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Applications of mathematics and statistics often require finding a smooth approxi-
mation to a finite set of data points, or interpolating the data points. Mathematicians
frequently use cubic spline interpolation when the points lie in a plane, whereby the
points are connected with a continuous curve made up of cubic polynomials pieced
together in such a way that the combined curve has continuous first and second deriva-
tives at the junction points. There are many other interpolation techniques, such as
Lagrange polynomials and Hermite cubics [2, 8]. Furthermore, when the data points
are at all uncertain, smoothing procedures such as a least squares approximation may
be preferable to exact interpolation.

Our interest here is in showing how to extend such planar techniques to handle
three-dimensional (3D) data points, by using the Singular Value Decomposition (SVD)
of a matrix. While there are many procedures for interpolating and approximating
3-D data sets [4, 8, 9], ours is straightforward and easy to program using Matlab,
Mathematica, Maple, Xlispstat or any computer software package that includes an
SVD routine. Using any smooth planar data fitting technique, the SVD method yields
a smooth surface fit to a given 3D data set. Most other procedures are patch-oriented—
the individual surface patches are determined by smoothness conditions imposed along
the patch edges. Our surfaces are based directly on the data points and the choice
of planar approximation or interpolation technique; no surface patches are explicitly
involved.

We first describe and illustrate the method for fitting a surface z = z(x, y) to a sim-
ple gridded data set (x;, y;, z;j), where z;; = A;; for a specific matrix A. The process
of fitting a surface to a matrix of numbers or points we will call skinning the matrix,
even though we are putting a skin on rather than taking one off.
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The SVD technique.

At the heart of our technique is the general singular value decomposition theorem for
matrices. Any m X n matrix A with real entries can be written as a linear combination

A= Zakukva (D
=1

where r is the rank of A. The o} are positive numbers, ordered from greatest to small-
est, called the singular values of A; the vectors u; are orthonormal vectors in R™
(called left singular vectors); and the vectors v; are orthonormal vectors in R" (right
singular vectors). Each outer product uzv] is an m x n matrix of rank one formed by
ordinary matrix multiplication of the column vector u; by the row vector v/ . For more
information about the SVD, see [1, 3, 5, 7].

Our idea is simple. Given data points (x;, y;, A;;), we form the SVD of the m x n
matrix A = [A;;] and use any chosen planar method to interpolate or approximate the r
data sets (x;, (ur);), 1 <i < m, associated with the left singular vectors u, by a func-
tion u;(x). Similarly we fit a function v (y) to each of the data sets (y;, (vi);), 1 <
Jj < n. Then the function

2(x, ) = ) opur(x)ve(y) )
k=1

skins our matrix data set. That is, z(x;, y;) = 22:1 orux(x;)vr(y;), which is equal to
or approximates (depending on whether we interpolated or approximated the planar
data) the desired value

.
Ajj = E OkUikVj.
=1

The skinning function of (2) is a weighted linear combination of “outer functions”,
with the singular values as coefficients. This may remind readers of the eigenfunction
expansions of solutions to boundary value problems that are encountered in solving
partial differential equations by the method of separation of variables.

The differentiability of the interpolating function z(x, y) is an immediate conse-
quence of the differentiability of the singular vector interpolants, as we see from
(2). Thus, for example, in order to obtain C? smoothness of the skinning surface,
which is typically required for industrial milling processes, we need only use twice-
differentiable interpolants to the planar data sets associated with the singular vectors.

Statisticians sometimes smooth matrix data by dropping from the SVD all terms that
correspond to singular values smaller than a given threshold, construing these terms
as random measurement errors, or noise. The same procedure can be applied here:
one can interpolate the singular vector data sets that correspond to the larger singular
values, but drop from (2) the terms that involve singular values smaller than the chosen
threshold. The result will be a smoothed surface approximant (rather than interpolant)
of the 3-D data set.

Example 1. Consider the problem of skinning the 6 x 7 matrix A
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0.0 36 11.2 148 244 30.0 49.6

0.0 72 224 296 488 60.0 99.2

0.0 10.8 33.6 444 732 90.0 148.8 3)
0.0 144 2000 59.2 976 1200 1984 |’

0.0 18.0 56.0 74.0 122.0 150.0 248.0

0.0 21.6 67.2 88.8 146.4 180.0 297.6

created as a sum of two outer products (which means that the SVD expansion of (1)
has just two terms). Suppose that the grid of points (x;, y;) on which our interpolating
function is to take the values A;; is given by (x;, ..., x¢) = (2,6, 8,13, 16, 26) and
(y1,-..,y7) =(0,2,4,6,8,10, 12).

Solution. Figure 1 shows the resulting skeleton; i.e., the data points (x;, y;, A;;) con-
nected by straight line segments. The upper row of Figure 2 shows the piecewise linear
and Hermite C' interpolants for the left and right singular vector data sets correspond-
ing to the largest singular value of A. The lower row shows the outer product of these
two vectors and the function interpolant corresponding to the Hermite interpolation
scheme, weighted by the singular value.

Hermite C' interpolants are piecewise cubics obtained by assigning slopes at each
of the data points. For each subinterval the four conditions (matching data values and
slopes at the “nodes”) determine a unique cubic for that subinterval. We used the sim-

8UipD=8i-1) 14 egtimate slopes at the internal

ple derivative approximation g'(#;) = P

nodes.

The top row of Figure 3 similarly shows the second rank-one outer product matrix
along with its interpolating Hermite surface; in the bottom row we show the data ma-
trix and the resulting function interpolating surface, formed by summing the rank-one
interpolating surfaces.

Example 2. We used SVD interpolation to create a finer resolution “computer bust”
of Abraham Lincoln (Figure 4), starting from a scan of a bust using 36 x 48 (1728)
estimated points. These original points were only accurate to an eighth of an inch in
the radial direction: anyone scrutinizing our deluxe scanner (Figure 5) can see why.

Figure 1. The skeleton of the data matrix A (3)
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Figure 2. Top row: The singular vectors corresponding to the largest singular value and both
their linear-spline and Hermite interpolants. Bottom row: at left the outer product skeleton of
the singular vectors, and at right the product of the Hermite interpolating functions—a skin of
the first rank-one matrix.

The resulting points were connected with linear segments yielding the bust at left in
Figure 4. In spite of this coarse beginning, the resulting improvement using 1728 x 25
points chosen from our interpolating surface yields the Abe shown at right in Figure 4
(which we consider better in the sense that the skin looks more like the original bust
than do the scanned points). The continuous, differentiable interpolation surface was

10

00

Figure 3. Top row: at left the outer product skeleton of the singular vectors corresponding to
the second singular value, and at right its Hermite skin. At bottom we show the data matrix
A (3) and the result of adding together the rank-one interpolants to form a C'-continuous
interpolant to A.
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Figure 4. At left is the scanned image of Abe; at right the improved Abe, using roughly 25
times as many points obtained via Hermite interpolation.

constructed using Hermite interpolation as in Example 1. Our original scanned points
were regularly spaced in the z and 6 coordinates of cylindrical coordinates (r, 6, z).
The radial coordinates » were thus a function of the 36 x 48 rectangular grid of 6 and
z coordinate values, and were used as the matrix values.

Conclusion.

We have presented a simple method for the creation of surface interpolants of two-
dimensional data sets defined on grids. The level of differentiability desired is easily

Figure 5. This crude scanner was used to read points off a bust of Abraham Lincoln, and a
“mere” 1728 points required a good deal of labor!
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adjusted by choosing suitable vector interpolants, and smoothing is a readily available
option (useful if the data contain noise).

While we presented a pair of examples, we have not exhausted the usefulness
of SVD interpolation. In particular, we have done much work with the interpola-
tion of parameterized surfaces (i.e., interpolating matrices of points). We are work-
ing on a higher dimensional generalization [6] (interpolating solid objects with one-
dimensional ones), and on the problem of interpolating “function meshes” (that is,
grids of interlacing functions), the simplest case being that of the boundary curves on
a rectangular region.
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Count the Errors

From HIP 2 B?, by Jay Darby (Hemisphere, October 2000, 116, 118, 120, 122,
147), p. 147.

“Neils Henrik Abel invented the concept of Abelian groups. These are math-
ematical functions that are “‘commutative,” which basically means that changing
the order of the components does not change the result. For example, multiplica-
tion and arithmetic are commutative, because 4 *x3 =3 x4 and3+5=5+ 3"

Yes, “arithmetic” is what Mr. Darby wrote. Should not you believe such stuff
could appear in print and want to check that I am not making it up you may
have some difficulty. Hemisphere is the in-flight magazine of United Airlines,
probably not preserved by many libraries.
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