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Genetic damage is a fundamental problem for living systems. Recombination can
repair a damaged gene, so long as there is an undamaged copy of the gene available
in the cell. This requires that the cell be diploid for the damaged locus. During sex,
outcrossing generates the diploid state by temporarily fusing two haploid cells (as
in the case of meiosis) or by bringing DNA into the cell from outside (as in the case
of bacterial transformation). But why should cells alternate between the haploid
and diploid states in the first place? Why not just remain diploid, if damage repair
is the only problem for a cell? The goal of our work is to understand if the problem
of genetic damage would select for diploidy or for the alternation between diploid
and haploid states—that is, sex—early in the history of life. Using mathematical
models we study competition between asexual haploids (termed “haploids™),
sexuals (termed “sexuals”), and asexual diploids (termed “diploids”). Haploid cells
are efficient replicators, while diploid cells are resistant to damage. A sexual may
combine the advantages of both: spending much of its life cycle in the haploid state,
then temporarily fusing to become diploid, followed by splitting to the haploid
state. During the diploid state DNA damage can be repaired, since there are two
copies of the gene in the cell and one copy is presumed to be undamaged. We
describe the competition in terms of mathematical models, employing five rate
parameters which represent the Iife processes of cells most probably active at the
time that sexuality arose: birth and death; genomic damage (for the haploids
alone); and, for the sexual cell, fusion and splitting. Parameter space bifurcation
diagrams for the equilibria are drawn in the three-dimensional space of damage,
splitting, and fusion, and solutions of the equations (i.e., the outcomes of the com-
petition) are described in terms of them. It turns out that those three parameters
suffice to give an essentially complete description of the qualitative behavior
possible, since one parameter can be scaled out ol the equations we ultimately
consider, and the other permits generic analysis, for the range of parameter values
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of interest, at a fixed value of that parameter. Each type of cell has a region of the
parameter space that it occupies exclusively (given its initial presence in the com-
petition ). The haploid can win only in environments characterized by low damage
(relative to mortality), while the diploid can win only in environments characterized
by high damage (relative to mortality). However, the sexual may outcompete either
of the asexuals in those domains assuming that the parameters of the sexual cycle
are adjusted appropriately. In general, only a single type of cell occupies a given
portion of the space. We find, however, that the competitive coexistence of a diploid
and a sexual is possible in spite of the fact that they are competing for a single
resource (nucleotide building blocks). This coexistence is the result of an overactive
sexual cycle and so would presumably be selected against.  © 1995 Academic Press, Inc.

1. BACKGROUND

Genetic damage is a fundamental problem for living systems. Recom-
bination in a diploid cell can repair a damaged gene, so long as one of the
copies is undamaged. During sex, outcrossing generates the diploid state by
temporarily fusing two haploid cells (as in the case of meiosis) or by
bringing DNA into the cell from outside (as in the case of bacterial trans-
formation). But why should cells alternate between the haploid and diploid
states in the first place? Why not just remain diploid, if damage repair is
the only problem? Diploid cells are unlikely to become damaged at the
same site in both copies and one can imagine that some sort of efficient
mitotic recombination in diploid cells might be possible. Consequently, the
function of DNA repair, while providing explanations for diploidy and
recombination, does not by itself explain the need for recombination plus
outcrossing—that is, sex (Bernstein et al, 1981, 1985; Michod, 1990).

There are economic issues to consider when investigating the selective
advantage of haploidy and diploidy (Bernstein et al., 1984; Valero et al.,
1991), and these issues are included in the models studied here. Most basi-
cally, diploid cells require twice the genetic resources and nutrients to
replicate. In addition, there may be size differences and other intrinsic
differences between diploid and haploid cells.

Masking of recessive, or nearly recessive, mutations is probably another
important advantage of the outcrossing aspects of sex in many organisms
with a diploid stage (Bernstein er al, 1981, 1985; Perrot er al, 1991;
Kondroshov and Crow, 1991; Valero et al, 1991; Michod and Gayley,
1992). However, we do not include this factor in the models studied here,
although we believe that both kinds of genetic error, deleterious mutations
and genetic damage, played a role in the evolution of diploid sexual life
cycles (see, for example, Michod and Gayley, 1992). The point of the pre-
sent paper is to study selection resulting from the need to jointly repair
genetic damage and replicate DNA. We leave to future work the problem
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of considering deleterious mutation and genomic damage together in
explicit mathematical models.

2. MobEL

The work reported here concerns competition between three types of life
cycle: sexual, haploid, and diploid. In nature, the sexual process is
represented by diverse methods and styles, from mixed infection in viruses
to transformation and conjugation in bacteria to syngamy and meiosis in
eukaryotes. We have tried to extract the essentials from these myriad
representations and incorporate them into a simple model, which allows us
to understand if the sexual process might have arisen in response to
the simultaneous need for repairing genetic damage and efficient cell
replication.

The models we study share common assumptions, variables, and
parameters as summarized in Tables 1 and 2. These assumptions are dis-
cussed fully in Section 4.1. To reproduce, the diploid must encounter two
nucleotide resource packets (Table 1). Consequently, there are diploid cells
that have encountered just one resource packet but not the second, and so
are not yet able to divide. In the model studied below the dynamics of the

TABLE 1

Major Assumptions in Models

Mass action dynamics: interaction equal to product of
density of constituents; used to model resource utilization
during reproduction and fusion of sexual cells

Damage-induced sex: only gene-damaged cells initiate sex
with damaged or undamaged partners

Pure sex: no reproduction or genome replication during sex
{as occurs in meiosis)

Damage repair: gene damages are repaired in diploid state
(either fused sexuals or diploids)

Two sources of mortality: gene death due to damage
{reversible by repair) and cell death due to disruption of
cell-membrane (non-reversible)

Reproduction requires nucleotide resources: diploids must
encounter two nucleotide resource packets, haploids one

Competition between different types of lifecycles based on
resource use exclusively

Closed system: total resources (free resources plus resources
tied up in cells) are constant




diploid have been simplified, as discussed in the Appendix. In our sim-
plified model there are three basic cell types or species: the haploid, A4y;
the sexual, Sy; and the diploid, 4. The sexual and haploid species may
exist in gene-damaged states in densities z and z,, respectively. The sexual
may also exist in a fused diploid state in density y. This gives a total of six
cell types, three for the sexual, two for the haploid, and one for the diploid.
In order to make the equations dimensionless, we divide all equations by
b (we have no intention of setting b to zero) and then scale our original
independent variable ¢ and our parameters, redefining them as follows:

so that

All variables are now dimensionless. parameters, that used to be rates,
now represent ratios of rates. Since our equations are autonomous these
changes do not have any significant effect on the form of the equations, but
we have achieved a reduction in complexity, from five free parameters to
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TABLE 11
Parameters
b birth rate for all haploid cells (sexual and asexual}
p birth rate of diploid cells
m death (or morality) rate for all cells
p size difference between haploid and diploid cells;

A e~

cells assumed to be spherical
fusion rate for the sexual cells
splitting rate for the diploid-like sexual cell
damage rate for haploid cells
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four. The original equations, discussed in the Appendix, now take the final
form
xX'=x(r—-m—d)+2sy —fxz
y'=fz(z+x)—y(pm+s)
Z=dx—z[m+f(2z + x)]

= (z)
w =wp E—m

x,=x,(r—m-—d)

(1)

,
z,=dx,—mz,,
where
r=1—x—-2y—z—-2w—x,—z,.

We check that this system is consistent by looking at the differential
equation for r, as obtained in the other cases (by considering the inflows
and outflows), in order to see that we get the same expression by differen-
tiating (2),

rr=m(x+2py+z+2pw+x,+z,)—rx—2prw—rx,,
which is
=—x'-2y -z =2w —x,—z,,

sO our system is consistent.

For ease of presentation, we consider the simpler pairwise competitions
that take place in the absence of one or more of the cell types. While these
are separate competitions, they are (with one exception) merely projections
of the full model onto subspaces. We describe the procedure used in
studying the equilibria of the system in the methods section of the
Appendix.

3. RESULTS

3.1. Each Cell Species Considered Alone

Each cell can be considered on its own, under the various conditions
imagined in our model. From the system of equations (1), with two of the
three cell types (and damaged cohorts) set to zero, we have the following
dynamics.
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3.1.1. Diploid. The diploid follows a logistic equation for m <%, with
equilibrium populations as follows:
r=2m

(1~ 2m) (3)
o

For m>1, it goes extinct.

3.1.2. Haploid. The haploid also follows a logistic equation, with
equilibrium populations of

r=m-+d
(1—m—d)
Xa=m m+d (4)
(1—-m—d)
:d————————
2 m+d

which are plotted in Michod and Long (1994, Fig. 2). It goes extinct when
m+dz1.

3.1.3. Sexual. The situation for the sexual cell type alone is quite com-
plicated, even given the simplifying assumptions made. The equations are
sufficiently complex to require a separate analysis (Michod and Long,
1994). For d+4 m <1 the sexual has, like its asexual cousin, a single stable
and physically realizable equilibrium: but whereas the haploid is driven to
extinction if 4 exceeds 1—m, the sexual can save itself if its sexual
parameters, the rates of fusion and splitting, are sufficiently large. We show
in Michod and Long (1995, Figs. 11 and 12) the conditions necessary for
the survival of the sexual for m+d> 1.

3.2. Strictly Asexual Competition

We consider initially a world populated by haploid cells and study com-
petition between these haploids and either diploid cells or sexuals. First we
consider competition between the asexuals (haploid versus diploid) in the
absence of the sexual. This competition corresponds to the following
system of equations:

X, =Xx,(r—m—d)

z. =dx,—m:z, (5)

a a

, r
w'=wp <E—m>.
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There are three equilibria of this system, none of which corresponds to
competitive coexistence. Each species of cell has a parameter space region
all to itself. We proceed directly to the linear local stability analysis, the
Jacobian being given by the following matrix:

r—-m—d-—x, —x, —2x,
d - 0
J= "
2 ()
2 2 p 2)” P

In the case of extinction, ie, x,=z,=w=0, the eigenvalues of the
Jacobian are

Thus, local stability of extinction arises iff

m+d>1 (6b)
and
m> 1. (6c)

From the form of the equations in (5) and from what we learned above
about the dynamics of each species alone, condition (6b) guarantees
extinction of the haploid and condition (6c) extinction of the diploid. (The
right-hand sides of the equations for each are negative, implying a steady
decrease in population to zero.) Thus we see that for low damage and high
mortality, the haploid can outcompete the diploid.

An examination of the equilibrium of the diploid alone shows that the
eigenvalues are

{m—d, —m, p(m—13)}. (6d)

The equilibrium populations of diploids and free resources are given in the
equations in (3). The interesting eigenvalue is m — d, which tells us that as
long as d>m the diploid is locally stable. The haploid, with equilibrium
populations given in the equations in (4), is locally stable in the rest of the
parameter space.

The outcome of the dynamics and competition of asexual cells is sum-
marized in Fig. 1a. Since we are primarily interested in the outcome of
competition, we see that we can restrict ourselves to the portion of the
plane where both cell types could survive on their own (see Fig. Ib). This
is the portion bounded by the axes, and the lines m = § and m + d= 1. Note
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Fic. 1. Summary of asexual dynamics. In panel (a), we show the (m,d) plane and
indicate the winner of the competition by the initials of the cell type’s name, either “4y” for
haploid or “4,” for diploid. “E” stands for extinction of either cell type. In panel (b), we
restrict our attention to that part of plane in which both cell type's can exist and compete. In
panel {c), we show the outcome of the competition for a fixed m = m, as a function of damage,
d. We could also have shown the outcome as a function of m for a fixed d < 0.5 by construc-
tion analogous to that in panel (b}.

that within this region the result of competition can be given quite simply:
for a given value of m =m,, the haploid wins if 4 <m,, while the diploid
wins if d> m,.

Thus, we can describe the outcome generically using only one dimension,
for example, the d-axis (Fig. 1¢). This generic reduction of the competition
to one dimension allows us to effectively represent the parameter space
solutions in each of the competitions that follow, even in the case of four
free parameters.

What can we learn from the system of asexuals alone? We see first that
in the absence of damage the haploid always wins. Second, given even the
slightest amount of damage there exist values of m that result in a loss of
the haploid’s stability. Whereas before the haploid enjoyed an exclusive
equilibrium, now the competing diploid could win out and expel the
haploid if d>m. Third, there is no parameter choice which permits the
coexistence of the two sexual species. Fourth, we note that the change in



26 LONG AND MICHOD

stability comes when the free resource equilibria values of the two equi-
libria populations are equal:

m+d=2m<d=m (7)

This turns out to be a fairly general result, and a useful one as it allows us
to quickly compute the boundaries (in parameter space) for which the out-
come of the competition changes. These boundaries constitute a bifurcation
diagram in parameter space and our computer simulations have shown
that they are consistent predictors of the outcome of the competitions. As
in the chemostat, the population that won the race was that which
managed to use up the most free resources (or, equivalently, consumed the
most, turning free resources into bound resources). Explicit examples are
given in the Appendix. As discussed there, this result is almost, but not
quite, a general result in the competitions we describe.

We note furthermore that, although we have a system defined on three-
dimensional space, solutions (orbits) move to one of the face planes even-
tually (or even an axis). This system of these two species is consequently
not persistent: one species always becomes extinct.

3.3. Fast Sex versus Diploidy

Suppose that sexuality confers to the haploid the capacity for instan-
taneous repair of damage upon fusion. This is as optimistic a scenario as
could be conceived, but it is essentially what we have attribued to the
diploid. In this case, the equations for competition between the sexual and
the diploid cells would have the form

x'=x(r—m—d)+fz(2z + x)
'=dx—z[m+f(2z 4+ x)] (8)

r
w =wp <§~m).

These equations can be obtained from the full model by setting haploid
populations to zero and letting the splitting rate, s, go to infinity. The latter
condition means that as soon as a cell needing repair fuses with another (or
a healthy haploid), it is repaired and separates. In the limit the cell spends
no time in the fused state; i.e., the fused cell population goes to zero. The
fact that this parameter is so much larger than the others means that the
y variable, representing the fused haploids, equilibrates quickly by com-
parison with the other variables, and so can be replaced in the equations
by its equilibrium value. Doing so yields the equations above. The competi-
tion for fast sex is represented schematically in Fig. 2.
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FiG. 2. Flow of cells for fast sex and diploidy competition. Circles represent cell popula-
tions, while arrows represent movements of cells from one population (the “donor”) to
another (the “recipient”). The number of “feathers” at the tail of an arrow indicates the
number of cells that leave the donor population, while the number of arrow heads at the tip
of an arrow >-—— indicates the number of cells that are contributed to the recipient popula-
tion. So the arrow indicates that two cells are taken from the donor population to produce
three cells in the recipient population.

Again we study the equilibria of the system. Five equilibria have biologi-
cally realistic population densities that are inside the simplex given by
1 =r+x+z+2w. These equilibria are extinction (x, z, w, r)={0,0,0,1);
diploidy alone, (0,0, (1 —2m)/2, 2m); coexistence; and two equilibnia
corresponding to the sexual alone.

The first two equilibria are very similar to what they were in the strictly
asexual competition. For both equilibria the eigenvalues are the same as
before; Eq. (6a) for extinction and Eq. (6d) for diploidy alone.

In the case of coexistence or purely sexual equilibria, we find that the
eigenvalues are essentially intractable (analytically), in contrast to the case
of the asexual competition in which we could solve explicitly for the eigen-
values. In studying them numerically, we find that the question of stability
is reduced to the study of the roots of a cubic and a quadratic (see
Appendix). A parameter space bifurcation diagram summarizes the
stability properties: those regions of the parameter space which supported
locally stable equilibria in the asexual competition continue to do so for
this competition, only now some of that space formerly reserved for the
diploid is also open to the sexual. That is, there are now regions of the
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FiG. 3. Bifurcation diagram for fast sex and diploidy. The dotted line applies to the purely
asexual competition described previously. It divides the parameter space into regions for
which the haploid (to the left of the dotted line) or the diploid (to the right of the dotted line)
wins. The solid line applies to the competition between fast sex and diploidy. The region that
opened up to the sexual is given generically, for a value of m (such that 0 <m < 1), by a wedge
in the (d, s) plane. The notation Sy /A4, indicates that either S;; or 4, but not both, wins
depending on initial conditions. This notation is used in other competitions.

parameter space for which there exist multiple stable equilibria. There is
also an equilibrium at which both cell types can coexist, only it is never
stable for realistic parameter values and so would not occur naturally. As
one can see in Fig. 3, the region which opened up to the haploid is given
generically for a value of m such that 0 < m < 1 by a wedge with boundaries
d=m and the line

_ 2(d—m)

T 3(1=2m) (10)

f

Thus we see that for a certain well-determined value of the fusion
parameter the sexual can survive in what was formerly forbidden territory.
The diploid can also survive there, but only one species does so at any
given time. And although that part of parameter space is open to both
types of cell, neither can invade an existing population of the other without
some finite invasion force (determined by a separatrix in the population
three-space). That is, the equilibria are stable.

The parameter space descriptions for this system for the previous asexual
competition are given jointly in Fig. 4, in which a three-dimensional
representation of the parameter space is given for the full competition (that
is, for the parameters d, s and f). Since the representation is generic for
varying values of m (in the range of interest, ie., 0 <m<1), we give a
representative slice of the four-space for a fixed value of m. Note that the
asexual outcome is independent of f and s (yielding a plane independent of
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FIG. 4. Asexual and fast sex planes (m <1). The parameter space descriptions for this
system and for the previous asexual competition are given in the three-dimensional parameter
space which serves as the stage in the competitions to follow, with axes corresponding to
damage, splitting, and fusion.
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Fig. 5. Cell flow for sexual and diploid cells. Arrows are described in the legend to Fig. 1.
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those two variables), whereas the fast sexual process outcome is inde-
pendent of s (so that the plane is independent of s). We see that the sexual
process has simply “tipped” the asexual divider plane into what was
formerly exclusively diploid territory. In the next competitions, the
outcome is a function of all the parameters and hence is no longer planar
in the parameter space.

One thing to note is that under the fast sex assumption the sexual always
out competes the asexual haploid. Sex in this case is dynamically positive
for all parameter values.

3.4. The Competition of Sexual vs Diploid

34.1. The Model. In Fig. 5 we have drawn a schematic diagram of the
model, which is equivalent to the following system of ordinary differential
equations:

x'=x(r—m)d—jfz)+ 2sy

VY =f2(z+x)—y(pm+3s)
Z'=dx—z[m+f(2z+ x)]

= (z)
W =wp E_m ,

I=r+x+2y+z+2w.

(11)

where

We note the following aspects of these equations:
1. If m> 3, the diploid goes extinct (since w’ <0).

2. The only interaction of the two species is in the resource term
(though we should keep in mind just what the resource term is: when cells
die they are converted to resources for the formation of other cells, so there
is a very strong interaction in that resource term).

3. Competitive coexistence at equilibrium requires that r = 2m, since
otherwise the right-hand side of the diploid equation would demand that
w be zero (ie., that there be no diploids). This is important, as it
corresponds to a great simplification of the form of the algebraic relation
obtained when we seek equilibria of the system.

3.4.2. Results. Once again we find that the eigenvalues can only be
obtained symbolically in the cases of extinction and diploidy alone.

Extinction: {1—m—d, —pm—s, —m, p(3 —m)}

Diploidy alone: {m—d, —pm—s, —m, p(3—m)}.
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In both cases, we picked up one new strictly negative eigenvalue. In the
other cases (coexistence and haploidy alone) the equations lead to such
complicated equilibria that we used numerical techniques discussed in the
Appendix.

Case 1. d<m. In this case we find only two possibilities. Recall in the
asexual competition that the region d <m was the domain of the haploid
exclusively. Now we find that for low values of splitting rate, s < pm, if the
fusion rate is too high for the sexual there comes a point at which the
diploid can coexist alongside the sexual (in front of the surface in Fig. 7
when d<m). In this region, the sexual cycle has actually worked against
the sexual cell: if damage is low, there is no advantage to sexual repair, at
least in competition with a diploid asexual (or for that matter the haploid
asexual, as we find in Fig. 9).

Case 2. d>m. First of all, continued existence of the sexual requires
that

_p{10d—Tm+4 J2(2d* —md —m?)}
s Se
9

1]

(12)

Note that s. > pd/3, the value of s_ at d=m, while as d — o0, 5,2 2pd (i.e.,
s, increases linearly in d).

There is a critical value of f, f., which corresponds to this value of s,
below which the sexual is guaranteed extinction. (This is a curve in the
parameter space, visible in the figures as a graceful, upward-swooping

coexistence, or

f /’ diploid

diploid wins

fo
elther, depending
»~~_ on initial conditions
fo
fo
ffast sex
i 1
»
)
S, §

FiG. 6. Slice of bifurcation surface in Figs. 7 and 9. See text for explanation and Fig. A2
in the Appendix for more technical detail.
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curve starting on the (d, s) plane and moving off to the corner farthest from
the origin.) In other words, the sexual cycle has a minimal level of activity,
below which the sexual is assured of going extinct. If, for a given value of
d>m, the haploid is capable of the minimal level of sexual activity, then
there are a couple of possible outcomes. Suppose, therefore, that a value of
s, s*, satisfies inequality (12); then there are values of the fusion, f, which
divide the results between three possibilities (see Fig. 6): f< /., = the only
stable equilibrium is sexual extinction; f,, < f<f.,=>the only stable
equilibria are sexual extinction or diploid extinction depending on initial
conditions; f,, < f=-the only stable equilibria are sexual extinction or
competitive coexistence.

So we see that overactivity of the sexual fusion process has again caused
problems for the sexual: between the critical values the sexual has a stable
equilibrium all to itself, whereas below the minimum it is wiped out and
above the maximum it can only coexist with the diploid. (Note that at
s=s,. we have that f,=f.=/,.)

This result is interesting, since we have two species competing on a single
resource. However, the sexual is actually spending much of its time in what
appears to be a diploid state: that is, fusion is too high for the particular

m<1/2 |
f SH - ] SH/AD

\‘M“H
I Mm g
Lo H“““HH“‘\‘\‘\\\ ‘
l”““?!w”:‘;?‘ﬁ( b w m |
W B ‘\\ ! “‘ . I i
\“C“‘\“[“‘\““‘\“\“\“‘\‘“w\““\““\‘\‘“‘\‘ g e |

‘“‘ M\‘ Vi

< fast sex plane
d=m=04

d

Fic. 7. Bifurcation diagram for sex and diploidy (#1=0.40 <0.50). The winning species is
indicated for the different regions: Sy, =sexual, 4, = diploid, or coexistence. Behind the sur-
face to the right of the d =m plane, either the sexual or the diploid wins depending on initial
conditions. A similar outcome occurs in front of the surface but to the left of the d = m plane.
In these regions, Sy;/4),, both the sexual and the diploid are stable when common and neither
can invade when rare. In front of the surface the diploid wins, if d > m. However, the outcome
of competition is more complex near the surface as coexistence of the two species is possible.
See Fig. 6 in which a slice of the surface in the (f, s) plane is given. The line through the
surface in Fig. 7 is the set of points (d, s.., /) defined in Fig. 6.
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value of splitting, so that too much of the life cycle is spent in the fused
state where the sexual cannot reproduce.

We note that invasion from small numbers is not possible for either
species, since each equilibrium is locally stable. Thus invasion would
require a certain minimal “invasion force”; perhaps two media co-mingling.

The bifurcation diagram is presented in Fig. 7 for the case of sexual ver-
sus the diploid. While the fast sexual parameter space description can be
considered as a tipping of the asexual plane towards the splitting/damage
plane, this parameter space outcome is a twisting and bending of that
plane.

We explicitly describe here the effect of the splitting parameter too, as it
plays a simple but important role in the outcome. An increase in s is always
good for the sexual. We use an automotive analogy to explain why this is
so: fusion is analogous to the rate at which one sends a car to the shop
when it needs repairs; splitting is like the rate at which the mechanics do
the repairs. If we put cars in the shop at too great a rate (too great, that
is, for the given repair rate), then they back up. Thus an excess of fusion
is a bad thing from the sexual’s standpoint. But increased splitting merely
means that the repairs are being done more quickly, something about
which no one complains (assuming, as we do, that the quality remains
constant).

3.5. Haploid Competition: Sexual vs Asexual

The corresponding competition equations are
X' =x(r—m—d—fz)+2sy
V' =fz(z+x)~y(pm +5)
'=dx—z[{m+ f(2z+ x)] (13)

x,=x,(r—m—d)

a

!
7l =dx,—mz,,
where
r=1—-x-2y—z—x,—z,.

In accordance with what we have found in the other models, we
immediately solved for the parameter surface corresponding to an equi-
librium resource value of r=m+ d. This is the value of the free resources
for which x,, the haploid, is in equilibrium. For the entire system to be in
equilibrium (with all populations non-zero), this condition must hold. (The
assumption of r=m + d only applies when d< 1 —m in Fig. 8) Once again
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FiG. 8. Haploid competition. Results for m =04 are given by a nearly vertical surface
running along the damage axis, from no damage up to the critical damage value of d=1—m.
The asexual wins for relatively low splitting values (s values in front of the surface), while the
sexual wins when splitting is high (s values behind the surface). At the point when d=1—m,
the asexual is no longer viable, since it has a negative rate of increase (see Eq. 13). However,
the sexual may still persist in this region as discussed in Michod and Long (1994). Note that
if f=0 or d=0, the sexual population behaves like the haploid.

we solve for the equilibrium values of the variables as a function of only
one of the variables (and the parameters), and from these values we get a
surface in three-dimensional parameter space of damage, splitting, and
fusion which divides the outcome of competition between exclusion of the
asexual or exclusion of the sexual (coexistence is not permitted). We have
verified this analytical procedure by simulating the competition numerically
(Fig. 8).

The outcome of competition is portrayed in Fig. 8. A critical value of
fusion, f,, determines the winner and is shown in Fig. 8 as a function of d
and s for m=0.4 (the expression is complicated and not given here).
Likewise, a critical value of s, s., can be defined and is not so complicated.
Forf,=0and d<1—m,

2

m
sc(m,d)=mp+2d. (14)

At d=1—m, in other words at r =m + d =1, there can be no equilibrium
for the haploid, and it relinquishes any advantage it had to the sexual,
which can still survive by virtue of the sexual cycle (Michod and Long,
1994).

We find that as s —» pm, f,— co (Fig. 8). Consequently, the higher the
fusion rate, the closer s must be to pm for sex to win. However, if splitting
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gets above pm, the sexual always wins (no matter what the fusion rate is).
The sexual generally loses for values of s lower than pm, although as shown
in Fig. 8 there is a curtain that precisely determines the winner in this
range. Recall that there was a region of coexistence in the competition
between the diploid and the sexual (Fig. 7). However, the portion of this
region for d <m is completely contained in the region in front of the cur-
tain shown in Fig. 8 for which the haploid defeats the sexual. As one might
suspect based on this observation, we find in our analysis of three-way
competition (see Fig. 9 below) that given the presence of the haploid there
is no coexistence of the sexual with the diploid when d<m.

3.6. Competition among All Three Populations: Haploid, Sexual, and
Diploid

By combining results from the competitions already obtained, we can

deduce the behavior of the three-way competition. The resuit is shown in

FiG. 9. Bifurcation surfaces for three-way competition in region m<0.5. The winning
species is indicated for the different regions: Ay = haploid, Sy = sexual, 45, =diploid. To the
left of the d=m plane only haploids win, with the asexual winning in front of the surface and
the sexual winning behind the surface. To the right of the d=m plane the winner is either the
diploid or the sexual or both may coexist. Behind the surface (still considering d>m) either
the sexual or the diploid wins, depending on initial conditions. That is, both the sexual and
the diploid are stable when common, but neither can invade when rare. In front of the surface
the diploid wins. However, the outcome of competition is more complex near the surface
where coexistence of diploids and sexuals is possible. The surface has an interesting shape as
shown in Fig. 6 and described in the Appendix. The surface bends back upon itself along the
curve shown in the figure. This curve is identical to the set of points (d, s, f,) defined in
Fig. 6. The intersection of the three “surfaces” is the curve (discussed in the text) which is the
only potential site at which all three populations could coexist. Its instability rules this out,
however.
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Fig. 9 (which is based on numerical study of the various competitions
and eigenvalues). Figure 9 shows the region of the parameter space in
which all species could survive and persist. For the diploid this requires
m<0.5.

The critical value of fusion discussed in the previous section gave us the
curve on which all populations could survive in equilibrium. This curve is
obtained by setting

r=2m=m+d<d=m.

{The haploid would be in equilibrium, as r =m + d; the diploid would be
in equilibrium, as r = 2m. And there exist parameter values for which the
sexual is in equilibrium with them both). The equation for £, than takes the
form

3s%(p+ 3) + pm[ — 65+ p(m + 25 — pm)]
2p*(1 —2m)(pm —s)

fom, d, s)= , (15)

with pm/3<s< pm (f.(m, d, pm/3)=0 and f.(m, d, pm)=co). This situa-
tion is “infinitely unlikely” and highly unstable, however, as it is a one-
dimensional manifold in a three-dimensional space: any deviation from the
corresponding equilibrium populations or parameter values would send the
system careening away fom such an equilibrium.

We do not gain anything by further local stability analysis of the full
system, as we can unite the analyses already performed. We have carried
out analyses for each of the sub-systems given by removing one of the three
species (purely asexual competition, sexual/asexual, competition and
diploid/sexual competition). We have found that 4y cannot survive with
A (at least in equilibrium) unless d=m (as this implies that m + d=2m:
the equilibrium values of free resources in both cases are equal). If the
diploid is at equilibrium, for d>m, then Ay is excluded; and if A, is at
equilibrium, for d <m, then Ay is excluded. So we see that we can again
nothing by further linear stability analysis. There is thus no possibility for
coexistent equilibria, given that the parameters stay fixed, unless it occurs
in the plane d=m. We have studied that plane enough to know, however,
that there can be no three-way stable equilibrium there, as mentioned
above. There is only a single curve, for limited values of s and values of f
from [0, o0], for which total coexistence is possible, and we have found
that it is unstable.

One might find limit cycles, of course, or chaotic behavior: but we have
not seen such behavior in our numerical experiments. The system is
remarkably stable, even boring, in its relentless pursuit of equilibration.
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3.7. Sex with Reproduction: A First Approximation

In the models studied so far, sex has nothing to do with reproduction.
This is the reality of sex in many simple microorganisms. Conjugation and
transformation in bacteria do not require nor elicit reproduction, while
mixed infection in viruses does. The bacterium Bacillus subtilis is most
competent at sex---that is, transformation—when it is in a stationary phase
of growth and not reproducing. Since we are interested in the origin of sex
and want to maintain some degree of generality, we have assumed that sex
is not linked with reproduction.

We now assume that the sexual reproduces when in the fused diploid-
like state, in what one can think of as a precursor of meiosis. Then, at first,
the terms representing this new process might simply be incorporated into
the equations just studied, i.e.,

x'=x(r—m—d—fz)+ 2sy + 2kypr
r
y'=foz+x)—ylpm+s)—kyp 5

Z'=dx—z[m+f(2z+ x)]

=r{5m]
w=wp|3—m

' ’

r= rprevious - kypr’

and

where & is a parameter representing the relative rate of this reproduction
compared to the rate of reproduction of the diploid (so that if k<1 the
meiotic reproduction is slower, while if k> 1 it is faster).

It is easy to understand this change, however, in terms of the 4,/Sy
competition model: these equations are effectively equivalent to an increase
in s, with a slight boost to the growth rate of x and a slight decrease in the
growth rate of the resources, as one can see by rewriting them as follows:

x’:(r—m—d—fz)+2[s+kl7 %] y+hypr

y=fr(z+x)—y [pm+<s+kp %)]

'=dx—z[m+f(2z + x)]

w’ [r m]
Y=wp| - — .
2
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And as we have seen, an increase in s always has a beneficial effect on
the sexual. The splitting rate is no longer constant, but varies as a function
of time (but in an autonomous way).

It would be interesting to actually replace the splitting parameter by the
meiotic reproduction term. We have not done so, but plan on doing so in
the future. We also would like to introduce non-autonomous effects into
the parameters, to take into account changes like the variation in UV light
throughout the day (and night): we know that these parameters are not
constant in any real system, and so we would prefer to model them as well.

4. DiscussION

4.1. Assumptions

4.1.1. Mass Action. We use the principle of mass action in modeling
the dynamics of cell interactions, such as fusion between sexual cells,
and the use of nucleotide resources to produce cells. This principle states
that the rate at which a reaction proceeds is proportional to the densities
of the reagents. It is important to note two consequences of the mass action
assumption. First, cells have rates of reproduction proportional to the total
resource density. Second, if a cell type requires twice the resources (and,
consequently, twice the number of resource interactions) as does another
cell, then its rate of reproduction must be less than that of the other cell
type, all else being equal (for example, no intrinsic differences between cell
types). In the Appendix (in the section titled Diploid Dynamics), we show
that the effective diploid birth rate is 1/(\/§+ 1) (&2/3) the rate of the
haploid, in the absence of any size or other intrinsic differences between
haploid and diploid cells. This baseline difference in effective birth rates
between diploid and haploid cells results directly and necessarily from the
assumption of mass action made in our models.

We make additional assumptions that ameliorate this baseline disadvan-
tage of diploidy in replication. We assume a size difference (p > 1) which
favors diploid replication. We also assume an intrinsic advantage, § > b, to
diploid cells. As a result of these additional assumptions, the ratio of
diploid to haploid birth is p/2~3/4 in the model we studied (see
Appendix).

4.1.2. Size of Cells. For mathematical convenience, we made the
following simplifying assumptions about the relative sizes and shapes of the
interacting cells: we assumed that all cells are spherical, that all haploids
are the same size, and that the size (volume) of a diploid cell may be larger
than that of a haploid cell. We represented any size difference in terms of
a parameter, p, that represented cell surface area. Cell surface area is
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assumed to affect both reproduction and mortality. We assumed that the
rate of uptake of genetic resources is a linear function of the surface area.
We also assumed that cell death is primarily a function of disruption of the
cell membrane and so is also proportional to surface area. The cell wall
serves as both the limiting factor in feeding and a risk factor for mortality:
to be bigger means more energy and nutrients, which means faster growth;
but is also makes one more vulnerable to any membrane-disrupting factors
in the environment.

Research on current unicellular organisms, like yeast, supports the view
that diploids are usually larger than haploids. There is a strong positive
correlation between the amount of DNA and the size of a cell (see referen-
ces in Lewis, 1985). Herskowitz says that diploids “..have a volume nearly
twice that of haploids...” (1988, p. 357). Mortimer (1958) found that cell
volume scales linearly with ploidy from haploid, diploid, up to hexaploid
cells. Weiss et al. (1975) observed a diploid to haploid volume ratio of 1.57
for minimal growth medium. If we assume that diploid cells are spherical
and have twice volume, they would have about 1.59 times the surface area
of a haploid cell. For this reason, we set p = 1.59 in many of the studies we
report here. However, environmental conditions can affect the relationship
between ploidy and cell volume. Adams and Hansche (1974) and Weiss et
al. (1975) found that the size and metabolism of yeast cells are complex
functions of resource limitations. In the extreme case of carbon starvation,
the diploids and haploids differed only on the amount of DNA in their cell
bodies: the diploids reacted to this environment by becoming smaller. All
other measured cell constituents were equal, including the quantities of
RNA, the cell volumes and the surface areas. If we wanted to represent this
situation, we would set p=1.

Another important issue is the size of the fused sexual cells. The various
types of prokaryotic sex and viral sex result in a rather wide range of fused
types. For anisogomous sex, we would need to consider two separate cell
types for the sperm and eggs; the same can be said for transformation. We
do not consider anisogomous kinds of sex in our models. In conjugation,
the two cells must be in contact, but there is no combination of cytoplasm
(only an exchange of DNA). The geometry in conjugation would be much
different than we assume in our model. In conjugation, fused cells would
have twice the surface area of haploids, rather than 1.59. We agree with
other workers that at the time of the origin of sex (before anisogamy and
before meiosis; perhaps before chromosomes) the most likely sort of inter-
action that two cells could have would be such a total fusion event. For
example, Crow (1998) states: “I share the commonly held view that the
original development of meiosis and fertilization involved isogamous
fusions”. For these reasons and, admittedly, for the resultant mathematical
simplicity, we have chosen to assume that fused haploids are spherical and
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contain twice the cytoplasm of haploids and, hence, about 1.59 times the
surface area.

4.1.3. Resource Use. In the present paper, we study the selection on
haploidy and diploidy that results from their differing capacities to both
replicate efficiently and repair genetic damages. Free genetic resources, in
density r, are available to all cell populations as building blocks. By resour-
ces in our models we mean genomic resources, such as nucleotides. We
assume that there is a fixed quantity of genetic resources, enough to
provide for the genomes of a population of N haploids.

In other words, free resources are equal to N minus the sum of cell
populations, in which the numbers of diploid cells (fused haploids plus
diploids) are multiplied by 2 since they contain twice the genetic resources
of a haploid cell.

We study closed systems, so that cell populations are constrained to a
maximum number because of the limitation of genomic resources. We
assume that all other non-genomic resources exist in whatever quantities
necessary for unrestricted cell replication. We represent nucleotide resour-
ces in terms of resource packets containing a single (haploid) “copy-
equivalent” of the primitive genome. For example, there may be enough
nucleotides present for the existence of 1000 haploids cells, but there may
be only 100 such cells present. In the absence of other cell types, that
means that there are 900 resource packets available, not currently incor-
porated into a cell. We refer to the 900 resources packets as “free resour-
ces”, to distinguish them from the 1000 “total resources” and the 100
“bound resources”. We found that it is informative to study the levels of
free resources maintained by a species, as it may determine which species
wins in open competition (for explicit examples in the case of the diploid/
sexual competition, see the Appendix).

The relative abilities of haploid and diploid cells to use resources and
nutrients in replication have been considered by several workers. According
to the r and K-selection hypothesis of Cavalier-Smith (1978), expanding
populations favor small cell size which favors haploidy. Conversely,
increasing cell size is favored in stationary populations that are K-selected
and this favors diploid cells.

The “nutrient scarcity hypothesis” recognizes that the replication rate of a
cell depends on the uptake of both energy and nutrients (Lewis 1985). In a
single-celled organims, small cell size is favored when nutrients are scarce.
Since DNA content is positively correlated with cell size, scarcity of nutrients
also favors haploidy. Several reasons are considered for this. Haploid cells have
an increased surface-area-to-volume ratio and so should have more efficient
uptake of nutrients. Haploid cells also have less DNA to replicate and so may
require less of the critical nutrients that are used in DNA, such as phosphate.
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In the isomorphic brown alga Gracilaria verrucosa, Destombe et al.
(1993) found that haploid individuals grew faster than diploids in regular
sea water, while diploid individuals grew faster than haploids in enriched
sea water. Similar results have been reported for haploid and diploid
strains of the yeast Saccharomyces cerevisiae (Adams and Hansche, 1974).
Destombe et al. (1993) interpreted their results as supporting Lewis’ (1975)
nutrient scarcity hypothesis but invalidating Cavalier-Smith’s hypothesis
(1978).

4.1.4. Mating System. A sexual cell has, by definition, a mate, even if
the “mate” is nothing more than a strand of DNA, as is the case in trans-
formation. In constructing the models, we need to consider whether a
sexual mutant, arising in a wild-type asexual population, would be free to
mate with asexuals. In the present paper, we assume that sexuals only mate
with other sexual cells. In Michod and Long (1994), we relax this assump-
tion and study the case in which sexual and asexual cells may fuse, as if in
a Mendelian-like population.

Here we assume that damaged sexual cells initiate sex. We began the
present study by assuming that healthy sexual cells mated at random with
other haploid sexual cells, resulting in recovery of damaged brethren if the
mating happened to include them. The results were clear: if mating is
random, asexuals always win. This is no longer the case if sexual cells
sometimes mate with non-sexual cells: that is, random-mating sex may be
competitive under a wide range of conditions (Michod and Long, 1994).
We then assumed that sex is initiated by damaged cells that mate at
random with either damaged or undamaged cells. As reported here, the
results are strikingly different: sex is stable under a broad range of
the relevant parameter values and can, in fact, drive out the asexual
population.

One may wonder whether it is reasonable to assume this type of
“damage-induced” sex in such simple systems. Several lines of evidence
suggest that it is a strategy employed by a variety of mircroorganisms.
Recombination is generally induced by DNA damage in phage, bacterial
conjugation, yeast, and even in Drosophila and mammalian cells
(Bernstein, 1983). Natural genetic transformation rates are increased by
damaging recipient cells (Michod et al. 1988; Wojciechowski e al. 1989;
Hoelzer and Michod, 1991). Bernstein (1987) showed that damage induces
sex in T4 phages. When healthy phage infect their hosts, they erect a
barrier against other phage infestation, thus ensuring that their genes are
the only genes replicated inside the host. In contrast, when gene-damaged
phage infect their hosts, they do not erect an effective barrier, the result
being that another phage can infect, leading to sex and recombination.
Bernstein and Johns (1989) found that the addition of hydrogen peroxide
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to cultures of the yeast Schizosaccharomyces pombe resulted in a dramatic
increase in the percentage of sexual spores versus asexual spores. Therefore,
damage-induced sex seems to be the norm in many cases, rather than an
aberration. More generally, the very nature of a damage—that it is directly
recognizable by enzymes—makes it a suitable substrate as a signal for
cellular responses like sex. The signal could be something as simple as this:
if the DNA cannot be replicated {a polymerase cannot replicate a damage),
then have sex.

We prefer the assumption that sex is damage-induced for at least two
additional reasons: (1) in the event that damage disappears, the sexual acts
exactly like an asexual haploid, and (2) it seems hard to imagine that
nature would not eliminate the useless fusion and splitting of perfectly
healthy cells if it were without merit.

What is remarkable is the robustness of the system to the changes we
have made. As just mentioned, we originally assumed that the healthy
sexual initiated the repair, so that all three of the sexual terms were
different; we also originally modeled resource uptake in the diploid as
r-squared phenomenon, which really corresponds to chemical reactions
requiring simultaneous encounters, rather than the accrual of resources
over a period of time (as we imagine our cells doing). In spite of these
changes in the forms of the equations, there has been little qualitative
change in the form of the dynamics, bifurcation diagrams, or other
pertinent features.

4.1.5. Recovery from Damage. There are two sources of mortality and
death in the models we study: cell mortality, caused by disruption of the
cell membrane, and gene death from genetic damage. The interplay of these
two kinds of mortality is discussed further in Michod and Long (1994,
Fig. 2). Gene death is reversible by repair, whereas cell death is not.

We assume in our models that diploidy is a haven against damage: the
diploid cell, whether it is generated asexually or sexually via fusion of
haploids, is not subject to damage in our models. In organisms like viruses,
bacteria, and yeast, in which the ploidy level can be varied by experimental
conditions, diploid cells are generally much more resistant to DNA damage
than haploid cells. For example, in the yeast Saacharomyces cerevisiae,
Herskowitz states simply that “..diploid cells are better than haploid cells
in coping with DNA damage..” (Herskowitz, 1988, p. 544, and references
cited therein). Thus, we assume that any damage suffered by the diploid in
one of its genes is immediately repaired by the corresponding good copy.
We do not model this repair process explicitly, but imagine it to be accom-
plished through a process akin to primitive forms of recombination—such
as hypercyclic cooperation (Bernstein et al, 1984; see also Fig. 10).
Recovery from genetic error in the diploid state is assumed to be
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FiG. 10. Recovery from damage. This diagram, adapted from Bernstein et al. (1984),
represents a simple possibility for the type of sexual cell interaction considered in this paper.
Cells damaged on different genes can combine to produce a pair of normal cells, due to
“hypercycle regeneration” of the lost or damaged constituents from a good copy in the other
cell. In a similar manner, diploid cells are able to maintain a set of undamaged genes.

instantaneous and cost-free. Thus, we demand as much from the sexual
process as we possibly can, since fusion and splitting take time away from
replication.

Although we do not explicitly model the internal workings of the
protocell, we make assumptions consistent with the hypercycle model as
developed by Eigen and Schuster (1979) and as applied to the problem of
the origin of sex by Michod (1983), Bernstein ef al. (1984), and Michod et
al. (1990). The general idea is that as long as the production of each gene
is catalyzed by one or more of the other genes in the genome, and in turn
catalyzes the production of one more of the other genes, a cycle develops
in which the numbers of different genes have stable equilibria or stable
periodic behavior (Eigen and Schuster, 1979). If the number of functional
copies of a particular gene is perturbed by DNA damage, the hypercycle
restores the number of copies. The implications of this characteristic of
hypercycles for the evolution of sex and diploidy are shown in Fig. 10. We
start with two haploid cells with an unsegmented genome and damages in
different genes. In each of these cells the hypercycle cannot be established,
since there are no good copies of one of the component genes. However,
upon fusion there is at least one good copy of each gene and the hypercycle
can be established resulting in a full set of healthy genes. Similar recovery
from damage is assumed to occur in diploid asexual cells. Bernstein et al.
(1984) referred to this recovery from error as “hypercyclic cooperation”,
and hypothesized that it was a kind of genetic repair that preceded recom-
binational repair of genes linked on chromosones.

4.2. Related Work

Szathmary et al. (1990) have considered the problem of the origin of sex
and diploidy and concluded that under conditions of no damage the
ranking of competitive abilities of cells should be haploid > diploid >
sexual. In a damaging environment, they conclude that the ranking should
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be diploid > sexual > haploid. Their conclusions are based, for the most
part, on verbal arguments and not explicit mathematical models. These
conclusions are not supported by our models. The models analyzed by
Szathmary et al. (1990) are different than the models analyzed here in
several fundamental respects. Szathmary et al. (1990) did not explicitly
model a damaged population of cells that can be recovered by sexual
repair. They also did not explicitly model asexual diploid cells. Competi-
tion involving resource use was not modeled explicitly either. Instead, they
used Eigen and Schuster’s (1979) chemostat approach of “constant overall
organization” (counting fused haploids (diploids) as having twice the
“mass” of unfused haploids). In this approach, total cell mass is kept
constant and any overproduction of the system is simply subtracted to
make the net change for the system zero.

Bernstein et al. (1984} also modeled the origin of sex using computer
simulations and discrete generation population genetics models. Their com-
plex computer models (the so-called “state-matrix” and “streamlined”
models) are difficult to interpret, and this was part of the impetus for
the present study. Although the specific details of the models differ (for
example, they considered sex with reproduction), our results are generally
consistent with theirs in that sex can outcompete diploidy under certain
conditions. However, the conditions found here in which sex can win in
competition with diploidy are more restrictive than those reported in
Bernstein et al. (1984, Fig. 5). For example, Bernstein et al. (1984) reported
no effect of the fusion and splitting rates on the outcome of competition,
while we find that it depends critically on these parameters of the sexual
cycle (Fig. 7). Nor did they report the coexistence of diploid and sexual
forms that can occur above the bifurcation surface shown in Figs. 6 and 8.

4.3. Effects of Various Parameters in the Model

We now summarize the various parameters in the model, their effects on
the dynamics, and the eventual outcome of competition.

b: This is the only truly creative force in the model: if there is not
enough cell production, then the cell populations are doomed if death is
sufficiently strong (we come back to that in a moment). In the process of
non-dimensionalizing the system we divided everywhere by b, so that the
new non-dimensionalized parameters were actually ratios of rates. When
these parameters are discussed it must be understood that they represent
the strength of the named process relative to birth.

m: 1f m>1 (that is, if m/b > }), then death of the diploid is assured.
If m = 1, then the haploids are doomed. This is due to the fact that death
is the only truly destructive force, whereas birth is the only creative force:
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if the destruction is more active than the creative process, there can be
only one result. Beyond that, the value of m does not seem to have any
qualitative effect on the form of the bifurcation diagrams in parameter
space shown in the figures. The parameters m does have a special role,
however, as it affects the equilibrium population levels. The larger m
becomes, the larger the free resources are at equilibrium and thus the
smaller the quantity of resources stored in the cell populations (until at
m =} there are no resources stored in diploid cells and at m=1 there are
no resources stored in haploid cells). Cell mortality also serves to recycle
damaged cells into resources. Consequently, healthy cells are most frequent
at intermediate levels of mortality (see Figs. 3 and 4 of Michod and Long,
1994).

d: Damage has the following general effect: for little damage, ie.,
d < m, there are two potential haploid outcomes: the sexual cycle excludes
the asexual cell types or the haploid cell wins. Beyond that point the
haploid cannot go, and the sexual cycle is always vulnerable to extinction
in this range (d > m). The parameters of the sexual cycle (i.e., f and s) are
able to rescue it from any values of 4 and m(m < 1), in the sense that they
transform the unstable sexual equilibrium to a stable one. If the fusion gets
too large, however, it destabilizes again in favor of a coexistent equilibrium.
It may be, however, that for large values of d, the f and s values required
to save the haploid sexual would be unrealistically large.

f: Fusion is the most interesting of the parameters, in that its role is
sometimes positive and sometimes negative for the sexual cycle. Fusion
is necessary for the sexual to repair damages and if, in a situation of
punishing damage, this ability is not exploited, then the sexual cycle goes
extinct. For cases of low damage, such that d <m, the parameters of the
sexual cycle (f and s) can only have one effect for the S /A competition:
if the sexual cycle is too active, then the diploid gains the ability to survive
when otherwise it would not. That is, the diploid is at a disadvantage for
low damage, and can only overcome it if the haploid starts wasting time
repairing inconsequential damage. If the sexual is, in fact, wasting time,
then it would be vunerable to the presence of another haploid, one which
would not interact sexually with the sexual. The same phenomenon takes
place in the case of high damage, d> m, except that in that case there are
a few new possibilities. First of all, no haploid could survive to challenge
the sexual.

In the absence of the sexual process the diploid would eliminate the
hapioid, so long as mortality was not too high. If the value of f is suf-
ficiently high, so that the sexual cycle could conceivably survive and beat
the diploid, then pushing it higher eventually means that the sexual cycle
loses its competitive edge and coexistence becomes one of the two possible

653 47 1-4



46 LONG AND MICHOD

options (diploid exclusion of the sexual cycle is always a possible outcome).
So fusion is a two-edged sword for the sexual cycle.

s: Splitting tells us how fast the repair process is accomplished. The
larger s is, the better off the sexual cycle is (no matter what region of
parameter space we are in). For d > m, there is a critical value of s which
must be attained before the sexual cycle can survive (given any value of /).
Once this value is attained, then the fusion parameter f/ can be tuned to
give us one of the three outcomes possible:

Jf small: diploid wins;
f medium: competitive exclusion of one by the other;
/[ large: diploid wins, or coexistence.

4.4. Summary

The sexual has several parameters at its disposal, in the sense that selec-
tion could mold its sexual cycle in any of several different directions
(increased fusion, decreased splitting, etc.). We have seen that if damage is
low there is a tradeoff between sexuality and asexuality, but that haploids
generally beat the diploid due to their superior replication rates. If a sexual
uses more fusion than necessary, it relinquishes its superiority to an out-
come of competitive coexistence with the diploid (if the haploid is absent).
In competition with the haploid, selection might eliminate a “fusion-happy”
sexual, perhaps by back-mutation to a haploid in that case.

The asexual haploid cannot cope with high damage. So, when damage is
high, only the sexual can compete with a diploid. The sexual cycle must
maintain a minimum level of activity before the sexual can even begin to
compete with the diploid. If this condition is met, then initial conditions
give the outcome to one or the other of the two species or to competitive
coexistence. The actual outcome is a function of initial conditions. Qur
computer experiments have failed to produce interesting dynamical
behavior (periodic limit cycles or chaos), and we believe it unlikely that
such behavior is possible in this system (for biologically reasonable
parameter values) in spite of the large number of free parameters and
dimensions.

APPENDIX

A.1. Diploid Dynamics

In Fig. Al, we present a schematic diagram of the full competition, in
which each flow translates into a term in the accompanying equations. The
variables # and v parameter f relate to the diploid cell type and are
described below.
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s / e
~. @ - haploid
diploid
Fi1G. Al. Flow of cells for complete competition model. See legend to Fig. 2.

The flows in Fig. Al result directly in the following eight-dimensional
system of first-order, nonlinear, ordinary differential equations:

x'=xbr+2sy — xm—xd — fxz

y'=/f2+ fzx — ypm — ys

' =dx —zm— 2z — fzx

u' = 2fpvr — Bpur — mpu

v' = fpur — Bpor —mpo
xX,=x,br—x m—x,d

z,=dx,—mz,
r'=zm+xm+2pym+2um+3vm+z m+x,m

— brx — brx,— fiprv — Bpru.

Since dipioids must encounter two resource packets before they can
divide, there are two distinct types of diploids in the model in Fig. Al:
those which already have encountered one resource and “seek” a second
and those which have yet to find their first resource packet. We call the first
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type a “charged” diploid and the second type “uncharged”. By assuming
mass action kinetics, we simplify the diploid species in the following way.
Let u be the population density of the uncharged diploid and v the density
of the charged diploid. The following reactions are assumed to occur when
the diploid cell type is alone (f is a parameter representing the birth rate
of the diploid):

ut+rtlsyp

v+ 2u

uls 2r

v 3r
These reactions translate into the following equations:
u' = (2fvr — Pur —mu) p

o' = (Pur — Bor —mv) p
r'=[mQu+3v)—plv+u)r] p.

We note that these equations must sum to one and so can be replaced by
a system of two equations (because of the relation | =r+ 2v+ 3w, which
expresses the fact that the number of resource packets contained inside a
v cell is 2, whereas the number contained in a w cell is 3). We choose the
first two equations to study further.

Equilibrium implies that ' =0v" =0 and, for the interesting case of non-
extinction (1 #0 and/or v #0), we find that

mu myv

20—-u u—v

:»u2=2v2=>u=\/§v

for biologically reasonable populations. This equilibrium turns out to be
stable, which raises the possibility of replacing the two variables « and v by
one variable, say w, and using the equilibrated value for the new variable.
We add the two equations and substitute the equilibrated value of « to get
a single equation:

(u+v) = [Bor—m(u+v)] p=>(\/§u+v)/= [/}ur—m(\/éu+v)] 4

e[l

The effective birth rate of the diploid is given by the term ,Bp/(\/i+ 1)
in the last equation. If we were to assume that the only difference between
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the haploid and diploid resource utilization is cell size (represented by the
parameter p) and not, for example, different membrane properties, we
would take B=5. Such a choice puts the effective diploid birth rate at
p/(\/z + 1) or approximately 2/3, the rate of the haploid. Instead of
working with a factor of p/(ﬁ+ 1) in the following models, we chose to
give the diploid an additional advantage, by taking /3=((ﬁ+ 1)/2)b
(approximately 5/4 of the haploid rate). This says that the diploid is better
able to absorb resources than the haploid. As a result the effective diploid
birth rate simplifies to p/2, or approximately 3/4 that of the haploid. The
differential equation for the diploid’s rate of growth simplifies to the
following, now using the new variable w,

We use this equation for the diploid in the simplified model discussed in
the paper.

A.2. Mathematical Methods

We describe here the mathematical methods used in our analyses. In all
cases, we determined the stability of all biologically realistic equilibria as
the parameters of interest changed. We began by solving the system of dif-
ferential equations for equilibria. This always yielded the trivial equilibrium
of extinction along with more interesting equilibria. In several cases we
ended up with a complicated quartic equation, Q(z)=0, in one of the
unknown variables, z, the density of the damaged sexual haploid cell. The
coefficients of that quartic are combinations of the parameters m, d, s and
f (which actually represent ratios of m, d, s and f to b, the birth parameter).
In order to find realistic equilibria, we solve Q(z) =0 for the four z values
(which are themselves functions of the parameters) and check to see, for a
given set of parameter values, which of the four roots correspond to
biologically meaningful solutions; in other words, solutions for which
population densities are all positive (including the density of free
resources). The fact that a quartic equation has four roots sets an upper
bound on the number of realistic equilibria, but does not tell us how many
there are, and as we vary the parameter values we see that the number of
realistic equilibria varies. Equilibra pop in and out of the parameter space
as the parameters of the quartic vary. The stability properties of the
equilibria also change. We have tried to represent and understand this
process through the figures and discussion in the text.

All the critical surfaces and curves we have drawn in the figures are
obtained by varying parameters and checking the number and stability of
the resultant equilibria. All figures are drawn in parameter space, which
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leads to a potential cause of confusion: the surfaces drawn in our figures do
not represent separatrices in population space that typically divide the
space into regions corresponding to different equilibria for a certain fixed
set of parameter values. The parameter surfaces we draw determine the
number of realistic equilibria for a given set of parameter values, and
whether they are stable or unstable.

By looking at pairwise interactions, we found that the parameter space
representation of the equilibria could be scaled by one of the parameters
(we chose to scale out m). This allowed us to reduce our representations
from four dimensions (f, s, m, and d) to three (f,s, and d). It is not an
exact or simple scaling, but we find upon examining the three-space
parameter diagrams for varying values of m that the surfaces are
qualitatively the same (when properly scaled) across the spectrum of
permitted values of m.

As a specific example of what we did, consider the pairwise competition
of the sexual and diploid given by the equations (11). Setting the right-
hand side of the equations (11) equal to zero gives a quartic in z, 0(z). Any
equilibrium requires either w=0 or r=2m. Considering coexistent equi-
libria, r = 2m, Q(z) simplifies to a quadratic giving two roots, G, and G,
as functions of m, d, s, and /-

Q(z)=0= quadratic(z) =0=z.,, = {G,(m, d, 5, f), G,(m, d, 5, f)}.

In fact, we find
_&lmds)

f b
which says that the quadratic’s discriminant, 4(m, d, s), is independent
of f. So, for any values of the parameters m, d, and s, we get roots which
are scaled by f. (However, the quartic’s roots are not invariant under multi-
plication by f.) When 4 =0, the roots of the quadratic change from being
complex to being real. In addition, when 4 =0 there is a double root, in
other words, a root for which the quadratic and its derivative equal zero.
Solving A(m, d, s)=0 for s as a function of m and d gives a critical value
of splitting, s, that must be exceeded for the sexual to win (see Eq. (12) of
the text). In summary,

G,

A(m,d, s)=0=>s.Am, d)

Now we obtain the critical value of fusion, f,, corresponding to s.. The
double root z., = G(m, d, s.(m, d), /') must satisfy the original quartic,

Ozeq) = Q(G(m, d, 5(m, d), f))=0.
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Using this equation we solve for the critical value of f=f.(m, d) that is
plotted in Figs. 6 and 7.

We used these critical surfaces as guides in our numerical analyses of the
differential equations. We iterated all differential equations, in all competi-
tions studied, using the International Mathematics and Statistics Library
implementation of the Runga—Kutta 4 algorithm, with automatic step-size
control. We used the numerical results to confirm algebraic results.

Our method of finding mutual equilibria focuses on the resources, since
the values of equilibrium resources were generally easily obtained and since
a necessary requirement for mutual equilibration is that equilibrium
resources be the same for each set of equations. For example, the asexual
competition is represented by the following system of equations:

x,=x,(r—-m—d)

z,=dx,—mz,

=wlzm)
w=wp{z—m).

For haploid equilibration we demand that x, =0, =r=m+d, while for
diploid equilibration we require that r=2m. For both cell types to equi-
librate at the same time, we demand that r =2m=m+d, =m=d. Thus we
see that by using the resource equilibrium values we have obtained a non-
trivial result: that for coexistence of the asexuals (in equilibrium) we
require m=d. It is possible, of course, that they share a non-equilibrium
coexistence, but we have not observed such behavior in the numerical
experiments.

The equilibria of the equations, points in the population space of
(haploids, sexuals, diploids, resources), were determined algebraically (as
in the cases above) and numerically otherwise. Although we have not
presented our results here in population space, the coalescence of equilibria
in the population space occurs by what are called “transcritical bifurca-
tions”: equilibria exchange stability at their meeting by exchanging eigen-
values through zero in the complex plane. The stability of an equilibrium
point is conditioned on having all eigenvalues of negative real parts. Often
an equilibrium may have a single eigenvalue of positive real part, in which
case it may gain stability by trading away that eigenvalue for one with a
negative real part (which costs the other equilibrium its stability, since any
one positive real part is enough to render an equilibrium unstable).

In Fig. A2, we show how to relate the parameter space surfaces in Fig. 6
to population space equilibria. The parameters m and d are fixed in all fives
panels at m=0.40 and d=045. For these parameter values, the diploid
alone is always stable. The sexual alone may also be stable, or it may
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coexist with the diploid, depending on the values of the fusion and splitting
parameters. Recall that equilibria for the sexual alone are determined by a
quartic, while equilibria for representing coexistence of the sexual with the
diploid are determined by a quadratic. In Fig. A2, we present a series of six
panels. In panels a through e, the quartic and quadratic discussed above
are graphed as functions of z for different values of the fusion and splitting
parameters. In each of theses panels the quadratic curve is the curve that
starts from below and increases as z first increases from z=0. In panel f is
shown the bifurcation diagram from Fig. 6. The different parameter values
of s and f used in panels a—e are plotted and labeled in panel f. We need
only consider z because the equilibrium values of all other population
variables are specified once the equilibrium value of z is determined. As the
parameters s and f change, the relative positions of the roots of the quartic
and quadratic change. When two roots cross, one from the quadratic and

(a) (b) (c)
f=450s=054 0.075 =265 8=055
0.080
0.040 sexual
0.000 V4 0.000 s n Z 0.000
-0.040 coexistence b ooo 0.050 0100
0075 i g -0.080
0.000 0.020 0.040
(d) (e) ®
f
0.075 0.075
£=250 5=056 1=450,5=056 4% a.
0.000 |5----Y =4 z 0.000
265
250
100
] ]
0075 [ 0.500 0.075 o075 |09 0025  0.050

Fic. A2. Relation of bifurcation diagram to population space for competition between
diploid and sexual. In panels (a)-(e), the quartic and quadratic curves discussed in the text
are graphed for different fusion and splitting rates and m =040, 4=0.45. In panel (f), the
different combinations of fusion and splitting rates given in panels (a}-(e) are plotted and
labeled on the bifurcation surface from Fig. 6. Properties of the various equilibria are
designated near the points as follows: s stands for stable, u for unstable, n for neutrally stable
and x for biologically unrealizable. The pure diploid equilibrium (z=0) is always stable for
m=0.4, d=045. See text for further explanation.
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one from the quartic, we generally see an exchange of stability of these
roots. These exchanges are represented by surfaces of our parameter space
representations.

In panel a, the splitting rate is a little too low, s =0.54, for a fusion rate
of f=4.50 and the diploid wins. The quadratic has no roots and the root
of the quartic is unstable. In panel b, the splitting rate has increased
slightly to s =0.55, while the fusion rate has dropped to f=2.65. All three
equilibria now meet at one point, resulting in neutral stability with extinc-
tion of the sexual and persistence of the diploid.

In panel c, the fusion rate is f=1.00, while the splitting rate is s =0.56.
The sexual type now has an equilibrium alone at X =0.1010, y =0.0102,
2=0.0707, w=0, and 7=0.808, but the fusion rate is too low for it to be
stable. One of the two coexistence equilibria is unstable and the other is
neutrally stable. Consequently, only the diploid alone is stable.

In panel d, the parameters are f=2.5 and s=0.56. The equilibrium for
the sexual alone of x=0.1114, $=0.0182, 2=0.0531, w=0, and 7 =0.7990
is now stable and reached from some (for example, x =0.0718, 7 =0.0118,
2=10.0445, w = 0.0010) but not all initial values. For some initial values the
diploid alone wins. One of the two coexistence equilibria is unstable and
the other is biologically unrealizable.

In panel e, the parameters are f=4.5 and s=0.56. The equilibrium
of x=0.1126, y=0.0230, =0.0400, w=0, and F=0.8014 for the sexual
alone is now unstable. The quadratic gives two roots, the second of which
is stable: X=09433, y=00181, 7=0.0367, w=0.0163, and 7=10.8000.
Consequently, coexistence of the diploid and haploid is stable for these
parameter values.

As noted in the text, we find that the sexual can compete, or coexist,
with the diploid when it consumes as many, or more, resources at equi-
librium as the diploid. The resource level for the diploid at equilibrium,
either alone or in coexistence with the sexual, must be 7 =2m = 0.8 for the
competitions just described (recall the equation for the diploid in Eqgs. (5)
and (11)). In panel c, the equilibrium resource for the sexual alone is
F=0.8080 which is greater than for the diploid alone, # = 0.8, so the diploid
wins. Note that the level of free resources is inversely related to the level
of resources consumed by the cell types. In panel d, free resources at the
all-sexual equilibrium are 7 =0.7990 < 0.8000, so the sexual wins for certain
initial conditions, namely, when there are sufficient numbers of sexual cells
to begin with. However, the all-diploid equilibrium is also stable (as it
always is for m=040 and d=045) at which free resources are
7 =0.8000> 0.7990. Counter examples of this kind—where sex cannot
invade when rare even though it more effectively converts resources to
cells-are the basis for our qualification in the text that consumption of
resources at equilibrium wusually predicts the outcome of competition.
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In panel e, the free resources at the all-sexual equilibrium are
F=0.8014 > 0.8000 and so the all-sexual equilibrium is unstable and the
coexistence equilibrium is stable as is the pure diploid equilibrium.

The surfaces and curves which we have shown in the figures have the
following interpretation in this context. At the surfaces shown in the figures,
the stability properties of population equilibria are changing. At the sur-
face, several equilibria are meeting at once, so that there are several eigen-
values being exchanged simultaneously through zero. If the corresponding
imaginary parts at such meetings were non-zero, then we would have Hopf
bifurcations; and while we have seen Hopf bifurcations for this system, we
have not seen any for biologically reasonable population values (i.e., non-
negative values such that their sum is less than the total resources permit).
While we are not able to prove that more exotic dynamical behavior is
impossible, we have seen that under a wide range of parameter choices the
various systems never showed behavior other than a relentless pursuit of
equilibrium.
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