

K−1
1 0
0 K−1

2

] [

CK−1
2 C −C(I −K−1

2 CK−1
1 C)

−C(I −K−1
1 CK−1

2 C) CK−1
1 C

]

×
[

K−1
1 0
0 K−1

2

] [

d1

d2

]

.

Keeping only the terms linear in C (or C0),

z∗c(x0) ≈ z∗k(x0) −
[

dT
2K

−1
2 (CK−1

1 V10 − C0)
dT

1K
−1
1 (CK−1

2 V20 − C0)

]

,
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or, recalling that the kriging weights are Γi = K−1
i Vi0,

z∗c(x0) ≈ z∗k(x0) −
[

dT
2K

−1
2 (CΓ1 − C0)

dT
1K

−1
1 (CΓ2 − C0)

]

.

Making use of the transformed data (d′)T
i = dT

i K
−1
i ,

z∗c(x0) ≈ z∗k(x0) −
[

(d′2)
T (CK−1

1 V10 − C0)
(d′1)

T (CK−1
2 V20 − C0)

]

≡ z∗k(x0) −
[

(d′′2)
TV10 − (d′2)

TC0

(d′′1)
TV20 − (d′1)

TC0

]

.

Thus, a calculation of the cokriging approximation requires storing another form of
transformed data, but only two vector inner-products for an actual estimate.

This approximation implies that to first order it is the extent to which CΓi differ
from C0 that determines whether it is worthwhile to cokrige. If

CΓ1 = C0andCΓ2 = C0,

that is, if
CK−1

1 V10 = C0andCK−1
2 V20 = C0,

then cokriging may provide no improvement. While it will be interesting to consider
under what conditions these hold, we have not yet done so.

One very interesting idea that now arises is to combine the results of Xie’s method
of coregionalization with this linear approximation: the point of his method is to make
the cross-variogram terms small, which may put the diagonalized data squarely in line
for this approximation. Therefore, we propose that one

• transform to diagonalized variables;

• model the new variables;

• cokrige with linear approximation; and

• transform back to the original variables.

This approach is examined in one part of the Nitrate study of Chapter Six.

The Elemental Coregionalization-Like Case
A striking result of this procedure is that cokriging variables modelled as the el-

emental constituent of the coregionalization case gives the same result as kriging.
Start with the form of the variogram matrix in the case of a one-structure “core-
gionalization” (there are quotes around coregionalization because this is “trivially”
coregionalized: there is only a single structure):

V (h) = γ(h)

[

a c
c b

]

≡ γ(h)V,
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where the matrix V on the right hand side is nonnegative definite, and γ is a standard
variogram model (conditionally negative definite function). Variables with this type
of model are said to be “intrinsically coregionalized” [38]. Matheron [57] called this
a case of “intrinsic correlation”, and also showed in [62] that cokriging reduces to
kriging.

Note what this form of the variogram matrix implies about the corhogram, intro-
duced in the previous chapter: it has a constant value, independent of h:

ρ(h) =
c√
ab
.

Demonstrating that cokriging is equivalent to kriging in this case means that a flat
corhogram may indicate that there is no sense in estimating the variables jointly.

The form of Myers’s equations in this special case is















0 γ(x1 − x2)V γ(x1 − x3)V · · · γ(x1 − xN )V F1

γ(x2 − x1)V 0 γ(x2 − x3)V · · · γ(x2 − xN )V F2
...

...
...

. . .
...

...
γ(xN − x1)V γ(xN − x2)V γ(xN − x3)V · · · 0 FN

F1 F2 F3 · · · FN 0















,

which one can permute to









a

[

K F
F T 0

]

c

[

K 0
0 0

]

c

[

K 0
0 0

]

b

[

K F
F T 0

]









,

while the swapped form of the equations is









aK cK aF 0
cK bK 0 bF
aF T 0 0 0

0 bF T 0 0









. (4.2.15)

Let
∆ ≡ ab− c2

To invert (4.2.15), apply the following operations on the left:









K−1 0 0 0
0 K−1 0 0
0 0 I 0
0 0 0 I
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b
∆
I −c

∆
I 0 0

−c
∆
I a

∆
I 0 0

0 0 I 0
0 0 0 I

















I 0 0 0
0 I 0 0

−aF T 0 I 0
0 −bF T 0 I

















I 0 0 0
0 I 0 0
0 0 −∆

ab
(F TK−1F )−1 0

0 0 0 −∆
ab

(F TK−1F )−1

















I 0 0 0
0 I 0 0
0 0 b

∆
I c

∆
I

0 0 c
∆
I a

∆
I

















I 0 −ab
∆
K−1F cb

∆
K−1F

0 I ca
∆
K−1F −ab

∆
K−1F

0 0 I 0
0 0 0 I









which gives the identity matrix; then the inverse is









b
∆

(K−1 −M) −c
∆

(K−1 −M) 1
a
K−1FD 0

−c
∆

(K−1 −M) a
∆

(K−1 −M) 0 1
b
K−1FD

1
a
(K−1FD)T 0 −1

a
D −c

ab
D

0 1
b
(K−1FD)T −c

ab
D −1

b
D,









where
D = DT ≡ (F TK−1F )−1

and
M = MT ≡ K−1FDF TK−1

(both are nonnegative definite, at least).
Now consider the estimates, which is where this case gets interesting (or rather,

uninteresting!):








Γc1 γ2

γ1 Γc1

µ11 µ12

µ21 µ22









=
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b
∆

(K−1 −M) −c
∆

(K−1 −M) 1
a
K−1FD 0

−c
∆

(K−1 −M) a
∆

(K−1 −M) 0 1
b
K−1FD

1
a
(K−1FD)T 0 −1

a
D −c

ab
D

0 1
b
(K−1FD)T −c

ab
D −1

b
D

















aK0 cK0

cK0 bK0

aF0 0
0 bF0.









This reduces to exactly the kriging weights: e.g.,

[

Γc1 γ2

]

=
[

ab−c2

∆
(K−1 −M)K0 +K−1FDF0

−bc
∆

(K−1 −M)(K0 −K0)
]

becomes
[

Γc1 γ2

]

=
[

(K−1 −M)K0 +K−1FDF0 0
]

=
[

K−1((I − FDF TK−1)K0 + FDF0) 0
]

=
[

K−1K0 −K−1FDF TK−1K0 +K−1FDF0 0.
]

(4.2.16)

Note that the first term in the vector right-hand side: it is the kriging weight, which
is seen by solving just one block of the cokriging system:

Γc1 = K−1K0 −K−1Fµ,

where
µ = −D(F0 − FK−1K0),

which gives a result identical to the first element of (4.2.16).
So: there is absolutely no change in the estimates by cokriging in this case, as

the weights do not change. That is especially interesting and important because one
method proposed for finding a valid model for the cross-variogram of two variables
is to use a model which is a nested combination of models of the variograms: if
the variograms have the same models (type and sill), however, the situation reduces
directly to this case, and one sees immediately cokriging need not be used at all.

One can reach the same conclusion (with a lot less calculation!) via an argument
about the form of the variogram matrix function. Recall (equation 3.2.7) that the
variogram estimator can be written as

V ∗(h) =
1

2Nh

DT (h)D(h),

where D is the data set of paired differences. In this simple case that means that

1

2Nh

DT (h)D(h) = γ(h)

[

a c
c b

]

= γ(h)QΛQT .

This says that by merely transforming the pair difference data via

D′ = DQ
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Figure 4.4. The dual ways of showing the information contained in the cross-
variogram: against the product of the variograms, or scaled into the corhogram.
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(which is equivalent to the same transformation on the original data, as the D are
just linear combinations of the original data vectors), the sample variogram matrix
will have been diagonalized: that is, the sample variogram matrix for the transformed
data will have the form

V ′∗(h) = γ(h)Λ.

The corhogram for the simple coregionalization-like case is a constant: ρ(h) = c
ab

.
Figure (4.4) shows both the cross-variograms and and corhograms in this case, where
the variogram is an exponential with nugget. It is obviously easier to focus on the
corhograms, as they are simply constant.

The plots of the sample cross-variograms (and the models as well) must be within
the Cauchy-Schwartz envelope to ensure invertibility, and so it is natural to represent
it, too, on a picture of the cross-variogram model. This special case therefore presents
a class of Cauchy-Schwartz envelope-filling cross-variograms which lead to absolutely
no improvement over separate kriging. This motivates the question “What kinds of
cross-variograms do suggest that cokriging will lead to an improvement over kriging
results?” This remains a topic for further research.

We do not yet even know if there is any improvement in the case where ρ(h) is a
constant, but the variogram is not the same for all variables, as it was in the elemental
coregionalization-like case. In this case,

V (h) =

[

γ1(h) c
√

γ1(h)γ2(h)

c
√

γ1(h)γ2(h) γ2(h)

]

. (4.2.17)

The difference lies in the fact that the variogram matrix function is no longer so
simply diagonalizable. Even so, it may still be written in the simplified form

V (h) =

[
√

γ1(h) 0

0
√

γ2(h)

] [

1 c
c 1

] [
√

γ1(h) 0

0
√

γ2(h)

]

.

This suggests a possible transformation of the paired difference data via the inverse
square-root of the respective variogram inverses; again, we have not pursued this
transformation.

Wackernagel suggests, in [93], that the corhogram is not the statistic that one
should inspect, but rather what he called the “autokrigeability coefficients”

acij =
γij

γi

and
acji =

γij

γj

.

This is based, however, on his attempt to demonstrate intrinsic coregionalization,
since this implies that cokriging reduces to kriging. It is unknown, however, whether
intrinsic coregionalization is a necessary condition for “autokrigeability” or not.
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Oddly enough, Some authors [38] report differences in estimates in the case of an
intrinsically coregionalized cokriging, citing similar claims in the Summer 1992 issue
of Geostatistics: An Interdisciplinary Geostatistics Newsletter.

Generalization
The new formulation of the cokriging equations generalizes, but not elegantly. For

example, in the three variable case, one may permute as before and multiply through
by the kriging system matrix inverses to get





I A12 A13

A21 I A23

A31 A32 I





Multiplying through by the inverse in the first two variables, as given above,





B1 −B1A12 0
−B2A21 B2 0

0 0 I









I A12 A13

A21 I A23

A31 A32 I



 =





I 0 α1

0 I α2

A31 A32 I





followed by





I 0 0
0 I 0

−A31 −A32 I









I 0 α1

0 I α2

A31 A32 I



 =





I 0 α1

0 I α2

0 0 I −A31α1 −A32α2





so that one must invert the matrix I−A31α1−A32α2, which is again (N+p)×(N+p).
Induction on this process implies that in each case one gets the solution of a single

chain (1, · · · , p − 1, p-way) of cokriging equations, from the kriging case all the way
up to the p-way case, each of which will usually be of interest.

Discussion
Below we list the positive features of this new formulation:

• simultaneous kriging estimates,

• a chain of (sub-)cokriging estimates,

• ease of comparison of different cross-variogram models,

• smaller systems of equations, and

• better conditioned matrices.

We have not yet realized the goal described in the introduction, of a method for the
solution of a p-way cokriging system which gives the results of all p−1, p−2, · · · , 1-way
cokriging sub-systems: however, a single chain of such cokriging solutions is obtained.
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If the goal were, say, the estimation of the concentration of nitrates, and there were k
other variables which one suspected might help improve the estimates of nitrate via
cokriging, one could order them as n1, n2, . . . , nk and cokrige with this method so as
to get the results of

• kriging for nitrate (as well as kriging for each ni);

• cokriging for nitrate with n1;

• cokriging for nitrate with n1, and n2;

• ...

• and cokriging for nitrate with n1, n2, . . . , and nk.

One topic for the near future will be to rework the results of Dubrule [23], who
discovered a very clever way of cross-validating the results of universal cokriging using
components of the inverse. As the inverse of Myers’s system is no longer computed,
Dubrule’s results must be rewritten in terms of the components of the matrices used
in this formulation.

A Word on Kriging Matrix Conditioning
We wish to make one further point, concerning the solution of cokriging equations

in general: that it is very important to take the matrix solver into account, as it is
perhaps the most important single element in the cokriging process. Carr and My-
ers [12] discussed different equation solvers for cokriging programs, and decided (at
that point) on Gaussian elimination. In their first cokriging code, Carr, Myers, and
Glass [13] used a slower, iterative, algorithm which minimized memory use. The pro-
gram “cokrige”, which was developed by the Geostatistics Group of the Mathematics
Department, University of Arizona, for adaptation into the Geo-EAS pantheon of
programs (but never formally approved) incorporated Gaussian elimination.

Early in the Nitrate study we encountered trouble when generating maps with
“cokrige”: it seems that we were using “too many variables” and/or “too many
sites”, which led to estimates which were obviously very poor (e.g., estimates orders
of magnitudes higher or lower than any data values); yet there was no indication
from the program of any problem. Gaussian elimination was improperly chosen as
the solution algorithm, at least in that case, because of the danger posed by both the
size and the conditioning of the matrices to be inverted. The modelling process is still
poorly understood, and the risk of creating large ill-conditioned matrices is sufficiently
high that we were inspired to write a new program, choosing another algorithm, and
a safer algorithm, for the matrix inversion: the SVD, in double precision.

McCarn and Carr [64] compare gaussian elimination, LU decomposition, and, to
a lesser extent, the SVD, in the computation of kriging weights, as well as the effect
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Gaussian Elimination LU Decomposition SV Decomposition

ops = 2N3

3
N3

3
≤ ops ≤ 2N3

3
ops > N3

Table 4.1. Operation counts for different equation solvers (from McCarn and Carr
[64])

of numerical precision used and the advantages of iterative improvement. They give
the number of operations for the three methods (Table (4.2.2)). They also discuss the
value of using only a small number of neighbors, to reduce round-off error, suggesting
10-20 neighbors for local neighborhoods.

They note that the SVD gives results identical to those using gaussian elimination
or LU decomposition in the case of ordinary kriging, but state cryptically that “for
universal kriging...there is a large difference in the solution yielded by SVD from that
yielded by either Gauss elimination or LU decomposition.” They do not go on to
explain why the methods gave different results, or tell which “solution” is better.

One possibility is that the functions used to model the drift were not scaled prop-
erly. Note that the two parts of the cokriging matrix in (4.2.11),

[

V F
F T 0

]

,

are independent: scaling the variables related to V does not affect F , and vice versa.
If rows and columns corresponding to F , say, are allowed to get much larger than the
V portion of the matrix, the condition number will increase artificially (in the sense
that scaling would have prevented any problems). This could happen if the functions
used were simple monomials (like xy), and the geographical coordinates were orders of
magnitude larger than the variogram values contained in V . Programmers must check
that the kriging system is balanced, before a solution is attempted. Software used
in this dissertation scales the variables, so that the drift functions and the variogram
matrix values are on the same order.

This scaling problem is the same as that found by O’Dowd [71], when he reported
that the condition number of the ordinary kriging system went up with a linear
increase in the sills of the variogram models. This is simply a result of having a column
(and row) of fixed values (ones) in the F portion of (4.2.11), while the V portion is
scaled linearly. Poor conditioning in this case is not a fundamental characteristic of
the kriging system, as it can be removed by scaling.

One advantage of using the SVD as a solver is that the condition number of
the coefficient matrix shows up immediately as the ratio of the largest and smallest
singular values: if A is N ×N , then

condition(A) =

{

λ1

λN
, λN 6= 0;

∞ , λN = 0
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This number should be reported, especially when it is high, since it serves as a handy
diagnostic to indicate whether the results will be useful or not. If the coefficient matrix
is non-invertible to machine precision, then the option should be given to proceed with
the pseudo-inverse (which is obtained from the SVD, and leads to a least-squares
solution for the projection of the right-hand side onto the residual column space of
the matrix).

In fairness to the developers of the algorithm which failed, and failed to warn the
user, at the time that the program was developed storage and speed considerations
were much more important than they are in today’s workstation environment; and
the Gaussian method requires less memory, and is faster. But once again, we see that
with a change in computational power it may be necessary to rethink some of the
early procedures.



111

Chapter 5

Kernels and Kriging: In Search of a

Compromise

5.1 Introduction and Motivation

Concerns about the large linear systems involved in unique-neighborhood (i.e.,
global) kriging and the instabilities in their solutions has motivated a search for
better methods. It is certainly an unhappy fact that the more data available for
interpolation, the more dangerous the method may become (as will be seen shortly):
this is fundamentally contrary to what one expects from an interpolation scheme.

In the course of studying the solutions of the kriging system of equations (given by
(4.2.11)), we discovered that the data weights obtained as the solution had strong spa-
tial properties: they certainly satisfied the intuitive sense that greater weight should
be given to close neighbors, with weight falling off as distances from the estimation
site become large. The form of the kriging weights was striking, however (Figures
(5.1) and (5.2) for one-dimensional kriging weights, and (5.3) for two-dimensional
weights): the resemblance that these (typical) weight distributions bear to weights
given by kernels led us to begin seek equivalent kernels appropriate for a variety of
variogram models.

As noted in the last chapter, kernel methods are generally faster and more stable
than kriging. Thus, identifying kernels that give good approximations to the kriging
weights would allow approximations of the results of kriging in some cases, leading to
an increase in speed and stability at the cost of a loss of some of kriging’s optimality.
The most serious objection to kernel estimators is that they are unmotivated: why
a factor of “2” (for example) in inverse distance weighting schemes? The use of a
kernel associated with a variogram model, would be a significant improvement in the
use of these techniques.

Kriging and kernels have been seen as estimation opponents in some work: Yakowitz
and Szidarovszky [99] compared kriging (with correct and misspecified variogram
models) with a gaussian smoothing kernel with bandwidth corrections. Using several
test data sets, they concluded that kriging gave better estimates when the variogram
model was correctly specified, but that the kernel did a better job when the variogram
model was inappropriate.

Moreover, as noted in Carr and Myers [11], kriging on gridded data with local
neighborhoods is actually equivalent to estimating with a kernel under some condi-
tions: the weights are computed once (for those points away from the boundary) and
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Figure 5.1. Four kriging weight patterns in the one-dimensional case, using 25
scattered data locations on the interval [0,1]. Estimation at x=.4 with four different
sets of locations.



113

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Estimation at x = .202449

K
rig

in
g 

W
ei

gh
t a

t 2
5 

sc
at

te
re

d 
lo

ca
tio

ns

Weights for spherical, range 10: nugget/sill = 1/10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Estimation at x = .422552
K

rig
in

g 
W

ei
gh

t a
t 2

5 
sc

at
te

re
d 

lo
ca

tio
ns

Weights for spherical, range 10: nugget/sill = 1/10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Estimation at x = .566183

K
rig

in
g 

W
ei

gh
t a

t 2
5 

sc
at

te
re

d 
lo

ca
tio

ns

Weights for spherical, range 10: nugget/sill = 1/10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Estimation at x = .831524

K
rig

in
g 

W
ei

gh
t a

t 2
5 

sc
at

te
re

d 
lo

ca
tio

ns

Weights for spherical, range 10: nugget/sill = 1/10

Figure 5.2. Four kriging weight patterns in the one-dimensional case, using 25
scattered data locations on the interval [0,1]. Estimation using fixed set of data
locations, at four different points on the unit interval.
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Figure 5.3. Kriging weights for two different models in the two-dimensional case, for
scattered sites. The resemblance these (typical) weight distributions bear to weights
given by kernels suggested that there might be equivalent kernels appropriate for a
variety of variogram models.

the weights obtained are used as a kernel for all points in the interior. This relies
on the data locations always being in the same pattern, and the estimation location
being at the same position with respect to that pattern every time.

It is known that spline interpolation is a special case of kriging [96]. The spline
minimizes the functional

1

N

N
∑

i=1

(yi − g(ti))
2 + λ

∫ 1

0

g′′(t)2dt,

where N (typically noisy) observations yi occur on the interval [0, 1]. Furthermore,
extensive work by a number of investigators has shown that, for the one-dimensional
smoothing spline, there is a well-defined kernel which can be used in place of the cubic
splines. Silverman [82] showed that the form of the weight function in smoothing
spline estimation is

G(s, t) ≈ 1

f(t)

1

h(t)
κ(
s− t

h(t)
), (5.1.1)

where f(t) is the design point density function, h(t) = λ
1
4f(t)−

1
4 , λ is the spline

smoothing parameter, and the kernel κ is defined by

κ(u) ≡ 1

2
exp(− |u|√

2
)sin(

|u|√
2

+
π

4
). (5.1.2)

This kernel leads to an estimate at site s of

g∗(s) =
1

n

n
∑

i=1

G(s, ti)yi.
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Figure 5.4. Silverman’s kernel function for the smoothing spline (left) looks like an
attenuated sinc function (5.1.3), right.

He showed that the kernel performed poorly near the boundary, and developed a cor-
rection using points reflected out beyond the boundary. Messer [65] examined bounds
on the differences of the two, and concluded that the approximation is excellent in
general: good enough that one could use it in place of the spline. We say that the
kernel κ (5.1.2) is associated with the smoothing spline model.

Note that the weight function is essentially the kernel κ multiplied by certain cor-
rections related to bandwidth, and λ (which is also related to smoothing). Silverman’s
κ looks something like a sinc function (Figure (5.4)); that is,

w(x) ≈ sin(x)

x
. (5.1.3)

The sinc function is a popular choice as a smoothing kernel for image analysis.
Note also that the sum of the weights is not divided out as it was in the initial

description of kernel methods (equation (4.1.1)). Chu and Marron [14] discuss the
comparative value of using T versus some integral over a domain surrounding s (as
Silverman has). They conclude that from an analysis standpoint, the integral is easier;
but that results they get using the two different methods suggest that using T is best.

The smoothing spline does not coincide with kriging as presented in the previous
chapter, but rather with a modified version of kriging equations:

[

V + σ2I F
F T 0

] [

Γ
µ

]

=

[

V0

F0

]

.

The difference lies in the addition of σ2I to the variogram matrix V : this results
in estimation, rather than interpolation, and corresponds to an assumption that the
noise in the data is uncorrelated white noise of variance σ2.
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The inspiration provided by the form of the weight vector solutions of the kriging
equations, by Silverman’s result in the case of the smoothing spline, and also by
obvious cases where the kriging system for certain models give results equivalent to
those of kernels, provoked the search for a way of approximating the results of kriging
by kernels. The dual form of the kriging equations show that the variogram model
defines a kernel estimator, only using the set of transformed data (which must be
obtained from the large linear system in a global kriging scheme (equation (4.2.7))):
that is,

y∗(s) =
n
∑

i=1

γ(s, ti)ŷi + µ.

To what extent can a variogram model be said to generate a kernel estimator for the
data, rather than the transformed data? That is, the extent to which variogram γ
can be associated with kernel κγ such that

y∗(s) =
n
∑

i=1

κγ(s, ti)yi.

Note that the words “kernel” and “weight function” are being used interchange-
ably now: since the bandwidth corrections like those which Silverman made will not
be discussed, no effort to distinguish between the two will be made. As refinements
to the kernels discussed herein develop in the future, however, the distinction will
have to be made.

A variogram model determines the coefficient matrix of a kriging system (equation
(4.2.11), for example). (In the following, the ordinary kriging system will generally be
used for figures and to make derivations.) One inverts the coefficient matrix to obtain
a weight vector (and lagrange multiplier); the weights are multiplied with the data
to produce an estimate (4.2.6). If a function κ exists, which always reproduces the
kriging weights yet which is only a function of the relative positions of the estimation
site x0 and the data locations, then the equivalence is exact. In general, however, one
does not expect exact equivalence, but only to approximate the weights sufficiently
well using the kernel that one can make use of it when time is more important than
optimal accuracy. Such a kernel will be called an “apparent (or effective) kernel
function”, and is obviously not unique.

It seems that the data weight vectors obtained from the kriging equations for a
variety of models (when represented in the coordinate space) have the appearance of
a kernel: that is, have a form suggestive of the existence of some underlying kernel
function of the sort Silverman discovered for the smoothing spline. It is in this sense
that a kernel is (or may be) associated with the variogram. Kernels appropriate for
each variogram considered are then described.

There are not characterizations as nice as (5.1.2) for variogram models in general:
that is, there are not nice analytical expressions for any models other than the most
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trivial ones. However, we have been able to experimentally examine the forms of
the apparent kernels for the standard models, and communicate the results in this
chapter. We also demonstrate one attack on the kernel problem, via a trade off
between the matrix equations and integral equations.

Oddly enough, our search for kernel approximations to kriging began in the mul-
tivariate case: that is, in the case of cokriging. Initial kernels centered squarely on
variogram matrix model. One experiment entailed using the following multivariate
kernel estimator:

z∗(x0) = (
N
∑

i=1

Γ−1(xi − x0))
−1

N
∑

i=1

Γ−1(xi − x0)zi; (5.1.4)

and, in view of the variogram matrix results from coregionalization, i.e. that for
variables with constant corhograms the variogram matrix takes the form

Γ(h) = diag(Γ(h))−
1
2 Cdiag(Γ(h))−

1
2

with C a constant positive definite matrix (4.2.17), the square root of the variogram
matrix was also used as a kernel. Results with these kernels were unimpressive,
however: cross-validation showed that they did not even stand up well against inverse
square distance weighting. There is also the potential for non-invertibility of the model
matrices and their sums in (5.1.4), and these methods are almost as ad hoc as the
inverse distance weighting methods.

Kernels also ignore the sampling pattern, which is one of the motivations for
using the kriging methodology: kriging uses the sample pattern information to deduce
when weights should be down- or up-graded because of redundancy (or lack thereof).
Kriging takes account of the sampling by comparing each data site with every other
data site in a large matrix, which must be inverted to obtain the estimates. As will
be shown, large ill-conditioned matrices may lead to poor results.

The focus in the following discussion will be on the univariate case, i.e., kriging,
and mostly in one-dimension. We will show that the kriging equations also determine
weights which appear to be, at least to a fairly good approximation, representative
of some apparent kernel function, whose shape is not necessarily what one would
predict from the variogram model, or its inverse. The kernels exhibit characteristics
consistent with the kernel that Silverman found for the splines, and other well-known
and intuitive functions.

We have not yet returned (in a more serious way) to the equally important problem
of multivariate kernels, and kernel approximations to cokriging.

5.2 Shadow Effect? What Shadow Effect?

The claim was once made, in a meeting of The Geostatistics group, University
of Arizona, that the one-dimensional kriging problem possesses the property that
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points beyond the very nearest are effectively “shadowed”, or “screened” (see Journel
and Huijbregts1 [48]) by closer data sites, and hence do not contribute much to the
estimation of a given point. The implication was that while this is true in one-d, it is
qualitatively different from what one finds in higher dimensions. From observations
of actual one- and two-dimensional kriging weights, we present several dissenting
conclusions and discoveries.

The first is that the notion of a shadow effect is more distracting than enlightening:
while there may be some “shadowing”, particularly when there is no nugget, this
is merely a restatement of the obvious intuitive notion that nearer points get more
weight than far points, and “near” in the shadowing cases is “very near”, while “much”
is “very much”. The shadow effect is not an important separate phenomenon, but
rather a simple limiting case.

The second discovery, more empirical than theoretical, is that the kriging system
appears to give rise to what seems to be a fixed kernel function: that is, that the
variogram determines a kernel estimator to fairly good approximation.

The simplest case is the nugget model: its kernel is obviously just a constant
(for all locations away from the data sites): at the sites, the kernel becomes a delta
function. One can verify that the kriging equations in the case where x0 6= xi yield
constant weights w = 1

N
1, and µ = n

N
: i.e., that

[

n(11T − I) 1
1T 0

] [

1
N

1
n
N

]

=

[

n1
1

]

.

The case x0 = xi is equally obvious. In fact, as the ratio of nugget to total sill goes to
1, the kernel of a variogram model becomes a constant function irrespective of model
type.

Another simple case, and one which may have helped inspire the shadow effect
notion, corresponds to the linear model in one dimension. As the dual form of the
kriging equations for this model shows, estimates obtained from kriging with a linear
model are obtained by simply “connecting-the-dots” between data values at data
locations. The linear variogram therefore gives rise to the following kernel (in the
absence of a nugget):

κ(x) =
(x− xi)zi + (xi+1 − x)zi+1

xi+1 − xi

,

where xi and xi+1 are the two closest neighbors, “shadowing” out all the others. This
is the essence of the shadow effect: that only the very nearest values are needed, as
others are screened out.

The third conclusion is that the behavior of the kernel function associated with
a model in the neighborhood of the location of the estimation site is related to,

1“The close data ... screen the influence of the more distant data....”, p. 312
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Figure 5.5. The model and kernel seem to mimic each other in this exponential
variogram interpolation pattern. The model above, and the kriging weights below,
are referenced to an estimation site around 10.

and perhaps determined by, the concavity of the variogram: those models which
are concave down at the outset have weights which tend to fall off rapidly, whereas
those which are concave up tend to spread the weight around (see Figure (5.5) for
an example). This makes sense from the standpoint of the differentiability of the
estimator: the kriging estimator is as differentiable as the variogram model; if the
true variogram model is infinitely differentiable, then the underlying phenomenon
must be smooth, in which case it makes sense to give high weight to many nearby
and even fairly distant neighbors when estimating.

We present numerous examples to illustrate these points, beginning with one-
dimensional problems, then considering the two-dimensional case.

5.2.1 Variogram Models That Are Concave Up

Example 1: The Cosine Model
One variogram model which starts out concave up is the periodic cosine model.

The cosine model is not strictly conditionally negative definite, and so is not consid-
ered one of the standard models. It can be used in conjunction with other models,
however, in nested models, and is overlooked as a model, especially when periodic
phenomena are studied (i.e. time series of environmental variables). Data sampled
from the cosine function realization gives rise to a cosine variogram, as seen by taking
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the (spatial) limit

γ(h) = lim
h→0

1

2(R− h)

∫ R−h

0

[cos(x+ h) − cos(x)]2dx = 1 − cos(h).

As was pointed out previously (equation (4.2.6)), the kriging estimate can be
written as

z∗(x) =
[

zT 0
]

K−1v(x) = wTv(x),

where K represents the kriging coefficient matrix, v(x) represents the RHS of the
kriging system, and w represents the solution (weight) vector

w = K−1T

[

z
0

]

,

in which case the emphasis is on the variogram function (the constant weights w
multiply the variogram values; the variogram serves as a kernel), or as

z∗(x) =
[

zT 0
]

K−1v(x) =
[

zT 0
]

w(x) = wT (x)

[

z
0

]

,

where
w(x) = K−1v(x), (5.2.5)

in which case the weights w are functions of x, but weight the data values z directly.
From the standpoint of computational efficiency, the first case above is better: the

estimator is a function (the variogram model) which one merely computes relative to
N data sites, forming a vector, and multiplying with the constant weights w; but for
purposes of intuition, the second might be preferred. The magnitude of the function
value w(xi) tells (to some extent, anyway) the amount of confidence a particular site
xi merits, while the sign tells whether xi is correlated positively or negatively with x,
the location of interest. It is the second form of the weights, weights of data values,
that we seek to relate to kernel estimators.

Two sets of one-dimensional “design points” {xi} were generated, in two different
ways: in one, the xi were generated randomly and uniformly; in the second, they
were generated as a set of shifted grids. The data values were given by yi = cos(xi),
the theoretical variogram obtained above was used as the input to a kriging program,
and the estimates and weights were computed for a grid (using ordinary kriging).

Figure (5.6) shows the estimates of the cosine function at a spot for which there
is little data: the goal was to estimate the function at a peak, after removing nearby
data points. If there were a shadow effect, then a missing peak could never be
reconstructed by its neighbors.

As one can see, however, the “missing hump” in the data was adequately re-
computed, from which one can conclude that the cosine model does not exhibit the
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Figure 5.8. The Variogram of data set linear.dat modelled by a long-range gaussian
(long with respect to the pair distances).

shadow effect in general. Figure (5.7) shows that the data weights are also periodic,
and are inversely and well-correlated (-0.99386) with the variogram. That is, when
the variogram is low, the weights are high; while if the variogram is high, the weights
are low.

The cosine variogram is unusual, in that it is not strictly conditionally negative
definite. But the same phenomenon is illustrated (albeit not so dramatically) by other
variogram models.

The cosine model has another curious property: kriging weights obtained using
the cosine model proved to be remarkably stable, in spite of an increasing nugget.
The weights barely change as the nugget goes from zero to 200% of the sill of the
cosine.

Example 2: The Gaussian Model
The gaussian model is another which fails to show a shadow effect. Data sampled

from a linear function gives rise to quadratic growth, which can be well-modelled by
a gaussian variogram, as shown in Figure (5.8). A linear function was sampled, its
variogram modelled with a gaussian, and the same procedure was carried out on the
data set linear.dat.

In order to explore how changes in model parameters changed the apparent kernel
function underlying a gaussian model, the nugget was varied relative to the sill, the
range was varied, and the estimate was made at different locations among the data
sites (recall that Silverman’s G (5.1.1) contains information about the density of
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Figure 5.9. The weights for the gaussian model suggest a kernel function which
resembles the sinc. Left: nugget variation; the highest weight drops steadily as the
nugget percentage increases. Right: range variation; the weights steadily spread out
as the range increases.

design points, as this is also important when deciding how to weight a region using a
kernel). Changes in the form of the apparent kernel function were examined as these
parameters varied.

The kriging weights obtained using the gaussian model, even at zero nugget, show
no tendency to shadow each other out (Figure (5.9)). The effect of varying the nugget
is to dampen the oscillations that occur, and to spread out the first peak so as to give
larger weights to more neighbors.

Note the oscillation attenuation that occurs when a nugget is added to a gaussian
(Figure (5.9)). The nugget damps those, and spreads out the central peak of the
gaussian. This is similar to the effect seen in the second plot, for the change in range.
Note also that the apparent kernel function is reminiscent of a sinc function. While
this sort of function does falls off, it is far from negligible at the second hump.

As the position at which the estimate is taken varied (and hence the distribution
of points in the neighborhood: Figure (5.10)), notice first how very similar the form
of the weights is, and then, in particular, how the weights are distorted near the
boundary. The latter is much like the boundary distortion that Silverman corrected
in the spline kernel case.

One note about the smoothing spline model: the shape of Silverman’s kernel
function κ suggests that its “equivalent variogram” would be concave up. There
is no variogram to plot in this case: the cubics are generalized covariances, rather
than variograms. The estimator in the spline case is of the same form as the kriging
estimator, justifying calling it an example of kriging (again, from Watson [96]):

f(x) = dTG−1g(x),
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effectively non-negative on only the two closest neighbors, at 50 and 51. Shown are
the weights as estimates occur at a succession of values from 50 to 50.5.

where the matrix G is given component-wise by cubic spline terms of the form

g(x; xi) =
1

6
H(x− xi)(x− xi)

3 − 1

6
x3(1 − xi)

2(1 + 2xi) +
1

2
x2(1 − xi)

2xi,

and H is the heaviside function. It is interesting to see what the kriging matrix looks
like for the spline functions (Figure (5.11), with 40 design points randomly distributed
on the interval [0,1]).

5.2.2 Variogram Models That Are Concave Down

The data weights obtained using an exponential model without a nugget show the
shadow effect. In fact, they appear to behave the same as the weights in the linear
model case, as seen in Figure (5.12). Figure (5.13) shows the dramatic change
that the weights undergo with the addition of even a small nugget (the first change
represents a nugget/sill ratio of .1).

Figure (5.5) compares the model to the weights. Certainly the variogram model
resembles the form of the weights, which suggests the reasoning behind efforts to
relate the two (as in 5.1.4).

The results for the case of the spherical model are similar enough that they do not
bear repeating. However, the spherical model leads to more high frequency oscillations
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in the weights, perhaps because of the “artificial” range condition (the spherical is
only once differentiable at its range).

5.3 Two-Dimensional Case

The two-dimensional case was examined, in order to examine the question of
whether the two-d case is qualitatively different from the one-d case. The forms of
the apparent kernel functions argue that there seems to be no qualitative difference.
Again, a variety of sampling schemes for the “data” were used. The results were not
remarkably different for the two cases, however, so the plots shown correspond to the
gridded data (which make for nicer plots).

The spherical model showed the shadow effect when used without a nugget (Figure
(5.15)). These figures were generated for gridded data in the plane With the nugget,
the weights take the form of the so-called “witch’s hat”, as one can see, of the form

κ(x) = exp(−|x − x0|)cos(|x − x0|).

Even in two dimensions, the spherical without a nugget gives large weights only to
sites very near the estimation site. The same is true for the linear and exponential
models without nuggets.

Figure (5.16) shows the bizarre behavior of the weights when used in spherical
extrapolation. This is typical of all models when used for extrapolation, both concave
up and down. That’s an incredible pattern, which only the convolution of a smooth
function with the inverse of a smooth matrix could concoct: it seems likely that the
kernel function will be difficult to describe in this case!

The gaussian model at zero nugget again shows no shadow effect; and again it
resembles a sinc function, whose width is a function of both the size of the nugget and
the range of the gaussian. Just as in the one-dimensional case, the two-dimensional
case demonstrates the wavy behavior of the non-nugget model, and demonstrates as
well the attenuation of the oscillations once a nugget term is added.

5.4 Discussion

We speculate that the shadow effect may have loomed large in some peoples’
minds because it does occur in some models, particularly the linear model. It quickly
dissipates, though, as soon as even the smallest amount of nugget is added. This
is important, because many models described in the literature include some nugget
term (because variograms of real data seldom seem to approach the origin). The
nugget plays the crucial role, announcing to the scheme that the variogram model
suggests unreliability of neighbors, thus pushing all other weights up in the vicinity
while reducing the nearest.
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This effect is as pronounced in the two-dimensional case as it is in the one-
dimensional case (Figure (5.9)), thus belying the belief that there is some quali-
tative difference between the one-dimensional and two-dimensional cases. It is not
obvious, however, how those kriging systems corresponding to models which show a
two-dimensional shadow effect (e.g. the spherical, linear, and exponential) determine
the number of neighbors and which of the neighbors which will receive large weights
(the one-d case is much simpler, as there are definitively two nearest neighbors, which
divide all the weight (Figure (5.12))).

Although not much attention has been paid to the range in these figures, the effect
is as expected: the increasing range tends to spread out the apparent kernel functions
(provided that no shadow effect is displayed: otherwise, as in the case of the linear,
there is no change).

One surprising effect of increasing the nugget/sill ratio is the width augmentation,
which is similar to the effect achieved by increasing the range. This may be due to
renormalization, which keeps the sum of the weights at 1.

In sum: the shadow effect is simply another way of saying that the “width” of
the apparent kernel function determined by the variogram model is very small; the
only standard models which showed it are concave down, and then lose the shadowing
property as soon as a nugget is added.
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5.5 Analytical and Experimental Results

The continuous version of the ordinary kriging equations can be written as a
system of integrals of the form

∫ 1

−1

V (x− y)w(y)dµ(y) + φ(x0) = v(x− x0), (5.5.6)

or
∫ 1

−1

V (x− y)w(y)dµ(y) = v(x− x0) − φ(x0),

where the point measure dµ(y) ranges over the support S, assumed to lie in the
interval [−1, 1], with the side condition that

∫ 1

−1

w(y)dµ(y) = 1. (5.5.7)

Suppose that the point at which the estimate is desired, x0, is not in the support (if
it were, then the estimate would be the value z(x0): alternatively, w(y) would be the
delta function δ(y − x0)).

The LHS of the matrix system (5.5.6) is a discrete sampling of the continuous
symmetric Hilbert-Schmidt kernel [84] of the same form (shown in Figure (5.18)). It
is best represented in a distorted frame, with actual distances between data points
preserved in inter-column spacing (Figure (2.2)). As the number of data points in-
creases, the matrix tends to look more like the continuous version V . As Preisendorfer
discusses in [76], this may imply that the singular vectors of V as a matrix will ap-
proach the singular vectors of the continuous H-S kernel. Such an observation gave
rise to the study of empirical orthogonal functions, which play an important role in
meteorology and other disciplines.

Notice that there are now two kernels in the discussion: it is essential to distin-
guish between them. There is first of all the apparent kernel function associated with
a variogram model, which will serve as an approximating function to the weight (solu-
tion) vector w of the kriging system; and there is secondly the H-S kernel represented
(discretely) by the matrix V (x− y).

The goal is as follows: to obtain the approximating weight kernel by solving the
integral equation featuring the H-S kernel V , only using continuous data; that is,
“invert the continuous matrix”, and use the solutions as a kernel. The well-defined
function obtained by the continuous inversion is then compared to the weights found
in finite kriging systems.

In the example to follow, the expansion of the inverse is given in an infinite basis
of eigenfunctions, but the function which corresponds to that expansion has not been
isolated. Ultimately, that is the goal: to get a nice form for the the “pseudo-solution”,
the apparent kernel function, which we can use to get a good approximation to the
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kriging weights, as Silverman did. In the meantime, the solution obtained works fairly
well, where only a finite part of the infinite Fourier series obtained from the operator
is used.

The details are carried out with the exponential model (with nugget), given by

v(x− y) = s (1 − exp(−|x − y|)) + n (1 − δ(x− y)) .

where s denotes the sill and n the value of the nugget. Some insight into this model is
provided by Cressie, in [16], where he shows that the kernel in the case of extrapolation
on gridded data is given by complete shadowing, using only the nearest neighbor. The
range has been left out for simplicity in the following discussion, although it is easily
reintroduced at the end. The integral equation (5.5.6) with this model is

∫ 1

−1

[s (1 − exp(−|x − y|)) + n(1 − δ(x− y))]w(y)dy = v(x− x0) − φ(x0),

which, taking advantage of the constraint (5.5.7), yields

∫ 1

−1

exp(−|x − y|)w(y)dy +
n

s
w(x) = exp(−|x − x0|) +

φ(x0)

s
. (5.5.8)

Considering the continuous case, with arbitrary RHS, this is a Fredholm integral
equation of the second or first kind (depending on whether there is, or is not, a
nugget). Notice that it is the presense of the nugget term which distinguishes the two
cases.

Stakgold treats part of this example in [84] (pp. 365-366): he shows that the
exponential kernel is a Green’s function, so that the eigenvalues and eigenfunctions
of the integral operator with kernel exp(−|x−y|) on this interval are related to those
of the differential equation

u′′ = θu,

with boundary conditions

u′(1) + u(1) = u′(−1) − u(−1) = 0,

where θ ≡ 1− 2
λ
, and λ is an eigenvalue of the integral equation. The general solutions

are
Aexp(

√
θ) + Bexp(−

√
θ),

but, as one can verify, there are no positive eigenvalues that satisfy the boundary
conditions (i.e. there are no real exponential solutions). There is, however, a count-
ably infinite set of negative eigenvalues and corresponding eigenfunctions. Setting
ρ =

√
−θ, the orthonormal eigenfunctions are

ci(x) =
cos(ρ1ix)

√

1 + sin2(ρ1i)
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2
.

and (5.5.9)

si(x) =
sin(ρ2ix)

√

1 + cos2(ρ2i)
,

where ρ1i = cot(ρ1i), and ρ2i = −tan(ρ2i), with ρ2i 6= 0. Then the eigenvalues of the
differential equation are θ = −ρ2, whose values can only be approximated numerically
(as roots of the transcendental equations for ρ given above). Figure (5.19) shows the
locations of all (positive) ρ of the differential equation simultaneously, as roots of a
single function

r(ρ) ≡ tan(4ρ) − 4ρ(ρ2 − 1)

1 − 6ρ2 + ρ4
.

The first eigenvalue belongs with the cosine, with alternation afterwards.
The integral equation has corresponding simple eigenvalues

λ·i =
2

1 + ρ2
·i

=

{

2sin2(ρ1i)

2cos2(ρ2i)
,

which are all positive and have zero as a limit point (but zero is not an eigenvalue).
As one may simply check, the eigenvalues of the differential equation are tending to
integral multiples of π

2
.

The set of eigenfunctions (5.5.9) forms a basis for L2(−1, 1) with which one can
solve the inhomogeneous Fredholm equation (5.5.8), as the kernel is a symmetric
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compact operator [84]. Expanding w and the exponential in the right-hand side in
the basis of the eigenfunctions of the kernel (re-numbering, and calling them qi),

w(x) =

∞
∑

i=1

wiqi(x),

and

exp(−|x − x0|) =

∞
∑

i=1

λiqi(x0)qi(x).

Notice that the eigenfunctions have been used to express exp(−|x − x0|), a “column
element” of the kernel, as an outer-product of eigenfunctions.

Let

1i ≡
∫ 1

−1

qi(y)dy =

{

sin(ρ1i)tan(ρ1i)

0, ρ2i.

This notation indicates that these are the coordinates of the expansion of 1, the
“canonical constant”, in the basis; equivalently, 1i is the inner product of 1 and
eigenfunction qi.

We now seek conditions on the coefficients of w such that equality is maintained
in equation (5.5.8). Rewriting the inhomogeneous equation and solving term by term
gives

λiwi +
n

s
wi = λiqi(x0) +

φ(x0)

s
1i.

This implies that

wi =
λiqi(x0) + φ(x0)

s
1i

λi + µ
, (5.5.10)

with µ = n
s
, and so

w(x; x0) =

∞
∑

i=1

λiqi(x0) + φ(x0)
s

1i

λi + µ
qi(x).

There is a condition on the value of φ(x0): it was chosen to ensure the constraint
(5.5.7), which means that if w is a solution of the integral equation satisfying the
constraint, then

φ(x0)

s
=

( ∞
∑

1

12
i

λi + µ

)−1(

1 −
∞
∑

1

qi(x0)λi1i

λi + µ

)

. (5.5.11)

This expression is obtained by summing the weights obtained in (5.5.10) to 1, and
solving for φ(x0).
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Approximating the infinite sum (5.5.11) with a finite sum yields an approximation
to the desired kernel. However, doing so introduces a null-space upon eliminating all
components of frequency higher than a certain n. Therefore the solution should reflect
this, by adding in a term f0 such that

f0(x) ≡ exp(−|x − x0|) −
n
∑

i=1

λiqi(x0)qi(x).

This also has the effect of altering the form of φ: that given above (5.5.11) was for
the infinite series. w and phi are now given by

w(x; x0) =
1

µ

[

exp(−|x − x0|) −
n
∑

i=1

λ2
i qi(x0)

λi + µ
qi(x) +

φ(x0)

s

(

1 −
n
∑

i=1

λi1i

λi + µ
qi(x)

)]

and (5.5.12)

φ(x0)

s
=

(

n−
n
∑

1

λi1
2
i

λi + µ

)−1(

µ− 〈exp(−|x − x0|), 1〉 +
n
∑

1

qi(x0)λ
2
i 1i

λi + µ

)

,

where the expression of w has been rewritten to get faster convergence ([84]). How-
ever, application of the kernel showed that adding the null-space term proved risky,
in the sense of leading to poor approximation of the weights: adding nothing led to a
good approximation to the rank-n pseudo-solution anyway (that is, the solution ob-
tained from the matrix equations using only the first n singular vectors), and it may
be a better idea to go that route in the general case (with non-uniform design points),
for safety’s sake: it corresponds to a “least-squares” solution, with the right-hand side
replaced by its projection onto the span of the eigenfunctions.

Following are the results of applying this method to the case of the exponential
model (Figures (5.20) and (5.22)). The procedure was as follows:

• Eigenvalues corresponding to the first 120 eigenfunctions were found (numer-
ically), using the symbolic manipulator Maple. No more eigenfunctions were
used than the rank of the matrix system, however (i.e. a maximum of N for an
N ×N system).

• Design points were generated. In one case, 100 points were chosen randomly, ac-
cording to the uniform distribution, to lie on the interval [−1, 1]. Approximated
and true kriging weight distributions were produced for 20 additional positions
for comparison. In the second case, 500 points were chosen to lie uniformly on
the interval [−1, 1].
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Figure 5.20. The best and worst looking weight distributions from a set of 20
random points, on an interval with 100 design points randomly dispersed. Ratio of
nugget to sill: .15. The actual weight distributions are smooth and decline mono-
tonically away from the point at which the estimate is desired. (There is not much
difference, but the one on the right was considered worst of the twenty.)

• The continuous eigenfunctions were orthogonalized with respect to each other
(as vectors) against the random design pattern, i.e.

q
j
= q

j
− (

j−1
∑

i=1

q
j
q

i
)q

i
,

where the vectors are formed by evaluating the eigenfunctions at the data lo-
cations: qi = q(xi), and afterwards renormalized. This was done successively,
starting with the eigenfunction corresponding to the largest eigenvalue. This
seemed logical, and definitely improved performance. Since the eigenfunctions
were altered from their original form, an option was given to use a linear spline
interpolant to qi(x0). The figures were generated without using the spline in-
terpolant, however, although using the spline improved appearance. The eigen-
functions were then re-orthogonalized.

• The re-orthogonalized eigenfunctions were multiplied by the variogram matrix,
to give the eigenvalues appropriate for the distribution of points. I.e.,

Λ = diag(QTVQ).

This resulted in slight changes from the analytic eigenvalues, due perhaps to
the alteration of the eigenfunctions during re-normalization, and to the erratic
scattering of the points. It seemed to have the effect of smoothing out extreme
values far from the peak.
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• One important note: in treating the matrix problem as an integral equation, or
vice versa, there is a scale problem: the eigenfunctions of the integral equation
take values which are right around 1, whereas the components of the singular
vectors of the matrix problem decrease in value as 1√

N
; simultaneously, the

singular values of the matrix increase as N .

• Finally, there was a somewhat arbitrary choice, which dictated how well the
weights were reproduced: it was necessary to choose a number of basis functions.
One might want to do so on the basis of the spacing of the design points. In
particular, one wants to avoid the natural aliasing that will occur if too many
are used on too coarse a design pattern (high frequencies will alias to look like
lower frequencies). The choices for these examples were made empirically. That
would obviously not be possible in real applications, however, as one will not
compute the kriging weights first in order to decide whether or not one would
rather approximate them! On the other hand, it may be that experimentation
with standard models and patterns will lead to empirical rules.

How good an approximation, or estimate, can be obtained with this kernel? In
fact, it is only the weights that one can analyze, whereas one is ultimately interested
in how much effect the approximation will have on the estimate of the quantity of
interest: a strange data distribution can give an arbitrarily large difference, no matter
how small an actual difference the approximation makes in the weights. Results
indicated that for carefully chosen values of the number of basis functions, the weight
distributions looked fairly similar and varied by only a small percentage in the area
of most importance (around the peak).

Notice that for the case of the unequally spaced design points (Figure (5.20)),
there was not much difference between the best and the worst approximate weight
distributions of the twenty samples. (Again, good weight distributions were obtained
only by neglecting to add in the null-space term). The theoretical values (qi(x0)),
rather than the splined singular vectors for the right-hand side were used).

In the second example case, of 500 design points the null-space term was used
(that is, equations (5.5.12)), and Figure (5.21) shows the result of using 40 eigenfunc-
tions. Included in that figure are the rank-40 pseudo-solution (obtained by using only
the first 40 singular values of the inverse), and the kernel estimator neglecting the
null-space term. The kernel approximation is much better than the rank-40 matrix so-
lution (which is almost identical to the kernel estimator without the null-space term).
Without the addition of the null-space term, an approximation to the weights which
compares very favorably with the rank-40 approximation the actual kriging matrix
was obtained. The low-rank weights summed almost exactly to 1: thus, normalization
problems do not account for the lower peaks at the maximum.

A close-up look at the weights when using 120 pseudo-eigenfunctions (5.22) gives
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Figure 5.21. 40 eigenfunctions, rather than the 500 singular vectors obtained from
the kriging system, generate the weights for an approximation to kriging. The kernel
is slightly higher at the peak, and oscillates about the true weights away from the
peak. Also depicted are the rank-40 pseudo-solution, and the kernel solution without
the addition of the null-space term: these last two are essentially identical.
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Figure 5.22. Above: all weights, in the midst of 500 design points; the kernel dips
below the actual weights at right, and is above (for awhile) at left, before dropping
below. Below: a close-up view of that weight distributions in a neighborhood of the
point at which the estimate is computed. Also included are the rank-120 approxima-
tion using the 120-pseudo-inverse, which oscillates, and falls short of the peak. The
kernel solution is nearly indistinguishable from that of the true distribution, slightly
above at left and below at right. Obviously, a pretty good fit!
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a feeling for how well the kernel can perform. The “rank-120 pseudo-inverse” ap-
proximation to the weights has been included as well: it has the lowest hump at its
maximum, and oscillates.

In the 500 point case, Matlab required 47.3 cpu-seconds on a Sun 4 to compute
and orthogonalize 120 “pseudo eigenfunctions”, and the pseudo-singular values. The
matrix inversion of a 500 element matrix required 77.8 cpu-seconds, while inversion
via the SVD required 490.6 cpu-seconds.

There is still much work to do before a kernel formulation substitutes adequately
for kriging. The next step will be to determine the function which corresponds to the
series of orthogonal functions of the exponential: a kernel which involves such a large
number of terms is perhaps too computationally demanding to be very useful.

Silverman discusses the features a kernel estimator should possess, in particular
the dependence of the kernel on the distribution of the design points (i.e., the band-
width), and the amount of smoothing (in the kriging case, how much nugget) that
one is doing with it. In future work, these factors should be taken into account as
well.

5.6 From Here to Infinity

In this section, the development proceeds in the opposite direction: starting with
the kriging equations, we link back up to the infinite-dimensional case. This also
provides another opportunity to show the use of the kernel idea in another concrete
example.

The ordinary kriging equations can be written as

[

V 1
1T 0

] [

w
µ

]

=

[

QΛQT 1
1T 0

] [

w
µ

]

=

[

v(x0)
1

]

Recall how the “fast interpolation” process of the SVD may be used to express the
variogram RHS v(x− x0) in terms of the basis of the SVD of V :

v(x0) = QΛΛ−1QTv(x0) = QΛq(x0),

where v(x0) is now expressed in terms of the basis of singular vectors of V . q(x0)
could be considered as in “interpolated section” of the matrix Q (equation (2.2.7)).
In fact, letting x0 range over all permissible values would reconstitute the kriging
method’s interpolating function for the singular vectors (recall that any interpolator
of the singular vectors reproduces an interpolator for the matrix). This seems really
backwards: using the kriging system to interpolate, or induce an interpolation, of the
singular vectors in the kriging system; but it is really just equivalent to saying that
one can treat x0 as a variable and solve for any value it takes.
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One could think of the fast interpolation process as converting the matrix prob-
lem into an integral equation problem: a compact H-S kernel results from using the
interpolated outer-products of the SVD of the matrix, i.e.

k(x, y) =

N
∑

i=1

λiqi(x)qi(y).

As Stakgold notes in [84], this is a standard way for creating example operators with
desirable properties.

One now solves the system using the Singular Value Decomposition:

[

I QΛ−1QT 1
1T 0

] [

w
µ

]

=

[

Qq(x0)
1

]

[

I α
0T −1Tα

] [

w
µ

]

=

[

β
1 − 1Tβ

]

,

where α ≡ QΛ−1QT 1 and β ≡ Qq(x0). One can solve directly, to yield

µ =
1 − 1Tβ

−1Tα
=

1 − 1TQq(x0)

−1TQΛ−1QT 1

and
w = β − µα = Q

[

q(x0) − µΛ−1QT 1
]

.

Proceeding to the infinite dimensional case, one replaces the matrix inner-products
by integrals, and obtains the kernel function corresponding to a given variogram
model:

µ =
1 −∑∞

0

∫

qi(x)qi(x0)dx

−∑∞
0

∫ ∫

qi(x)λ
−1
i qi(y)dxdy

=
1 −∑∞

0 qi(x0)
∫

qi(x)dx

−∑∞
0 λ−1

i

(∫

qi(x)dx
)2

=
1 −∑∞

0 qi(x0)1i

−∑∞
0 λ−1

i 12
i

(5.6.13)

and

w(y) =
∞
∑

0

qi(y)qi(x0) − µ
∞
∑

0

qi(y)λ
−1
i

∫

qi(x)dx

=

∞
∑

0

[

qi(x0) − µλ−1
i 1i

]

qi(y) (5.6.14)

Note that this is exactly the form obtained from the integral equation (5.5.10), when
the nugget is zero. This form is more general, as it applies to all models equally, but
requires calculating the singular vectors of the variogram including nugget, rather
than allowing its separation via the Fredholm form, as above.
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Example: The Cosine Model

This isotropic variogram model has the form

γ(h) = 1 − cos(h),

as seen previously, so it can be expressed as an outer-product of functions like so:

γ(x− y) = 1 − cos(x)cos(y) − sin(x)sin(y). (5.6.15)

Consider a domain defined as an integral multiple (L, say) of the interval [−π, π], and
normalize the eigenfunctions:

γ(x− y) = 2πL
1√
2πL

1√
2πL

− πL
cos(x)√
πL

cos(y)√
πL

− πL
sin(x)√
πL

sin(y)√
πL











q0(x) = 1√
2πL

;

q1(x) = cos(x)√
πL

;

q2(x) = sin(x)√
πL

;










λ0 = 2πL;

λ1 = −πL;

λ2 = −πL.
Expanding the weight kernel in this basis, leads (from (5.6.13) and (5.6.14)) to

µ =
1 −∑2

0 qi(x0)
∫

qi(x)dx

−∑2
0 λ

−1
i

(∫

qi(x)dx
)2 , and

w(y) =

2
∑

0

[

qi(x0) − µλ−1
i

∫

qi(x)dx

]

qi(y).

As the interval of interest is an integral number of periods, this is easily solved to
give the weight kernel:

µ = 0,

and

w(y) =

2
∑

0

qi(x0)qi(y) =
1

2πL
+ cos(y − x0)

This is valid when data values are at all points on the interval [−Lπ, Lπ], in which
case one notices that the sum (or rather the integral) of the weights will be unity.
Now we compare the kriging weights with the kernel weights for a set of discrete data
locations, either gridded or scattered.



145

Figure 5.23. Kriging weights versus the cosine kernel weights. Variation is system-
atic, but small, when considering scattered rather than gridded locations.

The approximated kernel function gave excellent results, in the sense that the
weights were essentially identical (Figure (5.23)) for gridded data (100 points) on a
fine mesh (fine compared with the period of the cosine model), and also with scattered
locations generated according to a uniform distribution.

In the latter case the same experiment was tried with a data set composed of 200
points, on the interval [−2, 33]. Figure (5.23) shows that there is more variation in
the weights, and, furthermore, that the variation is systematic. There seems to have
been a phase shift which was unaccounted for. Even so, the variation is only a few
percent of the actual weights, which means that, in general, there should be little
change in the estimates.

In the derivation of the kernel function, it was assumed that the interval of interest
was an integral multiple of periods. If this assumption had not been made, one would
not have had orthogonality between the functions of (5.6.15), which made the analysis
simpler. Even so, in the event that the extent of the data is large compared to the
period, the functions of (5.6.15) will still be good approximations to the singular
vectors, µ will tend to zero as 1

L
, and hence the weights will approach the same kernel

function as 1
L2 . The far greater leap was in using the weights obtained for continuous

data on a set of discrete data locations.

5.7 Discussion

When should one consider using the kernels discussed in this chapter in real in-
terpolation and estimation problems? The answer is probably that, at this point,
one should not be using them at all. There are many issues still unaddressed, in-
cluding rigorous demonstrations that passage to the limits in cases such as (5.6.13)
is permissible, bandwidth corrections, border effects, etc. However, some preliminary
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information is available, based on this study: rigorous demonstration or no, good ap-
proximations to the kriging weights using kernels have been obtained in several cases,
which indicates that kernels may one day have a broader and better motivated place
in geostatistical analysis (especially where the data set is large and well-distributed
in space).

One issue is the degree to which the set of eigenfunctions, orthogonal for a contin-
uous set of data, is still orthogonal (or “essentially so”) and even linearly independent
for a discrete set of data points. The intuitive notion is that, if the data locations
are essentially randomly dispersed over the line, with a fairly uniform distribution,
then kernel replacement will probably be okay; if, on the other hand, data is clumped
and poorly distributed, then kriging should be considered. Kriging has the ability
to decluster data, averaging clusters, which kernels clearly do not have (although the
design point adjustments should address that issue to some extent).

In the derivation above, the orthogonality of the matrix Q implied that QTQ =
I. If the eigenfunctions of the kernel associated with the particular variogram are
used, instead of the eigenvectors of the SVD, then one won’t generally have that
identity, and will be forced to renormalize the eigenfunctions, maintaining the total
proportion of each eigenfunction by adjusting the eigenvalue appropriately. Thus,
another heuristic argument is that the kernel should be appropriate when QTQ ≈ I
for the adjusted eigenfunctions (i.e. if the eigenvectors so obtained are still essentially
orthogonal to each other).

It may also be that the matrix Λ will not be invertible: this is the case for the cosine
model, for instance. In such cases, one may use the pseudo-inverse. The consequences
of using the pseudo-inverse may be similar to those found in the exponential model,
however: that, when the matrix should be full rank but may be so poorly conditioned
that the pseudo-inverse is a necessity, then the lower-rank approximation to the weight
distribution (e.g. figure (5.22)) will give a much smoother estimating kernel.
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Chapter 6

Case Study: Nitrate Pollution in the Phoenix

Area

6.1 Introduction

We present herein some results from a recent study [52] of nitrate pollution in an
area around Phoenix, Arizona. The study was funded by the Arizona Department of
Environmental Quality and the United States Geological Survey.

The database consisted of a large set of well water sample analyses (approximately
700) for a period extending over 15 years in time, and a pair of land-use maps created
at two times in that period. The 700 plus well samples do not represent 700 wells, since
some wells were sampled more than once, at different times. 34 wells were sampled in
three separate time periods, which were given roughly as 1975-1977, 1980-1985, and
1986-1990. The goals of the geostatistical portion of the study included

• arriving at the best method for unbiased estimation of nitrate concentration,
and

• mapping nitrates, and changes in nitrates, over the time span of the data.

The data came from many sources 1; most of the data were hand-entered, from
hand-written paper forms, and many human errors (both on the original forms and
in the entry process) were discovered by inspecting the data visually and statistically.
While much effort went into checking and repairing the data, it is not certain that
all such errors were eliminated. Furthermore, in most cases no information about
the reliability of the lab work performed was available. The quality of well data is
essentially unknown, but quite possibly poor.

Nitrate was the variable of principal interest, although many additional variables
had been sampled at the sites. These include specific conductivity, ph, water tem-
perature, bicarbonate, carbonate, hardness, calcium, magnesium, sodium, potassium,
sulfate, chloride, fluoride, silica, dissolved solids, phosphorus, aluminum, arsenic, bar-
ium, boron, cadmium, chromium, copper, iron, lead, lithium, manganese, nickel, sil-
ver, selenium, strontium, and zinc. Many of these variables were actually analyzed
at only a few sites; some variables were simply missing from an analysis. Because so
many agencies provided data for the study, the data collected were not uniform at

1The Salt River Project; the Cities of Phoenix, Glendale, and Sun City; the Roosevelt Irrigation

District, Buckeye Irrigation Company, Metropolitan Water District, Sunnyboy Water company, and

other smaller companies.
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sites: some agencies tested for many more variables than other agencies, which led to
an uneven distribution of numbers of sites for a given variable.

Some variables were reported as “non-detects” in samples, which means that the
concentration was not detectable by the instruments used to measure them. These
were replaced by the stated non-detect level: i.e., if the form stated “N < .06”, then
N = .06 was used. Thus, while very small anyway, these values were exaggerated.
One of the consequences of looking at data collected over a long time span is that
the detection levels change as equipment improves; this led to the unfortunate con-
sequence that a non-detect was replaced by one value in one data set and by another
value in another data set.

Other options for dealing with non-detects include replacing them by some fraction
of the detection level in existence at the time (or lab), or attempting to bootstrap a
distribution for the non-detects [37, 80].

There were neither the resources nor the authority to collect new data. Sampling
groundwater at a site without an existing well is an expensive and lengthy procedure.
Some well owners were not receptive to having their water tested, which made random
sampling impossible. Additional distortion of the true picture of nitrate concentra-
tions in the area was also introduced by the practice of shutting off drinking water
wells which exceed the allowable limits of nitrate concentration (removing them from
future sampling).

Some variables were reported in various forms: for example nitrates were reported
as N , as NO3, and as NO2 +NO3 dissolved. Conversion factors were used, increasing
the potential for errors.

Analyses can be checked for “ionic balance”: if the proportion of anions to cations
was deemed to be in error, then the results of the analysis were discarded. Many
analyses were thrown out on this basis, suggesting a high degree of error in the
analyses in general.

The quality of the land-use maps was also questionable: the earlier map was
obtained by actual ground survey, and is probably fairly accurate; the more recent
map was digitized, using the first map and areal photos as a guide. Some glaring
errors were detected in the second map, based on known features of the landscape.
While these errors were detected and corrected, the extent of undetected error in the
maps is still essentially unknown.

Several procedures were used for choosing a set of variables to use for multivariate
analysis and interpolation. The most obvious choice used those variables which were
sampled frequently across all times. That eliminated the heavy metals particularly,
and some other variables. Another example is depth-to-perforation: it was eliminated
because there was no assurance that the wells were perforated in only a single layer.
The condition of the wells was, for the most part, unknown, and the water may be
from multiple layers.

Thus, there were a number of interesting features of the study:



149

• the temporal aspect of the data set, which permitted a study of how the area
changed on a relatively long time scale, but also made for problems such as
changes in lab work over time;

• the data quality issues, because the data came from many sources, with varying
degrees of consistency and reporting standards;

• the use of varying detection limits over time, as methods of detection improved;
and

• hidden sources of data set distortion, such as the fact that wells which exceed
pollution limits were shut off, and so eliminated from further study, etc.

In the end, all those “interesting features” impeded the most important part of the
study, as it was impossible to characterize the uncertainty in the data, thus precluding
successful characterization of the uncertainty in the maps. The comparison between
interpolation methods was unaffected by this uncertainty, as the comparison was
carried out without the imposition of assumptions on the data quality (other than
the assumption implied by using an exact interpolator).

Multiple interpolation methods were compared, including kernel estimators, such
as inverse square weighting; radial basis functions (a technique essentially like kriging
[70], but without pretense of statistical assumptions); kriging and cokriging; and a
variety of black-box routines, from the public domain package GRASS (Geographical
Resources Analysis Support System), from ARC/INFO, S-Plus, and other commercial
software packages. With the exception of the inverse square methods (used in some
commercial software) comparative cross-validation results for the black-box routines
are not included.

The multiquadric radial basis function was used, a popular choice in the radial
basis function literature. This function is chosen for use in the dual formulation
(4.2.7), but usually without reference to the variogram. The multiquadric is given by

g(|h|) =
√

|h|2 + µ2,

where µ is either guessed or chosen by optimizing cross-validation statistics. Note
that as |h| gets large, this approximates a linear variogram model.

6.2 Cross-Validation Results

In order to compare interpolation methods, a set of criteria is needed. These were
based on a “leave-one-out” procedure called cross-validation: that is, a datum z(xi)
is removed from the data set, an estimate z∗(xi) is then made at xi, and z(xi) and
z∗(xi) are compared. This is done for all i, to give measures of “goodness-of-fit”. Thus
cross-validation addresses the question “How well is the particular method estimating
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the actual data values from the remainder of the data?” This provides some idea of
how much uncertainty there will be away from the data locations.

The following cross-validation statistics were used (see [69]):

• z∗ − z ≡ 1
N

∑N

i=1 (z∗(xi) − z(xi)) should be close to zero;

• (z∗ − z)2 should be small;

• ρ(z∗, z), the sample correlation coefficient, should be close to 1;

• when comparing kriging and cokriging, the normalized estimation error, given
by

u(x) =
z∗(x) − z(x)

σ(x)
(6.2.1)

at each site x, where σ(x) is the (co)kriging standard deviation, should be have
a mean-square close to 1, i.e. ideally

1

N

N
∑

i=1

[z∗(xi) − z(xi)]
2

σ2(xi)
= 1;

• the estimates z∗(xi) should have statistics similar to (but not necessarily the
same as) those of the true values, z(xi): that is, the means, standard deviations,
extremes, skewness, etc. correspond “to a reasonable degree”.

Tables (6.2), (6.2), and (6.2) contain the results of the comparison of several tech-
niques, and a variety of cokrigings. Because of the conditioning and matrix modelling
problems, only two-variable cokriging was considered. Each additional variable use-
ful for nitrates was modelled and cokriged with nitrate, and cross-validation statistics
were compared. (Models for the variograms and cross-variograms of the variables
used in cokriging are found in the appendix.) The cokriging results were obtained
with a fortran program based on the kriging program of the public domain package
Geo-EAS. Because estimation variances are not available for techniques other than
kriging and cokriging, the statistics relating to the normalized estimation variable
described in (6.2.1) have not been included.

Although tests showed that universal cokriging gave better results than ordinary
cokriging, ordinary cokriging cross-validation statistics are included for that variable
giving the best universal cokriging results. Ordinary cokriging was done twice for
that variable, for 10 and 20 neighboring sites (limits suggested by McCarn and Carr
[64]).

One interesting experimental test involved cokriging nitrates with a second vari-
able generated as a linear combination of some of the other variables. There is one
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obvious way of doing this: use linear regression to form the best surrogate for nitrate
from the other variables, by solving the least-squares regression problem

Xb = y,

where y was the vector of nitrate concentrations, and X was the matrix of other
variables used.

The second way in which to do this was by using principal component analysis as
a regression technique. PCA was carried out on the matrix [X|y], with nitrates (y)

in the last (pth) column. Let

SN×p = (I − 1

N
11T )[X|y]diag(Σ)−

1
2

be the shifted and scaled data. Then S = UΛQT ≡ AQT by the SVD, and the best
rank-one approximation to the data is

Sq
1

= a1. (6.2.2)

Dropping the subscript on the principal singular vectors, the PCA approximation to
(scaled) nitrates is

sip =
1

qp
(ai −

p−1
∑

j=1

sijqj), qp 6= 0.

This was tested because of its even-handed treatment of the variables: that is, PCA
gives just one single best linear regression equation (6.2.2) for the p variables, whereas
linear regression gives p different regression equations. For example, one may not
merely invert the linear regression equation for y on x, y = ax+b, to get the regression
equation for x on y [56, 97]: it will not necessarily be x = (y− b)/a. Linear regression
does not give the best-fit line to the point cloud (x, y) in terms of orthogonal projection
from the points to the line, but rather the best-fit line to either (x, ax+b) or (ay+b, y).
PCA, using the SVD, provides the optimal line in the former sense: PCA gives the
best fitting line to the (centered) data cloud, which can then be inverted for any case.

Surrogate variables, one obtained by linear regression and the other from PCA,
were modelled and cokriged against nitrate as well. The results were especially good
using the linear regression variable: it had the best cross-validation statistics for the
1977 data set. However, as this was considered an experimental procedure, the linear
regression variable was not used to generate the final map: magnesium, giving the
next-best results, was used instead. Poor cross-validation statistics were obtained
using the linear regression variable for the 1988 data. The PCA variable gave rea-
sonable results for all three data sets, but never the best; on the other hand, it never
gave bad cross-validation statistics.

The “modern methods” did fairly well in general. Cokriging gave smaller values
for the kriging variance than did kriging, and tended to do quite a bit better in terms



152

method z∗ − z (z∗ − z)2 ρ(z∗, z) σ(z∗) z∗ z∗min z∗max

true nitrate 0 0 1 0.9817 10.03 7.248 11.83

n/lr 0.0272 0.3887 0.7970 0.9789 10.01 7.341 12.05

n/mg 0.0091 0.4318 0.7413 0.7157 10.02 7.891 11.92
(n/mg,o,10) 0.0158 0.6069 0.6083 0.6532 10.02 8.491 11.38
(n/mg,o,20) -0.0018 0.6210 0.5932 0.5705 10.03 8.738 11.30
n/cl 0.0097 0.4411 0.7348 0.7050 10.02 8.182 11.72
n/pca 0.0067 0.5470 0.6560 0.6091 10.03 8.839 11.69
krige 0.0110 0.6248 0.5900 0.5918 10.02 8.705 11.76
(krige,o,10) 0.0182 0.6096 0.6059 0.6494 10.01 8.485 11.37
(krige,o,20) -0.0026 0.6238 0.5908 0.5676 10.04 8.711 11.32
( 1

d2 , 20) 0.0411 0.6540 0.5827 0.7124 9.992 8.072 11.39
rbf 0.0343 0.7702 0.5403 0.8325 9.998 7.695 11.97
( 1

d2 , 4) 0.0756 0.8232 0.5318 0.8841 9.957 7.446 11.64
n/ca -0.2228 24.75 0.1618 5.048 10.26 -0.0208 39.78

Table 6.1. Cross-Validation results for each method, circa 1977. Row notation:
n/lr means nitrate universally cokriged with the linear regression variable, in a global
neighborhood; n/mg, with magnesium; n/cl, with chloride; n/pca, with the principal
component variable; (n/mg,o,10) means ordinary cokriging with 10 neighbors; n/ca,
with calcium; “krige” means universally kriged nitrate in a global neighborhood;
(krige,o,10) means ordinary kriging, with 10 neighbors; for the inverse square distance
cases, the second number in the pair again represents the number of neighbors used;
rbf means radial basis function, which was a multiquadric. Order is roughly best-
to-worst, with the ordinary cokriging results following those for the best universal
variable.

of the (z∗ − z)2 statistic. It sometimes happened, however, that several methods had
good statistics, each best on one. For example, in the 1988 table (6.2) pca regression
had the smallest mean error, while linear regression the lowest mean-square error.
This raises the question: “When the two variables give very similar cross-validation
statistics, but different maps, which map should one choose?”

One possibility in the case of a tie would be to examine the “cross-variance” maps
for the cokriging cases: that is, plots of the cokriging variances of the two variables.
Although no definitive rule about them exists, there seems to be some correlation
between those pairs of variables which do well in cokriging cross-validation and the
appearance of these plots. For example, one reason that the magnesium variable was
chosen over the linear regression variable in the 1977 data set was that its cross-
variance map did not have the extreme values that the linear regression map did.
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method z∗ − z (z∗ − z)2 ρ(z∗, z) σ(z∗) z∗ z∗min z∗max

true nitrate 0 0 1 1.000 10.000 5.396 11.61

n/ca 0.0031 0.3273 0.8196 0.8340 9.997 6.183 11.34

(n/ca,o,10) -0.0319 0.5644 0.6592 0.6615 10.03 7.666 11.21
(n/ca,o,20) -0.0296 0.5414 0.6782 0.6288 10.03 7.791 11.07
n/cl 0.0061 0.3751 0.7904 0.8247 9.994 6.042 11.29
n/pca 0.0024 0.4175 0.7653 0.6969 9.998 5.837 11.15
krige 0.0041 0.5191 0.6921 0.6868 9.996 5.662 10.99
(krige,o,10) -0.0290 0.5580 0.6640 0.6747 10.03 7.262 11.22
(krige,o,20) -0.0265 0.5363 0.6811 0.6426 10.03 7.268 11.08
rbf 0.0057 0.5861 0.6613 0.8212 9.994 6.643 11.54
( 1

d2 , 10) -0.0236 0.5769 0.6521 0.7133 10.02 7.431 11.27
( 1

d2 , 4) -0.0142 0.6406 0.6250 0.8079 10.01 7.281 11.44
( 1

d2 , all) -0.0574 0.6525 0.6059 0.4690 10.06 8.759 11.01
n/lr 0.0062 1.015 0.5026 1.023 9.994 5.259 12.53
n/mg 0.4244 14.54 0.4206 4.108 9.576 -26.27 28.78

Table 6.2. Cross-Validation results for each method, circa 1985

method z∗ − z (z∗ − z)2 ρ(z∗, z) σ(z∗) z∗ z∗min z∗max

true 0 0 1 1.003 9.993 7.341 11.84

n/mg 0.0026 0.4316 0.7568 0.8182 9.990 7.051 11.27

(n/mg,o,10) -0.0160 0.5248 0.6925 0.7490 10.01 8.025 11.22
(n/mg,o,20) -0.0178 0.5174 0.6960 0.7157 10.01 7.990 11.23
n/lr -0.0036 0.4263 0.7584 0.7836 9.996 7.932 11.34
n/ca -0.0032 0.4620 0.7363 0.7945 9.996 8.059 11.25
n/pca -0.0004 0.4712 0.7279 0.7240 9.993 8.103 11.12
krige -0.0015 0.5196 0.6944 0.7207 9.994 7.979 11.09
(krige,o,10) -0.0182 0.5200 0.6957 0.7476 10.01 8.067 11.26
(krige,o,20) -0.0213 0.5156 0.6972 0.7119 10.01 8.038 11.20
rbf 0.0038 0.5645 0.6794 0.8397 9.989 7.555 11.52
( 1

d2 , 10) 0.0026 0.5550 0.6736 0.7627 9.990 8.082 11.28
( 1

d2 , 4) -0.0061 0.6009 0.6595 0.8480 9.999 7.587 11.59
n/cl -0.7513 110.2 0.0173 1.690 10.01 1.956 19.48

Table 6.3. Cross-Validation results for each method, circa 1988
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Certainly, if there is a negative kriging variance, then this will show up instantly,
indicating a serious problem (probably a modelling problem, giving rise to an ill-
conditioned or invalid cokriging matrix); and if some kriging variances are inordinately
different or large, this too should be obvious. This is simply a qualitative assessment,
but it seems not to have been described in the literature. The cross-variance maps are
included in the appendix (Figures (??), (??), and (??)). At any rate, visual inspection
of the variance maps is simple, and may yield some insight into the results.

The cross-validation results, in particular the mean-square error, indicate that
kriging generally does about as well as any of the paired cokriging results, and it did
well consistently. This is perhaps the most important conclusion of the mapping: that
kriging, while not optimal in the sense of giving the best cross-validation statistics,
is perhaps the cheapest, fastest way to obtain near-optimal results (they may not be
the best results obtainable, but they may be good enough).

It is interesting to note that in each period, one pair of cokriged variables gave ter-
rible cross-validation statistics: nitrate-chloride in 1988; nitrate-magnesium in 1985;
and nitrate-calcium in 1977. Magnesium was chosen as the best cokriging variable
with nitrates (in 1977 and 1988) and calcium in 1985. These are two variables which
gave poor results in one other (seemingly very similar) case. The failures were either
the result of bad cross-variogram modelling or matrix condition problems, as negative
cokriging variances occurred. As Figure (6.1) shows, however, the Cauchy-Schwartz
condition was not violated, which appears to implicate the matrix condition or sam-
pling pattern problems. Note that, as mentioned in Chapter Three, the corhograms
of the winners are piled up around the origin (magnesium in 1977 and 1988, and
calcium in 1985).

One can also speculate about whether this was due to changes in the area chem-
istry, or whether it was simply a matter of poor modelling. Figure (6.2) shows the
comparison of the sample variograms for nitrate and its cross-variograms with the
additional variables. Considering the cross-variograms of nitrate and magnesium, for
example, it seems that the 1985 case is midway between the 1977 and 1988 cases.
The same can be said of calcium. This argues against the belief that the difference
is a result of different groundwater chemistry, although it is not conclusive by any
means.

In sum: poor results were obtained in one case from variables that gave good re-
sults in another case. Thus, if one had blindly assumed that magnesium cokriged best
against nitrates, because it had done well in 1977, and had used the nitrate/magnesium
map again for the 1985 data set, then one would have been deceived. This demon-
strates the importance of cross-validation to the map-selection process.

6.3 Overview of Mapping Results

Four different contour maps, generated with four different methods, are shown in
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Figure 6.1. The three data sets give rise to three sets of Nitrate and Magnesium
models, cross-variograms, and corhograms. No corhogram failed (|ρ(h)| > 1) for the
intervals used in the matrix systems. 1977: solid lines; 1985: dashed lines; 1988:
dotted lines.
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Figure 6.2. A comparison of the isotropic sample variograms of nitrate, and cross-
variograms of nitrate and other variables of interest for the three data sets. N.B.: the
variogram values of zero at zero are not necessarily realistic, but were added to force
plots to include the origin, and to indicate the size of the nugget.
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Figure (6.3). All were created using the same contour line values, so if all methods
gave the same results, all the maps would look exactly the same: there are obvious dif-
ferences in their appearance. Clearly criteria are needed, such as the cross-validation
procedures just described, to help select the best one.

The cross-validation statistics indicated that universal cokriging produced the best
maps. We used a second-order polynomial drift, on log-transformed values (an as-
sumption of log-normality of groundwater chemical data is common [2]), and produced
maps in the back-transformed nitrate concentrations for three different (somewhat
well-characterized) periods. The success of cokriging is in accord with the results
reported by others, for example Pan et al. [72].

Our final recommendation concerning mapping techniques was somewhat differ-
ent, however: the difficulties inherent in cokriging, including the modelling steps, and
the sizes and condition numbers of the matrices involved, led us to suggest that krig-
ing is the preferred method in many cases. This is especially true for those unskilled
in the art/science of cross-variogram modelling.

This recommendation could change in the future, as improvements in cokriging
methodology reduce the size of the coefficient matrices to invert (e.g. the new cok-
riging algorithm, described herein), and as modelling becomes easier (e.g. linear
coregionalization); the linear approximations described in Chapter Four may serve as
a starting point for the decision as to which variables to use in the study. At present,
however, cokriging is not yet easy enough and stable enough to use unconditionally.

6.4 Diagonalizing the Data

Xie [98] did not actually model the variograms of the diagonal elements he ob-
tained. We do so in this section, using the models in the kriging (rather than cokrig-
ing) process: original variable estimates are then reconstituted from the estimates of
the transformed variables, using the inverse linear transformation. This is analogous
to factorial kriging [79, 28], and, like factorial kriging, is appropriate provided that
all variables are of equal importance.

Factorial kriging is a clever scheme, related to the notion of a coregionalization:
one exchanges the original variables in a study for linear combinations of variables,
which often come from an application of PCA to the data matrix. The new variables
(linear combinations of the original variables) so derived are empirically uncorrelated:

(I − 1

N
11T )Xdiag(Σ− 1

2 ) = UΛVT;

kriging is carried out on the variables in U , then estimates for X, X∗, are given by

X∗ = U∗ΛV T diag(Σ
1
2 ) + 1xT.
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Figure 6.3. Four methods, four maps: A. inverse distance squared; B. radial basis
function (multiquadric); C. kriging; D. cokriging. There is significant variation in
these maps: how is a manager to choose? These maps, of nitrate concentrations,
were produced for the same area, for the same period (around 1985). The same
contour levels were used in all maps, although they are not marked, as the goal of
this figure is to simply point out the obvious differences in the maps.
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PCA gives empirically uncorrelated variables, but only at lag zero. (As shown earlier,
Xie’s method and the TSVD method reduce the correlation over all lags, by mini-
mizing the cross-variograms). The linear combinations are kriged, and the results
transformed back to the original variables.

The data Xie used in his dissertation came from the Nitrate study: 171 data
locations for the three variables bicarbonate, calcium, and magnesium, for a period
around 1977. Sample variograms and cross-variograms for these variables were com-
puted using the automated procedures described elsewhere in this dissertation. Nine
variograms were computed for the raw data R (three for the variables themselves, and
six for their sums and differences); Myers’s method (equation (3.4.14)) was used to
obtain the three cross-variograms. We proceeded similarly for the diagonalized data
D, which was obtained from the original data by the transformation matrix B of Xie
(3.5.18):

D = RB.

Once the diagonalized data were kriged, the grid was re-transformed, via

R∗ = D∗BT .

In two of the eighteen cases, variogram models were altered manually, then re-
computed using the least-squares method. Inspection showed that the automated
technique had failed to model a short-range effect. A guess was made as to the miss-
ing model, a portion of the nugget was replaced by the sill of the guess, and the
automated technique was used again, to get a good visual fit. The Cauchy-Schwartz
condition was satisfied in all pair-wise cases.

Ordinary cokriging results were obtained using a double-precision fortran code
tested against published results and routines ([55, 13]). Figures (6.4), (6.5), and (6.6)
show the contour maps for kriged, transformed/kriged, and the winning cokriging
(if any). In the case of bicarbonate, it appears that the transformed, kriged, and
retransformed map is closer to the cokriged map, whereas in the case of calcium
the kriged map looks slightly more similar. For both of these variables, the cross-
validation statistics of the kriged results were essentially identical (the variances of
the diagonalized data could not be retransformed).

Cokriging with all three variables produced negative variances, which meant a
serious problem, and cross-validation statistics are invalid (Table (6.4)). Plots showed
that the cokriged map had dramatic highs and lows outside of the kernel of the data.
This may be an indicator that the size of the matrix ((3∗171)×(3∗171)) was a factor
in giving unstable results. On the other hand, it may be that the models involving
magnesium led to singular variogram model matrices: recall that a corhogram of 1
implies non-invertibility of the variogram matrix, as

V =

[
√

γ1(h) 0

0
√

γ2(h)

] [

1 ρ(h)
ρ(h) 1

] [
√

γ1(h) 0

0
√

γ2(h)

]

,



160

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

easting

no
rt

hi
ng

Cokriged Bicarbonate (with Calcium)

 10

 10.5

 10.5
 11

 11.5

 10

 10.5

 9.5

 10 9.5

 9.5

 9 9.5
 10 10.5

 10

 10.5
 10.5

 9.5 9.5

 11
 11.5

 12

 10

 10.5

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

easting

no
rt

hi
ng

Kriged Bicarbonate

 9.5

 9.5
 9.5

 9.5

 9.5

 10

 10

 10

 10

 10.5

 10.5

 10.5  10.5

 11

 11

 11.5

 12

 12.5

5 10 15 20 25 30 35 40

5

10

15

20

25

30

35

40

easting

no
rt

hi
ng

Bicarbonate reconstructed from diagonalized components

 9
 9.5

 9.5

 10  10

 10

 10.5

 10.5

 10.5

 10.5

 11

 11

 11

 11.5

 12
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kriging of the transformed data, retransformed to the original. Results were contoured
to the same intervals.
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method z∗ − z (z∗ − z)2
(

z∗(h)−z(h)
σ(h)

)2

ρ(z∗, z) ρ(z∗, z∗(h)−z(h)
σ(h)

) σ(h)2

ideal: 0 0 1 1 0 0

kr, bi 0.0113 0.5325 0.9238 0.6760 0.0523 0.5827
kr,trans 0.0087 0.5325 N/A 0.6750 N/A N/A
co (12)∗ 0.0058 0.5224 1.0060 0.6824 0.0065 0.5200
co (13) 0.0060 0.5585 1.1004 0.6572 -0.0730 0.5034
co (all) 0.0050 0.7323 1.4915 0.5595 -0.2877 0.4948

kr, ca 0.0104 0.4128 0.7636 0.7603 0.0585 0.5544
kr,trans 0.0076 0.4152 N/A 0.7582 N/A N/A
co (12)∗ 0.0033 0.4116 0.8346 0.7599 0.0112 0.4986
co (23) 0.0585 2.0629 5.0059 0.4292 -0.6783 0.1619
co (all) invalid invalid invalid invalid invalid invalid

kr, mg∗ 0.0018 0.4466 0.7627 0.7411 0.0640 0.6037
kr,trans 0.0080 0.4610 N/A 0.7309 N/A N/A
co (13) -0.0031 0.5037 0.9395 0.7009 -0.0527 0.5251
co (23) -0.0324 0.6248 2.8418 0.7828 -0.5721 0.1528
co (all) 0.0018 0.5229 3.0511 0.7828 -0.4790 0.1510

Table 6.4. Cross-Validation statistics for the data Xie used in his dissertation [98],
using kriging, cokriging, and all sub-cokrigings. Starred results were judged the best
of their group. “kr,trans” results were from kriging the diagonalized (transformed)
variables, then linearly retransforming; variance-related cross-validation could not be
retransformed so easily.
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Figure 6.5. Calcium contours, for cokriging and kriging of the raw data, and kriging
of the transformed data, retransformed to the original. Results were contoured to the
same intervals.
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Figure 6.6. Magnesium contours, for kriging of the raw data, and kriging of the
transformed data, retransformed to the original. Results were contoured to the same
intervals. Kriging beat cokriging, and raw kriging did better than did kriging trans-
formed data.

which means that if ρ(h) = 1 the matrix V is rank-one. The corhogram of magnesium
and calcium was high (≈ 1) at the origin, and, as seen in Table (6.4), the cokriging
of those two also gave poor cross-validation statistics.

6.5 Linear Approximation to Cokriging

The results obtained from the linear approximation to cokriging of the diagonal-
ized variables 1 and 2 were disappointing. In this case, the norms for the matrices
A1A2 and A2A1 of (4.2.14) were rather high, 0.3270 and 0.3757; these values may
therefore serve as a starting point for the discussion of “how high is too high” to
make the linear approximation. The variation from kriging was radically higher for
the linear approximation than for cokriging, and, as one can see, the contour map for
the approximated variable is a poor approximation to the cokriging map.

The condition numbers of the kriging matrices were 562.3 and 356.6, while the two
additional matrices to invert (M1 and M2) had condition numbers of 1.5 and 1.6. The
condition number of the large Myers system matrix was 565.6, scarcely higher than
the kriging matrix of variable 1. The kriging matrices need to be inverted anyway,
however, and therefore, in place of inverting the 344×344 matrix of condition number
565.6, it is only necessary to invert two additional matrices of size 172 × 172, with
condition numbers of little more than 1.

6.6 TSVD of Common Sites

As described earlier in the chapter on Variogram Analysis, one can also use the
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Figure 6.7. Maps obtained using the new cokriging method (described in the Chap-
ter on kriging), kriging, and the linear approximation to cokriging. The linear ap-
proximation failed to approximate the cokriging map well, but this result may simply
indicate that the the norms of the matrices related to the cross-variogram were too
large.
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TSVD as a multivariate data analysis technique. The data set for the Nitrate project
was broken into 3 periods; for those periods, there were 34 sites common to all
three sets, for which 8 non-geographical variables are reported: bicarbonate, calcium,
magnesium, sodium, sulfate, chloride, nitrates, and depth-to-water. This constitutes
a 3 × 8 × 34 three-tensor.

The Matlab procedure unsymsort.m (found in the appendix) was used to decom-
pose this unsymmetric tensor. For comparison purposes, a decomposition using the
SVD was also generated (on the two smallest dimensions separately) and results were
compared. In other words, two matrices were created from the three-tensor: one was
3 × 3, and the other 8 × 8:

P3×3 ≡ 〈Tikl, Tjkl〉,
and

Q8×8 ≡ 〈Tkil, Tkjl〉.
From these were obtained two sets of singular vectors, which together serve as a
basis for the two space of 3 × 8 matrices. These basis matrices, pairs pi ⊗ qj , then
multiplied the tensor, generating a set of vectors rij in the Z-dimension, and a set λij

of “coordinates” for the decomposition:

〈pi ⊗ qj , T 〉 = λijrij.

The results are compared in Figure (6.8).
The successive SVD method is faster, retains all the information, and is easier to

characterize, as the decomposition information is contained in the sets of vectors and
scalars

{pi}i={1,··· ,p}, {qj}j={1,··· ,q}, {rij}, and{λij},
whereas the TSVD may require additional p and q information: its decomposition
information may require storage in sets

{pij}i={1,··· ,p},j={1,··· ,q}, {qij}i={1,··· ,p},j={1,··· ,q}, {rij}, and{λij}.

However, the low-rank approximation offered by the TSVD was better than that of
the SVD method, judging by the percentage of representation

∑rank

i=1 (λ2
i − µ2

i )
∑rank

i=1 µ2
i

. (6.6.3)

where the λi are the singular values, and the µi correspond to the rank-one tensors
given by the SVD method.

As algorithms are improved, speed should also; and it may be that, in the general
case, the TSVD will be able to achieve much more than the meager 2% advantage
it had at rank eight. The TSVD showed better results at certain ranks in tests with
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Figure 6.8. Comparison of the total “diagonal” representations by a separate SVD,
and by the TSVD. The TSVD does better at representing the information, up to rank
21, but does not quite capture all the information in the original tensor (accounting
for the dip at the end).

random outer-product tensors (e.g. tensors formed as the sum of four random outer-
products); generally much better than 2%, and it also tend to get better “recovery”
(not so much loss at the last ranks). Perhaps the strong correlation structure of the
Nitrate study data has an especially adverse effect on the power method.

Results using the same procedure on a set of such outer-product tensors, with
the same size as the Nitrate tensor (i.e., 3 × 8 × 34), are now described. The ten-
sors generated were sums of four outer-products (with four weights from a uniform
distribution on [0,1]:

T =

4
∑

i=1

wipi ⊗ qi ⊗ ri,

where pi, qi, and ri are random unit vectors). Figure (6.9) shows the histogram of the
improvements TSVD achieved over the SVD method for the 100 runs; and in Table
(6.6), the summary statistics are gathered. Two items are depicted: the maximum
improvement offered by the TSVD (for any rank, for a particular tensor), and the
minimum (which were all negative, implying that the SVD method outperformed the
TSVD method at some point, invariably at the tail end, as seen in Figure (6.8)).
The TSVD gain is given by (6.6.3). As the TSVD failed to reconstitute the tensor,
there is a slight dip at the end in Figure (6.9).

Overall the TSVD outperformed the separate SVD method on this task, at times
achieving up to about 70% more information over its similarly-ranked SVD cousin.
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Best Improvement mean max min σ
% 16.03 72.70 00.21 15.89
Worst Loss mean max min σ
% -00.04 (-)00.39 (-)00.00 00.06

Table 6.5. Results of 100 runs, for random 3 × 8 × 34 tensors (in percent).
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Figure 6.9. The TSVD maximized the representation of the tensors for some fixed
rank in each case, as shown in this histogram of the improvements TSVD achieved.
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The TSVD failed to account for at most half a percent of the information in the
tensors, as measured by the Frobenius norm.
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Chapter 7

Conclusion

The Singular Value Decomposition is a powerful tool, utilized in many techniques
of modern mathematics. Its applications are extremely diverse, but the prevalence
and importance of linear problems are the primary reasons that the SVD turns up so
often.

As we have shown, the SVD is essential in techniques such as Principal Com-
ponents Analysis and Correspondence Analysis; the solution of large, ill-conditioned
linear systems; image processing, compression, and analysis; variogram analysis; rapid
interpolation; and in many other areas. Its usefulness gives it a special place in statis-
tics and geostatistics, and much of mathematics in general.

We have shown that the SVD can be generalized, from the familiar matrix case to
the more general three-tensor case (the TSVD). Properties of the SVD led us to the
TSVD: we merely followed parallels between the two decompositions, generalizing
useful properties of the SVD (such as its rapid interpolation property). We have
shown how to define the Tensor SVD, that it exists, at least in the three-dimensional
case, and that the singular tensors of a three-tensor are bi-orthogonal.

Furthermore, we have shown the link which exists between the TSVD and the
solution of the near-simultaneous diagonalization problem of Flury. It has been shown
that the TSVD may accomplish essentially the same decomposition in problems of
geostatistical importance, especially variogram modelling in the important case of the
linear coregionalization model. It goes beyond the near-simultaneous diagonalization
problem, however, as the TSVD decomposes arbitrary tensors, not just tensors whose
layers are symmetric or even positive definite matrices.

Other applications of the TSVD in the theory of approximation and estimation
have been described, as well as some of the applications which motivated us to pursue
a tensor generalization of the SVD: one problem came from categorical statistics, and
another from data estimation.

While a power algorithm has been presented for the calculation of the TSVD
(in the three-tensor case), it is clear that we will need better algorithms before this
decomposition can be put to serious use.

The three-tensor of most interest to geostatisticians is the sample variogram ten-
sor, which is actually a stack of positive-definite matrices, each representing a sample
variogram value for a given distance. We have shown how the sample variogram
tensor is precisely a spatial decomposition (when properly weighted) of the sample
covariance matrix. We have shown how one can begin to use this knowledge when
choosing variables for a cokriging system.
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Xie’s algorithm and the TSVD decomposition of the variogram tensor lead to a
new set of variables, linear combinations of the original set of variables, which have
the property that their cross-variograms are small. One can then hope to krige these
(relatively) uncorrelated variables, then retransform to the original variables, in lieu
of cokriging. This idea is an extension of the factorial kriging model, but is more
appropriate as it focuses on reducing the cross-variogram, rather than the correlation
at lag zero.

Small cross-variograms may allow the use of a first-order approximation of the
cokriging results: this approximation arose out of the formal solution of the new
formulation of the cokriging equations, presented herein.

This new formulation is, in one sense, merely a permutation of Myers’s system:
as we have shown, the two-variable system is given in the two formulations by

[

V F
F T 0

] [

Γ
µ

]

=

[

V x

F x

]

⇐⇒
[

K11 C12

C12 K22

] [

Γ11 Γ12

Γ21 Γ22

]

=

[

Kx
1 Cx

12

Cx
12 Kx

2

]

.

The advantage of writing the system of equations in terms of the permuted system is
that certain steps toward inversion are already carried out, and the solution vectors,
or weights, obtained do double duty by also providing the solution to the kriging
systems K11 and K22. Certain sub-system cokriging solutions are also obtained.
Furthermore, the inversion process displays connections to the Cauchy-Schwartz con-
dition in the matrix setting, and the matrices which one must invert are smaller, and
better conditioned.

From our investigations of kriging we have discovered that there is a strong rela-
tionship between kriging and kernel estimation. The spline, which we know to be a
special case of kriging, has been thoroughly explored in the literature, and the ker-
nel of the smoothing spline identified. In the case of variogram models, other than
the nugget and the linear model without nugget, no such identification has yet been
made.

Even so, it appears that one can at least approximate the action of a kriging
system on a well-distributed set of data by a kernel, a method which has obvious
advantages over the large linear systems of the kriging equations. We have shown
example kernels which appear to be analogues of the standard variogram models, and
examined qualitative features of others.

Finally, several methods described herein were applied to a data set consisting
of well samples from an area around Phoenix, Arizona. Demonstrations were given
of automated variogram and cross-variogram modelling, variogram matrix modelling
via the TSVD in the case of coregionalization, the linear approximation to cokriging,
TSVD diagonalization of common sites through time, and cross-validation of maps.
These were given in such a way that interested readers should be able to carry out the
procedures on their own, and, as an aid to those so inclined, some MATLAB routines
are included in the appendix.
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We hope that the results presented herein represent some small contribution to-
ward the betterment of geostatistical analysis.
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Appendix A

TSVD Calculations

A.1 Symmetric Power Method for Finding Singular Tensors

A.1.1 Main Routine

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% This is a program for calculating the symmetric singular tensors of a three-

% tensor. Tensors may be read in as a set of outer-products, or as a file

% containing the tensor in patches, p x q, of which there are r. These

% dimensions should be at the top of the file, in the first line.

%

% set up some of the necessary declarations:

vector = 0;

demand_orthogonality = 1;

maxiterations = 200;

normeps = 1e-6;

eps = 1e-30;

filename=’../tdiss.dat’;

% read in the tensor and dimensions:

if vector == 1

tensor=ten_tile(u1,u1,u3,lambda,1);

else

% it is assumed that the patches are read in as pxp layers in filename:

% in the top row of the file are four numbers: p, p, r, and any other

% integer.

[tensor,p,q,r]=tensor_as_patches(filename);

end

maxtrips = p*p*p;

diffs=zeros(maxtrips,maxiterations);

pkeep=zeros(p,maxtrips);

lambdas=zeros(1,maxtrips);

rkeep=zeros(r,maxtrips);

rvec=zeros(r,1);

% scale the tensor:

tensornorm=norm(tensor,’fro’);

tensor=tensor/tensornorm;

ntrips = 0;

%

% Start the power iterations:

%

for i = 1:maxtrips

%

% Create the four tensor:

%

tensor2=patch_ten_mat(tensor,p);
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for l = 1:p

ll=(l-1)*p;

for m = 1:p

mm=(m-1)*p;

taid=tensor2(:,(l-1)*p+m);

for j=1:p

for k=1:p

fourtensor(ll+j,mm+k)=taid’*tensor2(:,(j-1)*p+k);

end

end

end

end

%

% Randomize the initial guess:

%

pvec=randn(p,1);

pvec=normr(pvec’)’;

pback=pvec;

%

% Iterate on the four tensor:

%

for j = 1:maxiterations

outer=pvec*pback’+ pback*pvec’;

pvec=pback;

for k = 1:p

kk = (k-1)*p+1;

for l = k:p

ll = (l-1)*p+1;

prod(k,l)=sum(sum(outer.*fourtensor(kk:kk+p-1,ll:ll+p-1)));

prod(l,k)=prod(k,l);

end

end

pback=prod*pvec;

pback=normr(pback’)’;

if demand_orthogonality == 1

for k=1:ntrips

pback = pback-pkeep(:,k)’*pback*pkeep(:,k);

pback=normr(pback’)’;

end

end

diff=1-abs(pvec’*pback);

diffs(j,i)=diff;

if diff < eps

break;break;

end

end

fprintf(’Diff: %f;\n’,diff);

%

% Compute the r vector, and other things:

%

iterates=j;

pvec=pback;

%

% Deflate the tensor:

%

if demand_orthogonality == 1
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for k=1:ntrips

pvec = pvec-pkeep(:,k)’*pvec*pkeep(:,k);

pvec=normr(pvec’)’;

end

end

outer=pvec*pvec’;

for j = 1:r

ll=p*(j-1);

temp=tensor(ll+1:ll+p,1:p);

rvec(j)=pvec’*temp*pvec;

temp = temp - rvec(j)*outer;

if demand_orthogonality == 1

outerprod=(temp*pvec)*pvec’;

temp=temp - (outerprod + outerprod’);

end

tensor(ll+1:ll+p,1:p)=temp;

end

%

% Store our values:

%

pkeep(:,i)=pvec;

lambdas(i)=norm(rvec);

rkeep(:,i)=rvec/lambdas(i);

%

% Inform user, and check for finish:

%

ntrips = ntrips + 1;

newnorm=norm(tensor,’fro’);

fprintf(’Trip %d, newnorm %f; %d iterations.\n’,i,newnorm,iterates);

if newnorm < normeps

break

end

if demand_orthogonality == 1

if ntrips == p

break;

end

end

end

%

% If we’re demanding orthogonality, then compute

% the other products:

%

if demand_orthogonality == 1

% Need to reread original tensor, as it is completely deflated:

if vector == 1

tensor=ten_tile(u1,u1,u3,lambda,1);

else

[tensor,p,q,r]=tensor_as_patches(filename);

end

tensor=tensor/tensornorm;

ii = ntrips;

qkeep=pkeep;

for iloop = 1:ntrips-1

for jloop = iloop+1:ntrips

ii=ii+1;

pkeep(:,ii)=pkeep(:,iloop);

qkeep(:,ii)=pkeep(:,jloop);

outer=pkeep(:,ii)*qkeep(:,ii)’;

for j = 1:r

ll=p*(j-1);
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rvec(j)=sum(sum(outer.*tensor(ll+1:ll+p,1:p)));

tensor(ll+1:ll+p,1:p)=tensor(ll+1:ll+p,1:p) - rvec(j)*outer;

end

lambdas(ii)=norm(rvec);

rkeep(:,ii)=rvec/lambdas(ii);

ii=ii+1;

pkeep(:,ii)=pkeep(:,jloop);

qkeep(:,ii)=pkeep(:,iloop);

lambdas(ii)=lambdas(ii-1);

rkeep(:,ii)=rkeep(:,ii-1);

end

end

qkeep=qkeep(:,1:ii)

end

pkeep=pkeep(:,1:ii)

rkeep=rkeep(:,1:ii)

lambdas=lambdas(1:ii)*tensornorm

diffs=diffs(:,1:ntrips);

%

% Plot out some results:

%

% This shows how we did on convergence:

%

plot(diffs);drawnow;pause

%

% These are the new coordinates (as in the text):

%

plot(pkeep);drawnow;pause

%

% These are the new variograms:

%

plot(rkeep*diag(lambdas));drawnow;pause

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

A.1.2 Sub-Routines

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% ten_tile.m: Converts outer-products representing the tensor into a tiled

% matrix.

%

% function [mat]=ten_tile(u1,u2,u3,lambda,cols)

%

function [mat]=ten_tile(u1,u2,u3,lambda,cols)

p=size(u1);

q=size(u2);

r=size(u3);

p=p(1);

q=q(1);

r=r(1);

num=size(lambda);

num=num(1);

if nargin ~= 5

cols=r;

end

w3=u3(:,1:num)*lambda;

mat=zeros(r*p,cols*q);

%

% fill the first column: then symmetrize it:
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%

l=0;

for m = 1:num

for k = 1:r

l=(k-1)*p;

hold1=w3(k,m);

for i = 1:p

hold=u1(i,m)*hold1;

for j = 1:q

mat(l+i,j) = mat(l+i,j) + hold*u2(j,m);

end

end

end

end

%

% Now do the rest of the columns:

%

for k = 1:r

l=(k-1)*p;

ll=l;

for n = 1:cols-1

nn = n*q;

ll = ll - p;

if ll < 0

ll = (r-1)*p;

end

for i = 1:p

for j = 1:q

mat(ll+i,nn+j) = mat(l+i,j);

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% patch_ten_mat.m: Converts patch tensor into a matrix representing the tensor.

%

% function [mat]=patch_ten_mat(mat,p)

%

function [mat2]=patch_ten_mat(mat,p)

matsize=size(mat);

q=matsize(2);

r=matsize(1)/p;

mat2=zeros(r,p*q);

for k = 1:r

l=0;

m=(k-1)*p;

for i = 1:p

for j = 1:q

l=l+1;

mat2(k,l) = mat(m+i,j);

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% tensor_as_patches.m: reads in a tensor as patches. Must have four
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% integers at the top, indicating p x q x r x anything!

%

% function [tensor,p,q,r] = tensor_as_patches(filename)

%

function [tensor,p,q,r] = tensor_as_patches(filename)

fid=fopen(filename,’r’);

vals=fscanf(fid,’%d %d %d %d’,4);

p=vals(1);

q=vals(2);

r=vals(3);

vals

tensor=zeros(q,r*p);

tensor(:)=fscanf(fid,’%f ’);

tensor=tensor’;

A.2 Power Method for Unsymmetric Tensors
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% UNSYMSORT.M

%

% Unsymsort is a modified algorithm, which seeks to compare the SVDs of the

% various subsystems with the result obtained by restricting to the completely

% orthogonal space. In the event that the subspace shows a bigger (or at

% least almost bigger) subspace, then we use it instead.

%

% SET UP SOME OF THE NECESSARY DECLARATIONS:

%

% vector decides whether we use (already defined) vectors, contained in

% matrices u1, u2, and u3, of dimensions p, q, r (which also must be

% defined before starting); or whether we use a file containing "patches" of

% the tensor. vector = 1 => using vectors; else using a file of patches.

%

vector = 0;

%

% maxiterations is the number of passes the program will make, before

% quitting from fatigue.

%

maxiterations = 200;

%

% normeps will test the remaining norm in the matrix: if small, we

% consider it diagonalized.

%

normeps = 1e-6;

%

% eps is a test for the difference in each pass of the maxiterations

% passes, as a test for convergence.

%

eps = 1e-30;

%

% we introduce a fudge factor to allow the program to take a previously

% obtained combination of vectors over a newly found one, in case the

% difference is small: this is to avoid moving back into already eliminated

% space (a problem with power methods).

%

fudge = .97;

filename=’../tdiss.dat’; % this is the tensor in Xie’s dissertation.

%

% READ IN THE TENSOR AND DIMENSIONS:

%
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if vector == 1

%

% Again, if we’re using this option, one must define the vectors and a

% diagonal matrix lambda, which contains the weights of their outer

% products, ahead of time. p, q, and r must also be set.

%

tensor=ten_tile(u1,u2,u3,lambda,1);

else

%

% It is assumed that the patches are read in as pxp layers in filename:

% in the top row of the file are four numbers: p, p, r, and any other integer.

%

[tensor,p,q,r]=tensor_as_patches(filename);

end

%

% maxtrips should probably be the known maximum rank, although with the

% "drift" known to occur with power methods, this can be exceeded.

%

maxtrips = p*q;

%

% ZERO OUT THE ARRAYS WE NEED:

%

diffs=zeros(maxtrips,maxiterations);

lams=zeros(maxtrips,3);

prod=zeros(p,q);

lambdas=zeros(1,maxtrips);

pkeep=zeros(p,maxtrips);

qkeep=zeros(q,maxtrips);

rkeep=zeros(r,maxtrips);

pvec=zeros(p,1);

qvec=zeros(q,1);

rvec=zeros(r,1);

fourtensor=zeros(p*p,q*q);

%

% Save the tensor (as a matrix) for later, to be shown in pictures:

%

gar=patch_ten_mat(tensor,p);

%

% SCALE THE TENSOR:

%

tensornorm=norm(tensor,’fro’);

tensor=tensor/tensornorm;

%

% START THE POWER ITERATIONS:

%

ntrips = 0;

for i = 1:maxtrips

%

% CREATE THE FOUR TENSOR:

%

tensor2=patch_ten_mat(tensor,p);

kk = -1;

for l = 0:q:(p-1)*q

kk=kk+1;

for m = 1:q

mm=(m-1)*q;

taid=tensor2(:,l+m);

for j=1:p

ll = kk*p+j;

jj = (j-1)*q;

for k=1:q

fourtensor(ll,mm+k)=taid’*tensor2(:,jj+k);
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end

end

end

end

%

% RANDOMIZE THE INITIAL GUESS:

%

pvec=randn(p,1);

pvec=normr(pvec’)’;

qvec=randn(q,1);

qvec=normr(qvec’)’;

%

% ITERATE ON THE FOUR TENSOR:

%

for j = 1:maxiterations

outer=pvec*qvec’;

for k = 1:p

kk = (k-1)*p;

for l = 1:q

ll = (l-1)*q;

temp = fourtensor(kk+1:kk+p,ll+1:ll+q);

prod(k,l)=pvec’*temp*qvec;

end

end

qback=pvec’*prod;

qback=normr(qback)’;

diff=1-abs(qvec’*qback);

pvec=prod*qvec;

pvec=normr(pvec’)’;

qvec=qback;

diffs(j,i)=diff;

if diff < eps

break;break;

end

end

iterates=j;

fprintf(’Diff: %f;\n’,diff);

%

% COMPUTE THE R VECTOR, AND OTHER THINGS:

%

for j = 1:r

jj=p*(j-1);

temp=tensor(jj+1:jj+p,1:q);

rvec(j)=pvec’*temp*qvec;

end

lambdas(i)=norm(rvec);

rkeep(:,i)=rvec/lambdas(i);

qkeep(:,i)=qvec;

pkeep(:,i)=pvec;

%

% COMPUTE SVDS FOR ALL PREVIOUSLY OBTAINED TENSORS:

%

ikeep=0;

jkeep=0;

for k=ntrips:-1:1

pvec=pkeep(:,k);
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mat=zeros(r,q);

for j = 1:r

jj=p*(j-1);

mat(j,1:q)=pvec’*tensor(jj+1:jj+p,1:q);

end

[u,s,v]=svd(mat,0);

lams(k,1)=s(1,1);

qvec=qkeep(:,k);

mat=zeros(r,p);

for j = 1:r

jj=p*(j-1);

mat(j,1:p)=(tensor(jj+1:jj+p,1:q)*qvec)’;

end

[u,s,v]=svd(mat,0);

lams(k,2)=s(1,1);

rvec=rkeep(:,k);

mat=zeros(p,q);

jj=p*(r-1);

for j = 1:p

mat(j,1:q)=rvec’*tensor(j:p:jj+j,1:q);

end

[u,s,v]=svd(mat,0);

lams(k,3)=s(1,1);

end

if ntrips > 0

%

% then we sort the lambdas, from the SVDs, looking for the max:

%

[lamsort,index]=sort(lams);

%

% We then sort the three maxima, finding out which column had the maximum

% value:

%

[lamsmax,column]=sort(lamsort(maxtrips:maxtrips,:));

fprintf(’lambdas: new: %f; used: %f %f %f\n’,lambdas(i),lamsmax)

if lamsmax(3) > fudge*lambdas(i)

%

% We recompute the SVD for the maximal trip, and column, and use it instead:

%

if column(3) == 3

rvec=rkeep(:,index(maxtrips,3));

mat=zeros(p,q);

jj=p*(r-1);

for j = 1:p

mat(j,1:q)=rvec’*tensor(j:p:jj+j,1:q);

end

[u,s,v]=svd(mat,0);

pkeep(:,i)=u(:,1);

qkeep(:,i)=v(:,1);

rkeep(:,i)=rvec;

elseif column(3) == 1

pvec=pkeep(:,index(maxtrips,1));

mat=zeros(r,q);

for j = 1:r

jj=p*(j-1);

mat(j,1:q)=pvec’*tensor(jj+1:jj+p,1:q);

end
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[u,s,v]=svd(mat,0);

pkeep(:,i)=pvec;

qkeep(:,i)=v(:,1);

rkeep(:,i)=u(:,1);

else

qvec=qkeep(:,index(maxtrips,2));

mat=zeros(r,p);

for j = 1:r

jj=p*(j-1);

mat(j,1:p)=(tensor(jj+1:jj+p,1:q)*qvec)’;

end

[u,s,v]=svd(mat,0);

pkeep(:,i)=v(:,1);

qkeep(:,i)=qvec;

rkeep(:,i)=u(:,1);

end

fprintf(’Winner: %d %d\n’,index(maxtrips,column(3)),column(3))

else

fprintf(’Winner: new tensor.\n’)

end

else

fprintf(’Winner: new tensor.\n’)

end

%

% DEFLATE THE TENSOR AND STORE THE WINNER:

%

pvec=pkeep(:,i)

qvec=qkeep(:,i)

outer=pvec*qvec’;

for j = 1:r

jj=p*(j-1);

temp=tensor(jj+1:jj+p,1:q);

rvec(j)=pvec’*temp*qvec;

tensor(jj+1:jj+p,1:q)=temp - rvec(j)*outer;

end

lambdas(i)=norm(rvec);

rkeep(:,i)=rvec/lambdas(i);

%

% INFORM USER, AND CHECK FOR FINISH:

%

ntrips = ntrips + 1;

newnorm=norm(tensor,’fro’);

fprintf(’Trip %d, newnorm %f; %d iterations.\n’,i,newnorm,iterates);

if newnorm < normeps

break

end

end

%

% Restrict these guys to the number actually used:

%

pkeep=pkeep(:,1:i)

qkeep=qkeep(:,1:i)

rkeep=rkeep(:,1:i)

diffs=diffs(:,1:ntrips);

%

% Rescale the lambdas, as we scaled the tensor originally:

%

lambdas=lambdas(1:i)*tensornorm

%

% PLOT OUT SOME RESULTS:

%
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% THIS SHOWS HOW WE DID ON CONVERGENCE, IN ITERATING:

%

figure (1)

plot(diffs);drawnow;pause

%

% THESE ARE THE NEW COORDINATES (AS IN THE TEXT):

%

plot(pkeep);drawnow;pause

%

% THESE ARE THE NEW VARIOGRAMS, IF IT’S THAT SORT OF PROBLEM:

%

rkeep=rkeep*diag(lambdas);

plot(rkeep);drawnow;pause

rkeep=rkeep*inv(diag(lambdas));

for i=1:length(lambdas)

bage=ten_mat(pkeep,qkeep,rkeep,diag(lambdas(1:i)));

plot(gar,’w’)

hold on

plot(bage,’y’)

hold off

drawnow

pause

end

delete(1)

\subsection{Additional Sub-Routines}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% ten_mat.m: Converts outer-products into a matrix representing the tensor.

%

% function [mat]=ten_mat(u1,u2,u3,lambda)

%

function [mat]=ten_mat(u1,u2,u3,lambda)

length_u1=size(u1);

length_u2=size(u2);

length_u3=size(u3);

num=size(lambda);

num=num(2);

length_u1=length_u1(1);

length_u2=length_u2(1);

length_u3=length_u3(1);

w3=u3(:,1:num)*lambda;

mat=zeros(length_u3,length_u1*length_u2);

for k = 1:num

l=0;

for i = 1:length_u1

for j = 1:length_u2

l=l+1;

mat(:,l) = mat(:,l)+u1(i,k)*u2(j,k)*w3(:,k);

end

end

end

Matlab Demo of New Cokriging Equations
The following program is a Matlab “.m” file: Matlab will run it like a script if it
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is in the directory in which Matlab is running, if the user types:

>> condition

In particular note how close the linear approximation gets to the true values of
the cross-weights from the cokriging scheme in the sample run. The reader can watch
this deteriorate as the values of the coefficients .01 and .02 of the line

cv(i,j) = .02*k1(i,j) + .01*k2(i,j);

below are increased, resulting in a larger norm of the cross-terms matrices norm AB
and norm BA.

--------------------------------------------------------------

Input to Matlab: condition.m

--------------------------------------------------------------

%

% We present an example case, of ordinary cokriging, with three

% sites and a couple of standard models.

%

fprintf(’\nThese are the sites we will be using:\n’)

sites=rand(1,3)

x0=.2

range1=3;

range2=3;

sill1=1;

sill2=1;

for i = 1:3

for j = 1:3

distance=abs(sites(i)-sites(j));

k1(i,j) = sill1*(1-exp(-(distance*log(20)/range1)^2));

k2(i,j) = sill2*(1-exp(-distance*log(20)/range2));

cv(i,j) = .02*k1(i,j) + .01*k2(i,j);

end

end

v10=ones(4,1);

v20=ones(4,1);

cv0=zeros(4,1);

for i = 1:3

distance=abs(sites(i)-x0);

v10(i) = sill1*(1-exp(-(distance*log(20)/range1)^2));

v20(i) = sill2*(1-exp(-distance*log(20)/range2));

cv0(i) = .02*v10(i) + .01*v20(i);

end

fprintf(’\nThis is the Myers system cokriging matrix:\n’)

I=eye(2,2);

Z=zeros(2,2);

vmat12= [k1(1,2) cv(1,2);cv(1,2) k2(1,2)];

vmat13= [k1(1,3) cv(1,3);cv(1,3) k2(1,3)];

vmat23= [k1(2,3) cv(2,3);cv(2,3) k2(2,3)];

X = [



184

Z vmat12 vmat13 I

vmat12 Z vmat23 I

vmat13 vmat23 Z I

I I I Z

]

fprintf(’and the permutation matrix P:\n’)

P = [

1 0 0 0 0 0 0 0;

0 0 1 0 0 0 0 0;

0 0 0 0 1 0 0 0;

0 0 0 0 0 0 1 0;

0 1 0 0 0 0 0 0;

0 0 0 1 0 0 0 0;

0 0 0 0 0 1 0 0;

0 0 0 0 0 0 0 1;

]

pause

fprintf(’C is the permuted matrix: C=P*X*Pt\n’)

C=P*X*P’

fprintf(’Here are its subcomponent matrices:\n’)

K1 = [ C(1:4,1) C(1:4,2) C(1:4,3) C(1:4,4) ]

CR = [ C(5:8,1) C(5:8,2) C(5:8,3) C(5:8,4) ]

K2 = [ C(5:8,5) C(5:8,6) C(5:8,7) C(5:8,8) ]

pause

fprintf(’Here are some useful matrices: (inverse of K1 and K2, etc.)\n’)

K1inv=inv(K1)

K2inv=inv(K2)

A=K1inv*CR

B=K2inv*CR

pause

fprintf(’Have a look at the condition numbers of the relevant matrices:\n’)

fprintf(’we should see that the conditions of K1 and K2 are less than C.\n’)

condC=cond(C)

condK1=cond(K1)

condK2=cond(K2)

cond_IminusAB=cond(eye(4)-A*B)

norm_AB=norm(A*B)

cond_minusBA=cond(eye(4)-B*A)

norm_BA=norm(B*A)

pause

fprintf(’So we invert I-AB and I-BA rather than C:\n’)

M1inv=inv(eye(4)-A*B)

M2inv=inv(eye(4)-B*A)

Cinv=inv(C)



185

pause

fprintf(’Define the RHS (made up variograms and cross-variograms at x0):\n’)

RHS=[

v10 cv0

cv0 v20

]

pause

fprintf(’\n Now we compare results: first using the small systems:\n’)

krig1=K1inv*v10;

krig2=K2inv*v20;

G1=M1inv*(K1inv*v10-A*K2inv*cv0);

g1=K2inv*cv0-B*G1;

G2=M2inv*(K2inv*v20-B*K1inv*cv0);

g2=K1inv*cv0-A*G2;

cokriging_weights=[

G1 g2

g1 G2

]

fprintf(’And then using the large Myers System:\n’)

cokriging_weights=Cinv*RHS

fprintf(’Identical!\n’)

fprintf(’\n By the way, why not have a look at the kriging weights:\n’)

kriging_weights=[

krig1 zeros(4,1)

zeros(4,1) krig2

]

fprintf(’\n And here is the linear approximation to the cokriging weights:\n’)

cheap_correction=[

krig1 -K1inv*(CR*krig2 - cv0)

-K2inv*(CR*krig1 - cv0) krig2

]

--------------------------------------------------------------

Output from a run:

--------------------------------------------------------------

These are the sites we will be using:

sites =

0.0077 0.3834 0.0668

x0 =

0.2000
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This is the Myers system cokriging matrix:

X =

Columns 1 through 7

0 0 0.1313 0.0058 0.0035 0.0006 1.0000

0 0 0.0058 0.3128 0.0006 0.0573 0

0.1313 0.0058 0 0 0.0951 0.0046 1.0000

0.0058 0.3128 0 0 0.0046 0.2710 0

0.0035 0.0006 0.0951 0.0046 0 0 1.0000

0.0006 0.0573 0.0046 0.2710 0 0 0

1.0000 0 1.0000 0 1.0000 0 0

0 1.0000 0 1.0000 0 1.0000 0

Column 8

0

1.0000

0

1.0000

0

1.0000

0

0

and the permutation matrix P:

P =

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

C is the permuted matrix: C=P*X*Pt

C =

Columns 1 through 7

0 0.1313 0.0035 1.0000 0 0.0058 0.0006

0.1313 0 0.0951 1.0000 0.0058 0 0.0046

0.0035 0.0951 0 1.0000 0.0006 0.0046 0

1.0000 1.0000 1.0000 0 0 0 0

0 0.0058 0.0006 0 0 0.3128 0.0573

0.0058 0 0.0046 0 0.3128 0 0.2710

0.0006 0.0046 0 0 0.0573 0.2710 0

0 0 0 0 1.0000 1.0000 1.0000

Column 8

0

0

0

0

1.0000

1.0000
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1.0000

0

Here are its subcomponent matrices:

K1 =

0 0.1313 0.0035 1.0000

0.1313 0 0.0951 1.0000

0.0035 0.0951 0 1.0000

1.0000 1.0000 1.0000 0

CR =

0 0.0058 0.0006 0

0.0058 0 0.0046 0

0.0006 0.0046 0 0

0 0 0 0

K2 =

0 0.3128 0.0573 1.0000

0.3128 0 0.2710 1.0000

0.0573 0.2710 0 1.0000

1.0000 1.0000 1.0000 0

Here are some useful matrices: (inverse of K1 and K2, etc.)

K1inv =

1.0e+03 *

-0.7488 -0.1288 0.8776 0.0149

-0.1288 -0.0274 0.1562 0.0031

0.8776 0.1562 -1.0338 -0.0169

0.0149 0.0031 -0.0169 -0.0003

K2inv =

-8.7525 0.2510 8.5015 0.4339

0.2510 -1.8520 1.6010 0.4876

8.5015 1.6010 -10.1025 0.0785

0.4339 0.4876 0.0785 -0.1570

A =

-0.1768 -0.2611 -1.0757 0

-0.0573 -0.0207 -0.2093 0

0.2341 0.2817 1.2850 0

0.0067 0.0075 0.0236 0

B =

0.0069 -0.0112 -0.0045 0

-0.0096 0.0088 -0.0084 0

0.0027 0.0023 0.0129 0

0.0029 0.0029 0.0025 0
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Have a look at the condition numbers of the relevant matrices:

we should see that the conditions of K1 and K2 are less than C.

condC =

3.5775e+03

condK1 =

3.2668e+03

condK2 =

35.3597

cond_IminusAB =

1.0181

norm_AB =

0.0179

cond_minusBA =

1.0181

norm_BA =

0.0179

So we invert I-AB and I-BA rather than C:

M1inv =

0.9983 -0.0029 -0.0110 0

-0.0008 1.0000 -0.0023 0

0.0024 0.0029 1.0132 0

0.0000 0.0000 0.0002 1.0000

M2inv =

0.9983 -0.0029 -0.0110 0

-0.0008 1.0000 -0.0023 0

0.0024 0.0029 1.0132 0

-0.0001 -0.0001 -0.0004 1.0000

Cinv =

1.0e+03 *

Columns 1 through 7
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-0.7568 -0.1302 0.8870 0.0150 0.0077 0.0013 -0.0090

-0.1302 -0.0277 0.1579 0.0031 0.0013 0.0003 -0.0016

0.8870 0.1579 -1.0449 -0.0171 -0.0090 -0.0016 0.0107

0.0150 0.0031 -0.0171 -0.0003 -0.0001 -0.0000 0.0002

0.0077 0.0013 -0.0090 -0.0001 -0.0088 0.0002 0.0086

0.0013 0.0003 -0.0016 -0.0000 0.0002 -0.0019 0.0016

-0.0090 -0.0016 0.0107 0.0002 0.0086 0.0016 -0.0102

0.0003 0.0001 -0.0003 -0.0000 0.0004 0.0005 0.0001

Column 8

0.0003

0.0001

-0.0003

-0.0000

0.0004

0.0005

0.0001

-0.0002

Define the RHS (made up variograms and cross-variograms at x0):

RHS =

0.0362 0.0025

0.0330 0.0023

0.0175 0.0016

1.0000 0

0.0025 0.1747

0.0023 0.1674

0.0016 0.1245

0 1.0000

Now we compare results: first using the small systems:

cokriging_weights =

-1.1323 -0.0228

0.2238 -0.0039

1.9085 0.0267

0.0002 0.0001

0.0114 0.0055

0.0020 0.4208

-0.0133 0.5737

0.0001 0.0102

And then using the large Myers System:

cokriging_weights =

-1.1323 -0.0228

0.2238 -0.0039

1.9085 0.0267

0.0002 0.0001

0.0114 0.0055

0.0020 0.4208

-0.0133 0.5737

0.0001 0.0102

Identical!
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By the way, why not have a look at the kriging weights:

kriging_weights =

-1.1205 0

0.2259 0

1.8946 0

-0.0001 0

0 0.0052

0 0.4208

0 0.5740

0 0.0102

And here is the linear approximation to the cokriging weights:

cheap_correction =

-1.1205 -0.0225

0.2259 -0.0039

1.8946 0.0264

-0.0001 0.0001

0.0113 0.0052

0.0019 0.4208

-0.0132 0.5740

0.0001 0.0102

Case Study Support

.1 Variogram Models

On the next few pages are Tables of the models used in the Nitrate study for the
kriging and cokriging of nitrate concentrations. The models were (mostly) the result
of using the automated fitting routines described in this dissertation, although some
adjustments were made following visual inspections of all models.

The models all satisfied the Cauchy-Schwarz condition (pair-wise) over all lags for
which they were used. These cross-variogram models are actually the models of the
sum and difference variables, the latter subtracted from the former (which explains
the negative sills). Thus we must multiply by .25 to get a cross-variogram model, as
Myers showed in [66]:

γij = .25(γ+
ij − γ−ij ).

As noted in the text, the corhograms and cross-variance maps are (at this stage)
mostly useful as a diagnostic tool. They are included for comparison purposes: the
corhograms for comparison especially with the corhogram models shown in Figure
(3.6), and the cross-variance maps for comparison against the cross-validation results
shown in Tables (6.2), (6.2), and (6.2).
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variables model type sill major range minor range

nitrates nugget 0.42074
spherical 0.505778 17.4928 17.4928
spherical 0.170848 0.856532 0.856532

calcium nugget 0.669432
exponential 0.567845 197.551 197.551
gaussian 0.878349 88.4874 88.4874

nitrates/ca nugget 0.889346
exponential 0.198518 0.667431 0.667431
gaussian 0.943697 22.5276 22.5276
spherical 0.993264 5.13112 5.13112
linear -0.300805 30.5527 30.5527
spherical -5.16660E-02 10.53693 10.53693
spherical -0.255302 2.82123 2.82123

chloride nugget 0.226366
gaussian 0.687097 22.7946 22.7946
spherical 0.135825 5.32890 5.3289
gaussian 6.27085E-02 4.45168 4.45168

nitrates/ch nugget 0.894672
gaussian 1.77185 18.3524 18.3524
spherical 0.385983 4.32405 4.32405
gaussian 3.35447E-04 3.55479 3.55479
linear -0.208631 30.5527 30.5527
spherical -0.275018 19.5898 19.5898
spherical -0.215388 3.28831 3.28831

magnesium nugget 0.341738
linear 0.216525 30.5527 30.5527
spherical 0.564624 6.98589 6.98589

nitrates/mg nugget 1.1038
spherical 1.27748 20.3593 20.3593
spherical 0.773462 5.57295 5.57295
spherical -0.217785 9.46021 9.46021
spherical -0.287147 3.14974 3.14974
gaussian -6.78255E-02 2.60880 2.6088

Table 1. Variograms and cross-variograms for 1977 cokrigings, I. Sills for cross-
variograms should be multiplied by .25 (these are actually sum-difference variograms
of the variables, so the cross-variogram is given by γij=.25(sum-diff)).
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variables model type sill major range minor range

pca reg. nugget 0.302563
exponential 1.35605 101.0394 101.0394
gaussian 0.459727 119.697 119.697

nitrates/pca nugget 0.543123
gaussian 1.47213 22.6026 22.6026
gaussian 0.203045 4.62081 4.62081
spherical 0.416445 5.10391 5.10391
gaussian 0.279664 0.750125 0.750125
linear -0.261009 30.5527 30.5527
spherical -0.290332 18.6677 18.6677
spherical -0.215663 3.07892 3.07892
gaussian -5.33472E-02 2.46490 2.4649

lin. reg. nugget 0.494107
exponential 0.287306 26.1072 26.1072
spherical 0.211852 7.67736 7.67736
gaussian 5.87922E-02 6.24912 6.24912

nitrates/lr nugget 1.00481
gaussian 1.19216 16.2890 16.289
gaussian 0.407702 4.06527 4.06527
spherical 0.492391 0.880435 0.880435
spherical 0.168212 4.51484 4.51484
exponential -6.65601E-02 31.9969 31.9969
gaussian -0.136549 9.10415 9.10415
gaussian -0.131662 1.84874 1.84874
spherical -4.05557E-02 2.09480 2.0948

Table 2. Variograms and cross-variograms for 1977 cokrigings, II. Sills for cross-
variograms should be multiplied by .25.
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variables model type sill major range minor range

nitrates nugget 0.289764
linear 0.526127 40.4944 40.4944
gaussian 1.02792E-01 11.5645 11.5645
spherical 0.162134 2.58734 2.58734
gaussian 8.96023E-02 2.43956 2.43956

calcium nugget 0.194048
gaussian 1.60796 56.5172 56.5172
spherical 0.132535 2.83100 2.8310
gaussian 1.03235E-01 9.13840 9.1384

nitrates/ca nugget 0.445243
gaussian 3.34830 51.2163 51.2163
spherical 0.563586 2.42568 2.42568
spherical 0.537779 10.54830 10.5483
gaussian 2.28766E-02 1.83202 1.83202
exponential 3.26686E-04 3.14476 3.14476
linear -0.388786 40.4944 40.4944
gaussian -0.399827 76.5469 76.5469
spherical -0.116354 2.99049 2.99049
gaussian -0.143787 2.88600 2.8860

chloride nugget 0.131832
linear 0.752781 40.4944 40.4944
gaussian 1.42476 70.1714 70.1714
gaussian 8.88868E-02 8.69715 8.69715

nitrates/ch nugget 0.501492
exponential 0.850073 22.2423 22.2423
gaussian 5.94618 97.5666 97.5666
spherical 2.08493 119.788 119.788
linear -0.460608 40.4944 40.4944
gaussian -0.158956 44.7506 44.7506
spherical -3.12102E-02 63.8406 63.8406
spherical -2.08348E-02 3.96938 3.96938
gaussian -0.158869 3.48219 3.48219

Table 3. Variograms and cross-variograms for 1985 cokrigings, I. Sills for cross-
variograms should be multiplied by .25.
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variables model type sill major range minor range

magnesium nugget 0.248134
gaussian 0.991270 45.7000 45.700
spherical 0.320873 37.6213 37.6213
gaussian 8.27806E-02 8.50180 8.5018
spherical 3.51657E-02 2.99078 2.99078
exponential 7.55144E-04 8.30604 8.30604

nitrates/mg nugget 0.483458
linear 0.966404 40.4944 40.4944
spherical 1.69624 37.2791 37.2791
spherical 0.319350 2.64113 2.64113
gaussian 0.136415 2.73304 2.73304
gaussian 0.685259 44.8484 44.8484
linear -0.317701 40.4944 40.4944
gaussian -0.282748 70.9316 70.9316
spherical -6.19093E-02 2.96409 2.96409
gaussian -0.131639 2.90679 2.90679

Table 4. Variograms and cross-variograms for 1985 cokrigings, II. Sills for cross-
variograms should be multiplied by .25.
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variables model type sill major range minor range

pca reg. nugget 0.107054
gaussian 1.94307 61.5769 61.5769
spherical 0.236699 60.6609 60.6609
gaussian 9.20100E-02 9.32408 9.32408
spherical 5.79837E-02 2.14696 2.14696
spherical 1.36684E-02 0.718086 0.718086

nitrates/pca nugget -0.239728
linear 2.40809 40.4944 40.4944
gaussian 2.13982 63.7761 63.7761
exponential 0.322951 0.763143 0.763143
exponential 0.164408 8.21262 8.21262
gaussian 0.308639 1.87242 1.87242
exponential -0.854502 106.308 106.308
gaussian -0.254184 141.005 141.005
spherical -0.123527 47.9941 47.9941

lin. reg. nugget 0.134227
gaussian 0.812417 52.6957 52.6957
spherical 0.414495 42.2701 42.2701
exponential 2.97048E-02 7.18447E-02 7.18447E-02
gaussian 0.150793 9.72960 9.7296
spherical 8.24180E-02 2.75982 2.75982

nitrates/lr nugget 0.54333
linear 2.81588 40.4944 40.4944
spherical 0.419211 10.8113 10.8113
gaussian 0.339471 26.8142 26.8142
spherical 0.342556 2.52518 2.52518
gaussian 1.21394E-02 9.54611 9.54611
linear -0.205934 40.4944 40.4944
gaussian -0.229260 64.9016 64.9016
spherical -0.112005 2.89269 2.89269
gaussian -0.124326 2.85581 2.85581
exponential -4.17343E-04 9.32696 9.32696

Table 5. Variograms and cross-variograms for 1985 cokrigings, III. Sills for cross-
variograms should be multiplied by .25.
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variables model type sill major range minor range

nitrate nugget 0.293012
gaussian 0.366413 33.3804 33.3804
spherical 0.273588 31.1430 31.143
gaussian 0.337290 3.86012 3.86012

calcium nugget 0.183254
gaussian 1.39759 42.1884 42.1884
spherical 0.277054 57.8068 57.8068
gaussian 1.28824E-02 1.89608 1.89608

nitrate/ca nugget 0.236663
gaussian 3.81078 38.9175 38.9175
spherical 0.727605 3.83310 3.8331
linear -0.597378 37.4790 37.479
spherical -0.257844 11.3180 11.318
spherical -0.179605 4.85909 4.85909

chloride nugget 0.129331
gaussian 6.00816 96.3323 96.3323

nitrate/ch nugget -0.183394
gaussian 5.84938 53.9010 53.901
spherical 0.748162 3.93145 3.93145
gaussian 0.337721 0.466806 0.466806
exponential 5.73005E-05 0.358862 0.358862
linear -0.799765 37.4790 37.479
spherical -0.214501 11.7570 11.757
spherical -1.01492E-01 4.80253 4.80253

magnesium nugget 7.55406E-03
gaussian 1.60567 40.5097 40.5097
spherical 0.152768 4.27598 4.27598
exponential 1.95908E-02 0.359850 0.35985
gaussian 5.88805E-02 0.471245 0.471245

Table 6. Variograms and cross-variograms for 1988 cokrigings, I. Sills for cross-
variograms should be multiplied by .25.
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variables model type sill major range minor range

nitrate/mg nugget 0.230483
linear 0.575178 37.4790 37.479
spherical 0.185621 4.73154 4.73154
exponential 2.19043E-02 10.9273 10.9273
exponential 1.61267E-02 9.66567 9.66567
gaussian 6.23166E-02 9.00632 9.00632

pca reg. nugget 8.87519E-02
linear 0.268435 60.4790 60.479
gaussian 2.99265 74.1560 74.156
spherical 0.173899 55.8853 55.8853

nitrate/pca nugget 8.20860E-02
gaussian 5.09646 52.3110 52.311
spherical 0.670534 4.04593 4.04593
linear -1.34358 60.4790 60.479
spherical -0.325774 13.9880 13.988
spherical -0.119512 4.64139 4.64139

lin reg. nugget 0.112182
gaussian 1.24605 35.4509 35.4509
spherical 4.11003E-02 31.9355 31.9355
gaussian 6.14326E-02 4.09701 4.09701
spherical 0.136326 4.38693 4.38693
exponential 3.14396E-02 0.282199 0.282199

nitrate/lr nugget -0.222216
gaussian 3.63794 34.6973 34.6973
spherical 0.936691 4.34813 4.34813
gaussian 0.428659 0.476063 0.476063
gaussian 0.111428 4.01913 4.01913
spherical 0.109957 0.613066 0.613066
linear -0.130961 37.4790 37.479
spherical -0.140859 14.1453 14.1453
exponential -0.169567 6.06829 6.06829
exponential -6.38334E-05 9.01966 9.01966

Table 7. Variograms and cross-variograms for 1988 cokrigings, II. Sills for cross-
variograms should be multiplied by .25.
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Figure 1. All Corhograms for the 1977 data set

.2 Corhograms
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Figure 2. All Corhograms for the 1985 data set
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Figure 3. All Corhograms for the 1988 data set
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Figure 4. Cross-Variance Map, Circa 1977

.3 Variance Maps
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Figure 5. Cross-Variance Map, Circa 1985
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Figure 6. Cross-Variance Map, Circa 1988
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