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THE CENTEE of interest and point of em¬

phasis of any living subject changes. The
center of active interest in epidemiology gravi¬
tates to the United States of America, and I
pay homage to the outstanding quality and
volume of work I have seen in this country.
It is therefore a unique privilege to give the
Dyer Lecture at the National Institutes of
Health, and especially to do so in the presence
of Dr. Eolla E. Dyer, who is largely responsible
for the stature of the Institutes and after whom
the lecture is named.
An epidemiologic model is a closely argued

statement of the quantitative aspects of trans¬
mission of a disease. This model includes all
those factors with a direct influence on the
dynamics of transmission and shows propor¬
tionately, but not necessarily in exact numerical
terms, how changes in any one or all of the fac¬
tors will influence transmission, incidence, and
prevalence.
The model taken by itself has no significance;

it proves nothing and explains nothing, except
perhaps the mind of the man who made it.
Its value lies in its potential use as a tool for
understanding the patterns in which the dis¬
ease occurs, the causes of divergence between
them and of fluctuations in prevalence, the rel-
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ative significance of individual factors and of
changes in their values, for checking biological
knowledge, and for analyzing its completeness
for epidemiologic purposes.
Study of malarial infections was originated

by Farr (1, #), who successfully fitted a

smoothed curve on a smallpox epidemic and
later predicted the probable future course

of an epidemic of rinderpest on the basis of a

mathematical examination of past happenings.
This method of predicting the course of in¬
fections was elaborated in relation to direct
infections by Brownlee (3), Hamer (^), and
others, and by Ross (5, 6) in relation to infec¬
tions conveyed by an intermediate host, the
mosquito. From about this time, 1906, an ac¬

tive literature on the subject flourished, cul¬
minating in the monumental work of Lotka
(7), but the subject then went into a state of
suspended animation, with very little litera¬
ture after that date until after World War
II, largely because the models produced had
not in fact served as useful tools in the under¬
standing of natural happenings. Notably the
theoretical models of direct infections
showed a small but consistent difference from
natural epidemic curves, while those of malaria
required, to simulate nature, the attribution of
values to constants which no malariologist
would accept as realistic.
The study of both types of infection has

since been revived, and realistic models of di¬
rect and indirect infections are now produced.
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In the case of direct infections it has been
shown that deterministic models such as were

developed by earlier workers are not properly
applicable to the transmission of infections in
communities which are subdivided into innu¬
merable cells by the facts of housing and town
life, whereas stochastic models can be appro¬
priately developed for them. In the case of
the indirect infections it has now been realized
that some of the basic definitions on which
earlier workers relied were inaccurate; their
correction makes possible the production of
realistic models, which have been elaborated in
relation to malaria (8-12). Moreover, the
deterministic technique remains applicable to
many cases of these infections, perhaps because
their dissemination by migrating insects blurs
the barriers to transmission from house to
house. The use of these definitions has thrown
much light on the epidemiology of malaria.
Particularly they have shown the existence of
true epidemiologic patterns in what had pre¬
viously been an endless series of widely varying
pictures, and they have demonstrated the rela¬
tive importance of changes of value in the
various factors influencing the extremely com¬

plicated chain of transmission. I now consider
them an indispensable aid in the understanding
of any of the indirect infections.
The methods involved in the mathematical

analysis are not abstruse, and the technique is
well within the mathematical power of many
biologists. The difficulty of the subject to a

biologist lies in directing his thoughts into the
wholly quantitative channels of dynamics, in
lack of acquaintance with the type of steps
involved in building up a complete model, and
in the lack of apparent meaning in the ulti¬
mate product of some previous studies which
have been left in their mathematical form
without back translation into biological terms.
To the biometrician they present no technical
problems whatever; his difficulties lie in recog¬
nizing the needs of the epidemiologist and the
type of analysis which might be helpful to
him.
My present lecture is an exercise in trans¬

lation, an effort to explain what steps may be
helpful in creating a model, what factors need
to be taken into account in each model, how the
models integrate with one another, and the type

of information which may be derived from
them. I will use malaria for demonstration of
these steps, but I hope to show that the princi¬
ples can be applied to other conditions, and
what type of modification is necessary to do
so. The process falls into three stages, each
of which may have a number of subdivisions:
(a) the formulation of a general scheme show¬
ing what factors are directly involved in the
dynamics of transmission; (&) the arrangement
of one's ideas to form such combinations of
these factors as are logical and germane to the
subject, and (c) the examination of the steps
of transmission, first as a series of isolated
events, and then as a working mechanism in
which the movement of one cog affects another,
and so to form a complete picture.
A biological picture has to be converted into

quantitative terms to form the general scheme.
Figure 1 illustrates the transmission cycle of
malaria. Within the circle the cycle is shown in
traditional form, from schizonts through
gametogenesis, fertilization, sporogony, inoc¬
ulation into man, and the exo-erythrocytic
cycle back to schizogony. Outside the circle are

the quantitative aspects of these happenings.
Infection in man has the characteristics of du¬
ration and infectivity, both of which can be
expressed numerically. The infective patient
is bitten by mosquitoes which have the charac¬
teristics of numbers, frequency of biting man,
susceptibility to malaria, and longevity; the
sporogony cycle has the characteristic of time,
which may be used to subdivide the mosquito's
pattern into a probability of survival to in¬
fectivity, and subsequent expectation of life
should it do so. Sporozoite-infected mosquitoes
have a certain average infectivity, though it
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Figure 2. Survivors from a constant mortality rate

Constant
p 0-95

Identities

Probability of survival to n days

Expectation of life

Number of feeds on man

Where a is average daily feeds

pn

logeP
a

log*?

can be measured only in conjunction with the
susceptibility of man. Finally, a characteristic
of new infection in man is that it can often be
superimposed on a previous infection. The in¬
teraction of these characteristics produces ul¬
timately one infection rate in man and another
in the mosquito. It will be convenient in several
later diagrams to adhere to the general form
used in this one, because it visually relates a

given infection rate in man on the left, through
the upper semicircles, to one in the mosquito on

the right, and the infection rate in the mosquito
through the lower semicircle to a rate in man
again.
The second step is the formation of appro¬

priate combinations, or derivatives, of these
basic factors. One such set of derivatives is
shown in figure 2. It is a reasonable, though
not exact, representation of natural happenings
to consider the mortality of anophelines as un¬

related to age. On this basis it is possible to

express for any given probability of survival
through 1 day (p) the probability of survival
for any given number of days, such as the time
of sporogony (n), and the expectation of life
of a mosquito from any age at which it is known
to be alive. A combination of this expectation
of life with the probability of biting man on any

one day (a) gives the total number of bites
on man taken by the average mosquito during
its whole lifetime, the great significance of
which is brought out in mathematical working
and which therefore deserves a title for easy
reference. It may be termed the "total biting
figure."
Another important combination is the basic

reproduction rate, or number of infections
which would be distributed by a single patient
with a primary case of malaria if no infections
were blocked by previous infection of mosquito
or man. The concept, illustrated in figure 3, is
quite simple. If the probability of recovery on
any day, or the recovery rate, is r, the duration
of infectivity is 1/r day. The patient with the
primary case is bitten on each of these days by
ma mosquitoes, m being their numbers in rela¬
tion to man and a being the probability of their
biting man on any one day. The probability of
their survival to infectivity (pn), and the num¬
ber of subsequent feeds on man by those which

can be de-survive for this period ( .^-)
rived from figure 2. A proportion (b) of these
feeds will actually implant infection. Simple
multiplication of these gives the basic repro¬
duction rate. This is a concept only, many of
these infections in nature being blocked by pre¬
vious infection of the mosquito or man. Its
full justification lies in the fact that expressions
worked with fully rigorous allowance for the
basic reproduction rate can often be simplified

Figure 3. The basic reproduction rate
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by substitution of this identity, which is ade¬
quate proof of its value as a concept.
The third step is to examine the dynamics of

transmission, and for this there are needed:
. An expression for the dependence of the mos¬

quito infection rate on a constant inoculation
rate in man.
. The converse expression for the dependence
of the human infection rate on a constant in¬
oculation rate.
. An expression for the way in which these
rates mutually adjust to each other when both
are free to change, an increase in one causing
a corresponding rise in the other and so ad in-
finitum, though in progressively smaller stages
till virtual equilibrium is reached, which the
expression should represent.
. Some expression or representation of the
sensitivity of this equilibrium to changes in its
controlling factors.

MOSQUITO
s variable

p survival
a man-biting habit
n extrinsic cycle

a 0.5
w 12 days

MAN
x constant

Figure 5
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These expressions will, so far as appropriate,
be illustrated by two contrasting examples, in
one of which the anopheline carrier is given a

high total biting figure, and in the other a low
one.

Figures 4 and 5 illustrate the effect of a con¬

stant human infection rate (a?) on the mosquito
infection rate (s), the symbols #>, a, and n hav¬
ing the meanings given previously. The ruling
expression, derived from Macdonald (10), is
given at the head of the figures. Figure 4
shows the relationship when the total biting
figure is high, 9.25, being determined by high
values of both the biting habit and longevity,
such as are typical of Anopheles gambiae. An
increasing human infection rate causes a dis¬
proportionately small increase in the mosquito
infection rate; or a high total biting figure
restricts the correspondence between the two
infection rates. Figure 5 refers to happenings
when the total biting figure is low, 0.224, being
determined by low values of both biting habit
and longevity, such as are characteristic of
Anopheles culicifacies in parts of India. The
actual values of the mosquito infection rate
are much lower than in the previous example
and are shown on a different scale, but in this
case an increase in the human infection rate is
matched by an almost exactly proportionate
increase in the mosquito infection rate; a low
total biting figure permits almost complete cor¬

respondence between the two infection rates.
The inoculation rate (h) depends on the in-
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fection rate in mosquitoes (s), their numbers
(m), and the frequency with which they bite
man (a). If all of these are constant, and al¬
lowed to operate for sufficient time, during
which immunity is not enhanced, the resultant
human infection rate will gravitate toward a

limiting value (Lx) in which the only other
component is the recovery rate (r), and this
limiting value is in direct proportion to the
value of the inoculation rate until infection is
general (fig. 6). This simple form differs from
that seen in most infections. It is decided by
the fact that superinfection occurs, and the
method of its mathematical handling was

shown by Irwin in a paper by Macdonald (8).
If both the infection and inoculation rates

are variable, an increase in one causes a cor¬

responding increase in the other, and so on in¬
definitely, but in steadily decreasing degree,
till the two rates approach a limiting value,
shown in the expressions at the head of figure
7, which itself is diagrammatic only. The pos¬
sible range of the human infection rate extends
from 0 to 1.0, and that of the mosquito infec¬
tion rate from zero to pn. The full expressions
for the limits are lengthy, but it is possible to
simplify them to the forms shown by insertion
of the identity for the basic reproduction rate.
The human infection rate is determined by the
total biting figure, which occurs in a reciprocal
form, and the reproduction rate. The mos¬

quito infection rate is determined by the re¬

production rate and the probability of survival
to infectivity (pn). It will be noted that, if
the reproduction rate (.3) is put at 1.0 or less,

MAN
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both of the infection rates become 0 or unreal,
and this is the basis of the concept of the criti¬
cal level of transmission, below which the dis¬
ease disappears, as in anophelism without
malaria. With long-standing transmission the
basic reproduction rate would itself undergo
change, on account of the reduction in the dur¬
ation of infections owing to the development
of immunity, and this is the reason for omis¬
sion of any numerical statement of these ex¬

pressions in the diagram.
Examination of the concept of these limits

can nevertheless be very fruitful. This may
best be illustrated by examination of the degree
of change in the two limits produced by al¬
teration of the basic reproduction rate. This
is shown for the two extreme cases in figures
8 and 9, which are on the same principle as

previous diagrams though the connecting links
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between the two sides have been eliminated for
the sake of simplicity. The first concerns hap¬
penings when the total biting figure is high,
9.25, as used in figure 4. It is assumed that
the human infection rate had previously been
stabilized at 5 percent, and the fact that im¬
munity may have played a part in this is ir¬
relevant. The basic reproduction rate is then
assumed to have increased by 50 percent, and
the changes in the two infection rates are fol¬
lowed through their successive increases to their
new limiting values. In figure 9 the same

series of happenings is followed, but the total
biting figure involved here is small, 0.224 as

in figure 5.
The two sets of happenings are quite distinct

from each other. In the first case the two
infection rates increase by small steps, the
human one gaining stability again at 12.6 per¬
cent. In the second, both rates increase by
progressively larger steps until saturation is
approached, and the human rate does not settle
down until it reaches 100 percent. These fig¬
ures show diagrammatically the working of
stability, instability, and equilibrium, for which
the full proof lies in complete mathematical
working. A high total biting figure results in
a stable infection rate which is relatively in¬
sensitive to changes in the controlling factors,
whereas a low total biting figure determines a

very unstable state of equilibrium which is
drastically upset by small changes in the
transmission. Any of the factors which enter
into the reproduction rate may of course deter¬
mine this change, but the degree of effect on

the infection rates is determined solely by the
total biting figure.

This picture has been presented in a precise
mathematical form elsewhere (11), the present
statement being an effort to translate it into
simpler terminology. It accords well with
natural happenings, both as regards variations
in the stability of the disease, and association
of this variability with anopheline character¬
istics. Figure 10 shows the endlessly repetitive
seasonal malaria of Italy before its eradication,
transmitted by Anopheles labranchiae which
feeds commonly on man and lives long, while
figure 11 shows happenings in Ceylon, also
before eradication of malaria, where the disease
showed haphazard and extreme variation, great

Figure 10

Figure 11

UNSTABLE MALARIA
Monthly malaria cases, Maha Oya Basin, Ceylon

1937 1940 1943 1946

epidemics following minor changes in trans¬
mission, under the influence of A. culicifacies,
which has characteristics of biting and lon¬
gevity similar to those used in preparing
figures 5 and 9.
Examination of a mathematical model can

also throw valuable light on the theory and
practice of control measures. The effect of
control of the breeding is shown in figure 12.
Variations in mosquito density produce a di¬
rectly proportionate change in the reproduc¬
tion rate, as can be seen by examination of the
expression at the head of figure 2. A great
reduction in density must therefore be attained
if an originally high reproduction rate is to be
lowered below the critical level.
However, it may also be seen from the expres¬

sion at the head of figure 2 that mosquito
survival (p), representing differences in expec¬
tation of life, enters into the reproduction rate
twice, and in a complicated form. Figure 13
shows the effect of changes in this expectation
of mosquito life. It is assumed that within a

given set of values of mosquito density and
biting habit, an expectation of 20 days
(/?=0.95) had sustained a reproduction rate of
1,000.a realistic figure. Reduction of this ex¬

pectation produces a corresponding decrease in
the reproduction rate, but on a vastly greater
scale, till when it reaches 2.6 (2?=0.68) the re¬

production rate sinks below its critical level and
full control is achieved.
The immense success of imagocidal control
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came as a surprise to malariologists, but it is
explained and could have been foreseen by ex¬

amination of models of this sort. It would be
wise to examine the theory of controlling other
diseases, to search for the most effective tech¬
niques and not merely allow their possible de¬
velopment by chance.
To what other mosquito-borne infections can

this model be applied? None. But its mecha¬
nism can be modified and adjusted, with appro¬
priate parallel biological criticism and study, to
give comparable information about any other,
and I briefly examine the forms of change
which would be needed for application to
filarial and virus disease transmission.
The scheme of filarial disease transmission

differs in that it often kills the mosquito, in
which the infective stage lasts for only a short
period, so that a different expression is needed
for the dependence of the mosquito infection
rate on that in man. So far as present biologi¬
cal knowledge goes, the dependence of the
human infection rate on the mosquito infection
is in identical form with that of malaria, con¬

trolled principally by the occurrence of super-
infection. However, in the series of data which
I have examined there has been a great dis¬
crepancy between the apparent inoculation rate
shown by entomological study and the effective
rate deduced from the age incidence of infec¬
tion in man, the one being several hundred times
as high as the other. The cause might be either
that the biological picture inserted is wrong, or

Figure 12. Mosquito density and reproduction rate
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Figure 13. Mosquito expectation of life and repro¬
duction rates
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that an extremely low value should be attributed
to the infectivity factor, termed "6" in the ma¬

larial equation. I have not seen this commented
on in the literature and feel some exploration
of this subject is essential to the reliability of
models of filarial infection.

Since coming to the United States I have
been impressed by the interest in mosquito-
borne virus infections and have tentatively ex¬

plored the production of an appropriate model,
outlined in the section "Mathematical Back¬
ground," but it has been tentative only and ap¬
plies to a hypothetical condition, the verisimili¬
tude of which would require a considerable
check. The general scheme of dependence of
the mosquito infection rate on the rate in verte¬
brates is identical, the same considerations ap¬
ply, an incubation period is involved, and the
infection, which does not kill the insect, lasts
for the remainder of its life. The scheme of
dependence of the infection rate in vertebrates
on the infection rate in the mosquito is, how¬
ever, radically different. Superinfection does
not occur; neither in my hypothetical case does
reinfection, though it could readily be allowed
for. The infection may kill a significant pro¬
portion of those infected, and the high immu¬
nity developed restricts the possibility of new

infections, the frequency of which is closely
influenced by the proportion of new nonim-
mune arrivals, by birth or other means, who
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must be taken into account. Some of the main
features of such a model are:

. The limiting value of a?, which represents
the total of immune and infected persons, is in
a quite different form. It is invariably below
1.0, and has a very indirect relationship to the
inoculation rate. The total biting figure does
not enter into it; this figure has some minor in¬
fluence, but mainly on the speed at which the
limit is approached, and less on its actual value.

. The model shows the relationship which ex¬

ists, when stability is achieved, between viremia,
immunity, and mosquito infection, and the sig¬
nificant way in which this relationship is de¬
pendent on migration and birth rates.

. The sensitivity of the total rate, including
those immune, is relatively slight, but the sen¬

sitivity of the viremia rate is high, the degree
of variation following changes in any of the
controlling factors being partly determined by
the migration and birth rates.

. The model indicates the critical levels of
transmission, and the way in which the critical
density of mosquito vectors is influenced by,
among other things, the total biting figure.
This statement, if its scheme were approved

by those working in the subject, refers only to
the equilibrium levels, though there would be
no peculiar difficulty in preparing epidemic pic¬
tures. It could therefore be applied in its pres¬
ent form in places only where equilibrium may
occur, characteristically in the perennially
warm tropics. It is put forward only to in¬
dicate the possible utility of mathematical
models in such conditions, not as a definitive
structure. It is probable that such an approach
might remove some of the mystification which
now accompanies discussion of the epidemiology
of these conditions, as well as throw light on
some factors deserving study, such as the fre¬
quency with which birds are bitten by mosqui¬
toes and their migration and birth rates.
Malaria and arborvirus infections are broadly

similar in that they are both mosquito-borne.
A very brief statement of preliminary studies of
schistosomiasis will illustrate the value of this
type of study in a condition where the vector
carriage has essential dissimilarities.
The biological cycle of transmission of

schistosomiasis, shown diagrammatically within
the circle in figure 14, is well known. The worm

Figure 14

in the vertebrate host passes eggs, from which
miracidia hatch in water as free-living organ¬
isms. If the miracidia come into contact with
a suitable snail they may penetrate it and de¬
velop through a complicated cycle of multipli¬
cation, which ends in the discharge of cercariae.
These are again free living until they come into
contact with a vertebrate, in which they develop
to adult worms, if it is of the correct species.
There is a very considerable body of knowledge
of the dynamics of parts of this cycle in the
vertebrate and in the snail, and of the snail
itself. This has not, however, cleared up con¬

siderable mystification about the epidemiology
of the disease or about its control.
Few imagine that universal eradication of

host snails is possible, or that contamination
of water can be totally prevented, and any
widely applicable scheme of prevention will
probably include elements of control of con¬

tamination, snail density, perhaps snail via¬
bility, and contact of man with natural waters.
No one knows, however, the relative efficiency of
these measures except that each would be effec¬
tive if pushed to absolute efficiency. The forma¬
tion of a model could throw light on the uncer¬

tainties of both epidemiology and control.
The first essays in modelmaking immediately

emphasize the inadequacy of considering the
transmission cycle in two halves, as is usually
unconsciously attempted, in man and in the
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snail. Progress is impossible unless it is made
in four stages: the dynamics of happenings in
man, in the first free-living aquatic stage, in the
snail, and in the second aquatic stage. The es¬
sential governing factors in each of these stages
are shown in the figure, within the circle so far
as they are attributes of the nematode alone and
outside it when they are partly or wholly char¬
acters of the medium.
Logically the first step is to assume a constant

rate of contamination of water with miracidia
and to examine the factors which convert this
into an inoculation rate of the snails which it
contains. The logical and mathematical pro¬
cess is simple and results in the expression

h= he
1+ks

where h is the probability that a snail will be
penetrated by a miracidium in unit
time, or rate,

c is the number of miracidia liberated
in unit volume of water in unit time,
or contamination rate,

s is the number of snails present in unit
volume of water, and

h is constant representing the probabil¬
ity that one miracidium, liberated in
unit volume of water in which there
is a single snail, will succeed in pene¬
trating it, or scanning power.

The influence of changes in the contami¬
nation rate can be readily derived from the ex¬

pression. The inoculation rate varies directly
with it. However, the influence of changes in
snail density cannot be derived without some

knowledge of the scanning power. At some
initial densities it is great, at others small, but
since the literature contains no traceable refer¬
ence to measurement of scanning power we have
no conception of even its order of magnitude
and cannot therefore even guess the densities
concerned.
This equation is crucial in the dynamics of

transmission of disease, and it might be said
that the model had failed to throw light on the
subject. This is not the case. The model does
not fail; it represents the truth. The fact that
we are completely ignorant of even the order of
value of one of the constants involved is no fault
of the model, which demonstrates the gap and

thereby indicates one line of study which would
contribute to a knowledge of epidemiology.
Although a full understanding of the dynam¬

ics of schistosomiasis is blocked by weaknesses
of understanding such as this, the subject can

be pursued to a study of the relationships be¬
tween the inoculation rate, as it is determined by
the factors d.escribed above, and the resultant
infection rate in snails. Two general types of
relationship are to be expected, one in those con¬

ditions where the snail population undergoes
seasonal regeneration, so that one age group will
predominate at any time, and the other in con¬

ditions where the population remains undis¬
turbed by seasonal factors and has an aga
distribution determined only by mortality rates.
Allowance must be macle for superinfection, for
possible recovery from infection, and also for
the fact that infection may sometimes prove
lethal to the snail. This last has been suggested
to have an important bearing on infection rates,
and must therefore be taken into rigorous ac¬

count in the model.
Expressions for these two relationships,

which are very complicated owing to the need
to take account of lethality continuing during
infection, are given in the section "Mathemat¬
ical Background," and the expression for the
second type of condition is illustrated in figure
15. The constants used are derived from the

Figure 15. Trematode infection rates in snails

04
Inoculation rate
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work of Pesigan and co-workers (IS) and refer
to Schistosoma japonicum infections in Onco-
melania quadrasi. The infection rate would be
expected to rise progressively with an increasing
inoculation rate until saturation is reached,
which with these constants would be at about
50 percent. The author's findings ranged from
0 to 6.97 percent. Even this highest value cor¬

responds only to a daily inoculation rate of
about 0.004, or once in 250 days.
This inoculation rate is extremely low, and

since we know that it is directly related to the
contamination rate, it is clear that changes in
the contamination rate within a very broad
range would have a direct effect on the snail
infection rate. It is, however, far from clear
what would be the effect of altering the numbers
of snails short of eradicating them entirely.
Reduction in their numbers would to some ex¬

tent increase the inoculation rate, and hence the
snail infection rate, but whether this would be
proportional or not cannot be told till at least
the orcler of the values of the constants shown
to be important by mathematical models is
known.

Conclusion

I hope I have demonstrated the value of
models in throwing light on epidemiology and
in acting as guides to clarification of thought
and to research.
These are only examples. In all vector-borne

diseases there are comparable points of mystery
and confusion which could be cleared up by the
same approach.in Africa trypanosomiasis, in
the difference between simian yellow fever in
Africa and America, in leishmaniasis, and in
a host of others.

I hope I have also shown the ways in which
the biologist and the mathematician can come

together to produce epidemiological models.
This involves cooperation and a very strenuous
effort at mutual understanding, as well as trans¬
lation from biological to mathematical terms,
and again from mathematical to biological
terms, without which it is not complete.
But if mutual understanding is achieved, a

proper study of the dynamics of transmission,
which a model represents, can be a most valuable
help to epidemiology.

MATHEMATICAL BACKGROUND

Malaria

The expressions used are quoted on the fig¬
ures. A full statement of them is given in
Macdonald (lit).

Schistosomiasis

Number of Miracidia in Water
The following symbols are used:

m Number of miracidia present in unit
volume of water.

cdt Number of miracidia freshly liberated in
unit volume of water in time dt.

adt Proportion of miracidia which die in
time dt.

bdt Proportion of miracidia which would be
immobilized and removed from circula¬
tion by contact with a snail in time dt,
if there were one snail in unit volume of
water.

s Number of snails in unit volume of water.

It is apparent that

dm , ,, N

whence, when conditions are static

c
m.a+bs

in

[2]

Inoculation Rate of Snails
hdt Proportion of snails in which a new in¬

fection is established in time dt.
Other symbols as above.

By previous definition the number of mira¬
cidia present in unit volume of water is m, and
the proportion making contact with a snail is
bdt, whence

h=mb [3]
The value of m given in [2] may be inserted

here to give
A__J> [4]a+bs L J

It is, however, logical to modify this slightly to
read

roc mh=
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where
k=a/b

which brings two natural partners together in
the form of a/b, the reciprocal of the proba¬
bility of a miracidium being removed from
circulation by contact with a snail, during the
whole of its natural life, if the density of snails
were one in unit volume. This is termed the
"scanning power."

Infection Rate in Snails

The following additional symbols are re¬

quired :

/ Proportion of miracidium infections which
kill the snail.

vdt Proportion of snails which die, through
other causes than these infections, in
time dt.

gdt Proportion which snails newly hatching
in time dt bear to the total snail population.

rdt Proportion of affected snails which revert
to the unaffected state in time dt.

n Period of time taken for development of
an infection to maturity, with cercarial
production.

x Proportion of snaib with mature infec¬
tions. The criterion of infection may
be either discharge of cercariae or the de¬
tection of cercariae on examination after
crushing, though the criterion of affected
or unaffected, corresponding to r or the
recovery rate, should be adjusted to
coincide.

t Time.
p Probability of a snail surviving through

1 day.
e Base of natural logarithms.

It is known that superinfection occurs and it
follows that the recovery rate, r, needs modifica¬
tion in the form described by Irwin in a paper
by Macdonald (<?), the effective rate being
(r.h) when r>h, and 0 when r<h.
It is also known that infection is sometimes

lethal to the snail, and it has been suggested
that this may have a significant bearing on the
infection rate among them, provision for which
must be included in an analysis to allow exam¬

ination of this type of belief, though it might

later be permissible to exclude it if it were

shown to have an insignificant effect. Proper
allowance for this involves also taking normal
death and birth rates into account and, in con¬

sequence, the expressions developed are rather
complicated in appearance. It should, how¬
ever, be possible to use simplified forms for
rough purposes when there is no desire to take
possible minutiae into reckoning.
The line of argument developed by Eoss

(15), in his section V, applies perfectly to the
analysis of the infection rate among snails of
a given age. Following this, when h<r, let

r+f

L=a-0

[6]

[7]

[8]
[9]

Then the infection rate at any given age is
given by

tt-L L1-^/^.-jj [10]

The infection rate in a community of snails,
the age distribution of which is determined
solely by a continuing death rate and birth rate
not subject to seasonal or other such change,
has been developed with the generous help of
Dr. P. Armitage. The working has not yet
been published, but it leads to the following
expression

<=L[e -(v+Lf)n_ v+Lf
'r+Lf-f'

-(r+L/- ¦f)n j [11]

which has been used in the preparation of
figure 14. When h exceeds r it should be sub¬
stituted for r in expressions 6 and 11.

Arborvirus Infections

Arborvirus infection in the vertebrate is as¬

sumed to be followed, after an incubation pe¬
riod, by a short period of viremia, during which
the individual may die, and then by a period of
firm immunity in the survivors. The rates for
death, emigration, and immigration are the
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same for immune vertebrates as for nonim-
mune animals which do not contract the
infection.
The notation used in the text in connection

with malaria is followed, except that
f is the proportion of infections which kill the

vertebrate during the viremia stage.
x is the proportion of animals which are
immune.

y is the proportion of animals with viremia.
r is the probability of recovery from viremia

in unit time.
g is the proportion of animals newly born in

unit time with respect to the total population.
The expression for mosquito life, and expec-

tation, is the same as used in the statement of
malaria, as is also the reproduction rate, z, bear-
ing in mind that the recovery rate, r, refers to
the probability of recovery from viremia.
The mosquito infection rate is given by

8S pn ay [12]ay-logeP

The working of these expressions, which is
complicated, is not here stated, but it leads to a
definition of the final state, when stability is
reached and rates are no longer increasing,
though free interplay between the two infection
rates has occurred. The value of x, the pro-
portion of the population which is immune, is
found by solving a quadratic equation, to do
which let

(-)2+ ag [13]7= f +2 rzf(-Qog,p)
and

62l72+(l-f) (Z-1) [1-4]

when the required limits are given by

Lx g^Y+s [15]

lv-(1- f)(1 -f+fL )

L- pnLy [17]8aLy-10geP

The possibility of maintenance of this en-
demic state depends on the size of the popula-
tion, its birth rate, the duration of viremia and
the case fatality associated with infection. The
critical values of these may be roughly esti-
mated by noting that transmission becomes pro-
gressively decreased when the value of y is such
that it indicates a fractional number.
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