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Abstract

Applications of mathematics and statistics often require fitting a
smooth approximating function to a finite set of data points, or in-
terpolating the data points by fitting the points exactly. In the event
that interpolation of a grid of points is required, we recently proposed
a method (referred to here as the SVD method[11]) for creating a func-
tion of two variables which interpolates the points. While there are
many other procedures in the literature for interpolating and approx-
imating 3-D data sets [9, 13, 14], the SVD method is straightforward
and very easy to program. The process of interpolating a matrix we
call skinning the matrix; we speak of creating a skin of the matrix.

Sometimes a mesh or grid of interlocking functions (which we call
a curve mesh) may be considered for interpolation. Curve mesh in-
terpolation, in which this grid of interlocking functions is interpolated
by a single function of two variables, has been carried out in various
ways ([3, 4, 5, 16]). We use a variant of the SVD method, based on the
fact that the intersections of this grid of functions create a matrix (a
node matrix). We simultaneously fit this matrix and the mesh which
connects them. As might be expected, we speak of a skin of a mesh.

This method works for arbitrary curve meshes. We begin with the
simple case of a square, invertible node-matrix meshes, and extend the
technique to square, non-invertible meshes, and rectangular meshes.
We present here two examples from the literature for comparison with
another recent approach[3], as well as a famous example from a paper
by Franke [6].

Keywords: Singular Value Decomposition, matrix interpolation, curve mesh
interpolation, rank of a function
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1 The Singular Value Decomposition

We begin by stating a theorem essential in all that follows:

Theorem 1.1 (Singular Value Decomposition theorem) Let A 6= 0 be an
m × n real matrix. There exist orthogonal matrices Um×m and Vn×n, and
integer r ≤ min(m, n) (called the rank of A), such that

UT AV =

[

D 0
0 0

]

m×n

where D =









d1 0
. . .

0 dr









is diagonal, with di ≥ di+1 > 0 ∀ i < r.

This says that any real matrix A can be decomposed as a matrix product,

A = U

[

D 0
0 0

]

V T .

It is obvious that the last n− r columns of U and the last m− r columns of
V do not contribute anything to the matrix product, and for that reason U

is sometimes reduced to Um×r and V to Vn×r. Then we can write

A = UDV T . (1.1)

product is called the singular value decomposition (or SVD) of A. A
proof can be found in many references, including [8, 15]. The elements of the
diagonal matrix D are the singular values, and the columns of U and V

are the singular vectors.
The SVD has proven to be a powerful concept in many different areas of

mathematics[1, 7, 10, 12], and has been essential to the development of the
methods described herein.

2 Matrix Interpolation

Definition 2.1 An interpolant is a function which passes through a set of
points P . For example, given P = {(xi, yi)|i = 1, · · · , n}, if f(xi) = yi∀i =
1, · · · , n and f is a function, then f is an interpolant of P .
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For example, cubic splines are standard interpolants used in industry. To
give a trivial example, every function interpolates its own graph.

Definition 2.2 An interpolant of a vector u of length n is an interpolant
of the points {(k, uk)|k = 1, · · · , n}, defined on [1, n] (the indices are chosen
as the x-coordinates by default); if a vector of abscissas x is specified, x1 <

x2 < . . . < xn, then we will speak of an interpolant of u on abscissas x, and
mean an interpolant of the points {(xk, uk)|k = 1, · · · , n}, defined on [x1, xn].

Theorem 2.1 Given A as in Theorem 1.1, and two sets of vector inter-
polants {uk(x)|k = 1, · · · , r} on abscissas x and {vk(y)|k = 1, · · · , r} on
abscissas y of the first r columns of U and V , respectively. Then

S(x, y) =
r

∑

k=1

uk(x)dkvk(y) (2.2)

is an interpolant of matrix A, in the sense that S(xi, yj) = aij. We call this
interpolant S of A a skin of A.

Note: the graph of S is just a surface (the skin) which passes through the
points (xi, yj, aij).

Proof: The function

S(x, y) =
n

∑

k=1

uk(x)dkvk(y)

“skins” the matrix, in the sense that S(xi, yj) = aij . The proof is simply a
calculation: since uk(x) and vk(y) are vector interpolants,

S(xi, yj) =
n

∑

k=1

uk(xi)dkvk(yj) =
n

∑

k=1

uikdkvjk =
n

∑

k=1

uikdkvjk = aij

by equation 1.1. Denote the ith row of a matrix M as Mi. (represented as a
column vector). Then in matrix form,

S(xi, yj) = Ui.
T DVj. = aij .

Q.E.D.
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We call this the SVD method of matrix interpolation, since it relies on
the SVD of the matrix. As a shorthand for this method, we may write

S(x, y) = U(x)T DV (y),

where U(x) represents the vector of vector interpolants of the columns of
matrix U (and similarly for V (y)).

The SVD method is extraordinarily flexible: evey choice of vector inter-
polants U(x) and V (y) yields a matrix interpolant. The differentiability of
the skin S is an immediate consequence of the differentiability of the singular
vector interpolants, as we see from (2.2). For example, to obtain C2 smooth-
ness of the skinning surface, which is typically required for industrial milling
processes, use twice-differentiable interpolants of the singular vectors.

Definition 2.3 We define the rank of a function F (x, y) relative to coordi-
nates (x, y) as the smallest integer n such that F can be represented as

F (x, y) =
n

∑

i=1

αi(x)βi(y).

Note that the rank of a function is not coordinate-invariant: for example,
while

F (x, y) = x2 − y2 (= x2 ∗ 1 + (−1) ∗ y2)

is rank-two in coordinates (x, y), if we define u = x + y and v = x − y, then

F (u, v) = uv,

which is rank-one in (u, v).
A lower bound on the rank of a function relative to a given coordinate

system can be obtained by calculating the rank of the matrix A of function
values of F applied to the nodes of any grid in <2; that is, A such that
aij = F (xi, yj). Thus, if F can generate a rank-two node-matrix, then the
rank of F is at least two.

One can verify that S(x, y) of equation 2.2 is of (at most) rank-n by
setting αi(x) ≡ ui(x) and βi(y) ≡ divi(y).
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3 Curve Meshes: Introduction

Quite informally, a curve mesh is an interlocking grid of functions (refer to
figure (1)). More formally,

Definition 3.1 A curve mesh M is the union of graphs of functions on
[a, b] × [c, d] in <2,

M =
n
⋃

j=1

{(x, yj, gj(x))|x ∈ [a, b]} ∪
m
⋃

i=1

{(xi, y, hi(y))|y ∈ [c, d]},

where

• a ≡ x1 < x2 < . . . < xm ≡ b and c ≡ y1 < y2 < . . . < yn ≡ d, and

• gj(xi) = hi(yj) (which makes the functions interlocking).

Each curve mesh defines a node matrix A, the nodes of the function inter-
sections:

aij ≡ hi(yj) (= gj(xi)).

In practice, a curve mesh often starts as a matrix of what might be called
control points located on a grid in space; these points are then joined to
each other along the grid directions (creating the functions gj and hi on the
respective domains).

The idea of curve mesh interpolation is really very simple: a curve mesh
may be considered a restriction of an unknown function (f) to a grid. We
seek to create an admissible f function, in the sense that gj(x) = f(x, yj) and
hi(x) = f(xi, y). We thus seek skin f of A, which simultaneously interpolates
the curves g and h in their respective directions.

4 Curve Mesh Interpolation: the square, in-

vertible matrix case

We begin by considering curve mesh M such that m = n, and such that the
associated node matrix A is invertible.
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Figure 1: The graph of a curve mesh to help clarify notation. We need to

fix this figure, so that it shows the functions g and h with only single

arguments, perhaps writing g1(x) = f(x, y1) in place of g1(x, y1).

Theorem 4.1 (Curve Mesh Theorem) Given curve mesh M as in Definition
3.1 such that n = m, and such that the associated node matrix Am×m is
invertible. Then

S(x, y) =









g1(x)
...

gm(x)









T

A−1









h1(y)
...

hm(y)









≡ G(x)T A−1H(y)

is a skin of A which simultaneously interpolates the functions of vectors G(x)
and H(y). We call this the inverse method of curve mesh interpolation.

Proof: The proof makes use of the SVD method of matrix interpolation.
We seek a skin S of A,

S(x, y) = U(x)T DV (y) (4.3)

constrained such that S(xi, y) = hi(y) and S(x, yi) = gi(x) for all i =
1, . . . , m.

S(xi, y) = Ui.
T DV (y),
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and hence
S(x, y) = UDV (y)

(understanding S(x, y) as the vector of elements S(xi, y)). Imposing the
condition that

S(x, y) = UDV (y) ≡ H(y)

gives
V (y) ≡ D−1UT H(y).

Similarly
S(x, yi) = U(x)T DVi.

and hence
S(x, y)T = U(x)T DV T .

Imposing the constraint that

S(x, y)T = U(x)T DV T ≡ G(x)T

yields
U(x)T ≡ G(x)T V D−1.

Combining these results, we obtain

S(x, y) = U(x)T DV (y) = G(x)T V D−1DD−1UT H(y),

or
S(x, y) = G(x)T V D−1UT H(y) = G(x)T A−1H(y),

as one can see by inverting A from equation 1.1. Q.E.D.

An example from the literature due to Franke[6] is illustrated in figure
(2). One observation to make at this point is that, in contrast to the SVD
method of interpolation of a matrix, which permits a high degree of creativity
in the interpolation process, the skin obtained using the inverse method of
curve mesh interpolation is unique.
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Figure 2: Franke function. The mesh in the upper-left defines a 4 × 4 node-
matrix of elevations (indicated by the circles at the intersections of the mesh
functions). This matrix is invertible, and the function represented in the up-
per right is the result of using the inverse method of curve mesh interpolation
(Theorem (4.1)). Note, however, that we have not used the default domain
([1,4]), but rather vector interpolants on abscissa vector [0 1

3
2
3
1]T .

5 Curve Mesh Interpolation: the square, non-

invertible matrix case

In the Franke example (Figure 2), the node-matrix A was square and invert-
ible, and so the inverse method worked well to reproduce the Franke function
(which is of rank four). But suppose that we had been given 6 curves in each
direction instead of four so that the corresponding 6 × 6 matrix A for the
Franke function would now be of only rank 4 and therefore non-invertible.
How might one then proceed to obtain a curve mesh interpolant?

One option is to simply replace the inverse with the pseudo-inverse:

S(x, y) = G(x)A+H(y) (5.4)
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Interestingly enough, this method will suffice to reproduce the curve mesh,
provided that the dimensions of the spans of the functions of G and H are at
most the rank of A. If either of the spans is of higher rank, then we require
another strategy.

In the case the 6 × 6 Franke example mentioned above, G and H are
identical, so the rank of the (common) span will be the rank of the interpolant
of the curve mesh. If one of the spans is of higher dimension than the other,
as is the case in one of the following example (where one of the gi curves is
a linear combination of the other two), we will need to augment the inverse
method in order to fully interpolate the curve mesh.

Two examples from the literature illustrate the use of the pseudo-inverse
method. Figure 3 shows the results of utilizing this technique on an example
Bos, et al.[3], based on the function F (x, y) = 1

1+(x2+y2)10
and on mesh curves

defined on an 11× 11 grid. In this case A is not of numerical full rank (rank
six). The function F itself is obviously not of finite rank (since at best it can
only be expanded in an infinite power series of product functions).
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Figure 3: At left is the surface of F (x, y) = 1
1+(x2+y2)10

, studied in [3]; in the
center is the 11× 11 mesh, and at right the skin of the curve mesh using the
pseudo-inverse method.

It is quite possible that an ill-conditioned A matrix might yield extra-
neous pits and peaks in the process under consideration. Most software
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packages have pseudo-inverse routines which allow the user to adjust the
pseudo-inverses in such cases. For example, the MATLAB call, pinv(A,tol),
allows a tolerance adjustment which essentially avoids the difficulty caused
by relatively small eigenvalues of the matrix A when computing the pseudoin-
verse. The MATLAB call used in the example of Figure 4 was “pinv(A,1e-
3)” in order to avoid these peaks, which essentially reduced the condition
number of the resulting matrix to five thousand. Note that the polygonal
paths in Figure 4 are just linear interpolants of smooth curves. This folded
parabolic cylinder example was studied by Bos, et al.[3] and is represented by
F (x, y) = |y−x2 +0.4317|, with an 11×11 grid used to generate the original
mesh curves. We believe that our interpolating surface compares favorably
to theirs, and does not require prior knowlege of the kink on the parabolic
base curve (as does their method). In this case the numerical rank of A is
only 5.

We demonstrate the augmented inverse method via an example.
Consider the matrix

A =

[

0 0
0 1

]

with an associated mesh created by taking sections of the function F (x, y) =
xy along the edges of the domain [0, 1] × [0, 1]. The node matrix A (the
values of F at the corners) is non-invertible, and so the inverse method will
fail. F is rank-one, however, so the pseudo-inverse method (equation 5.4)
interpolates the mesh generated by F . The pseudo-inverse method would not
have skinned the mesh generated by the function F (x, y) = xy + sin(2πx),
however, which has the same node matrix, as it is of rank two.

In the interest of demonstrating the augmented inverse method, we aug-
ment or complete the associated node-matrix A to create A∗, by adding a
constant matrix to A, e.g.,

A∗ =

[

1 1
1 1

]

+

[

0 0
0 1

]

=

[

1 1
1 2

]

.

We may think of as the node-matrix A∗ as corresponding to the function
1 + f(x, y).

This matrix A∗ is invertible, and so we can apply the inverse method
(Theorem 4.1) to create S∗, obtaining the skin S(x, y) as

S(x, y) ≡ S∗(x, y) − 1.
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In effect, the constant (1) added at each node is interpolated by the
constant completion function C(x, y) = 1, which we subsequently remove:

S(x, y) ≡ S∗(x, y) − C(x, y).

This idea is easily generalized: rather than adding only a constant, we add
additional node-matrices, corresponding to known functions, to create an
invertible matrix. Thus, for example, we might consider the 3 × 3 matrix

A =







0 0 0
0 0 0
0 0 1







with mesh created using sections of the function

F (x, y) =
sin(2πx)

|y|+ 1)
+ 4xy(x − .5)(y − .5) (5.5)

F is rank-two (that is, F can be written as the sum of two functions of the
form F (x, y) = g1(x)h1(y) + g2(x)h2(y), and not fewer). We “complete” A

as follows:

A∗ =







1 1 1
1 1 1
1 1 1






+







1.00000 1.64872 2.71828
1.64872 2.71828 4.48169
2.71828 4.48169 7.38906






+







0 0 0
0 0 0
0 0 1






,

or

A∗ =







2.00000 2.64872 3.71828
2.64872 3.71828 5.48169
3.71828 5.48169 9.38906





 ,

which we actually derived as the node-matrix corresponding to the function
1+exey +F (x, y). This matrix A∗ is invertible, so we use the inverse method
and obtain function S∗; from it, we create S as

S(x, y) ≡ S∗(x, y) − 1 − exey,

as shown in Figure 5.
One may object that the completion of A is not unique: any addition

of functions which leads to an invertible node matrix produces a skin of the
mesh. The choices of the constant (=1) component and the exey component
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were simply expeditious: a rank-one function would not suffice; but many
choices of rank-two (or higher) functions would work. As in the case of the
SVD method of matrix interpolation, we consider this a plus: it provides
some design potential. If one choice fails to produce the desired skin, then
another choice may be attempted.

6 Curve Mesh Interpolation: the rectangular

matrix case

We have thus taken care of the case of “square” curve meshes (that is, those
with square node matrices for which n = m). In the event that n 6= m, there
is a relatively simple strategy. WLOG consider the case m > n: in this case,
there are more row interpolants than column interpolants. Introduce m − n

additional “column interpolants”, corresponding to “missing columns”. That
is, select m − n additional abscissas to insert into the vector of abscissas y

to create y∗. These may even fall outside the interval [y1, yn], provided that
the functions {hk(y)|i = 1, . . . , m} are defined in the larger interval [y∗

1, y
∗

m].
If Y is one of these new abscissas, then the interlocking constraint implies

that the introduced interpolant function g(x) must satisfy

g(xi) = hi(Y ) ∀i = 1, . . . , m.

This can be done in any number of ways, such as by cubic splines. One is
limited only by one’s imagination!

7 Parametric Surfaces

We finish by returning to a “twist” on the SVD method of matrix interpola-
tion. The SVD method applies to parametrically defined grids as well, simply
by considering each of the x, y, z coordinates separately and then combining
the results. That is, consider the matrix

X = {(i, j, xij)|i = 1, . . . , m; j = 1, . . . , n}

and similarly for Y and Z. Each matrix is treated separately, and the skins
of all are recombined to give a parametric surface

(SX(α, β), SY (α, β), SZ(α, β))
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which interpolates each of the
We present in Figure 6 an example from the literature[2].
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Figure 4: Another function from Bos, et al.[3]: F (x, y) = |y − x2 + 0.4317|.
Dad: what’s this one again?
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Figure 5: Mesh and skin for the curve mesh created from the function of
equation (5.5).

Figure 6: Farouki surfaces interpolated using Hermite cubics (at left), and
cubic splines (at right).
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