Web-Accessed Visualization Expert System

(WAVES)

by Tom Misley (Draft 4)

9 July 1997

Abstract
WAVES is a method for users to interact with a visualization expert system across the World Wide Web. The model utilizes servers hosted at a supercomputer center to combine the processing power and storage capacity of a supercomputer with the ease of access provided by the Web. State of the art interface designs, visualization expert systems, and task partitioning are all combined to allow users of any skill level the ability to efficiently visualize their local or remote data. The availability of downloadable, client side visualization tools provides users real-time interaction with their data with no adverse impact due to the Internet connection speed. The model employs a library of existing visualization tools while providing a standard, easy to use, interface for all tools. This interface allows the features of new visualization tools to be accessed rapidly, without requiring users to learn a new interface. WAVES’ adaptable intelligent interface has the ability to track user actions and make sound recommendations on how the user should proceed. It also has the ability to partition user processing requirements between the user’s machine and the supercomputer based on the location of the data, the amount of data to process, the level of real-time interactivity desired, and the relative processing power of the platforms. Overall, WAVES combines all the best features of current visualization tools into a single, easy to access, system.

Introduction
The explosive growth of the World Wide Web has made it an excellent medium for remote visualization. Accessing a remote site with a Web browser requires only an internet connection and a few simple mouse “clicks.” This ease of use has opened up opportunities for individuals across the globe to access information and programs previously unavailable. The goal of the Web-Accessed Visualization Expert System (WAVES) is to provide expert visualization capabilities to users everywhere. This is accomplished by combining the ease of access provided by the Web with the processing power and storage capacity of a supercomputer center. The model advances in intelligent interfaces, visualization techniques, optimal task partitioning, and data compression into an integrated visualization expert system.

System Components & Process Model
Most visualization tools have very similar internal components. These components work together to help turn raw data into a format easier for the user to understand. At an abstract level, these components break down into the Interface, the Visualizer, the Data, and the Display. While on the surface these abstract components appear fairly simple, when one considers the various levels of complexity within these components as well as the possibility that these components could be split among remote hosts, the apparent simplicity ends.

Figure 1.0 Simplified Visualization Model

Figure 1.0 shows a simplified model of a visualization system. Before detailing some of the current visualization models, it is important to address some of the functionality of the abstract components.

Interface: The Interface provides the user access to the Visualizer. It can exist at various levels of complexity which, at a certain point, characterizes it as an “Intelligent” Interface. For example, the interface may have intelligent default values or provide several levels of detail based on the user’s skill level. At a very high level, the interface can also include an “intelligent agent” which can provide additional help with the interface along with user specific autonomous actions. For networked applications, this component also includes a server side Request Handler to coordinate requests to and from the server side components.

Visualizer: The Visualizer provides the power to convert the user’s raw data into a visual form. This component can be as simple as a program which retrieves stored images, or as complex as a Visualization Expert System which provides knowledgeable guidance to the user on such things as which visualization technique to use.

Data: This component is the raw data that the user wants to visualize. It can be located locally or remotely. In Internet applications, there is a distinct advantage in having the Data and Visualizer located on the same side of the network (i.e. both on the client side or both on the server side) since there is no need to transmit the data across the network to the Visualizer for processing.

Display: The Display is simply the component which provides the visual communication between the user and the Interface and displays the results of the Visualizer.
The system components described above will typically interact in a certain way. The following is the abstract process model:

1. The user interacts with the Interface and presents the data he would like to visualize.

2. The user specifies which options the Visualizer should use when processing the data via the Interface.

3. Data is processed by the Visualizer.

4. After processing, the Data is sent to the Display for viewing.

The user repeats this process until he is satisfied with the results.

Desired Attributes

To better define the components of the WAVES Model, the following paragraphs detail their desired attributes.

Interface/ Intelligent Agent: [Lieberman, 1997] has compiled a list of desirable attributes in an intelligent agent. An expanded version of this list, some of which are applicable to interface design, includes the following:

- Adapts to the needs of different users

- Can learn new concepts and techniques

- Learns from its mistakes

- Can detect and recover from user errors

- Provides a standard, but flexible interface to the user

- Can anticipate the needs of the user

- Can take initiative and make suggestions to the user

- Can provide explanations of its actions

- Provides different interface levels based on the experience level of the user

Visualizer: The following list combines some of the best attributes of existing visualization systems. The goal of the WAVES Model is to eventually combine all these attributes into a visualization expert system..

- Able to read multiple data formats and perform data conversion

- Can make recommendations for particular visualization techniques based on user data and input

- Provides real-time alteration of the viewer’s perspective and rapid switching between visualization techniques

- Requires no user programming skills

- Automatically sets intelligent default values

- Can provide a variety of visualization techniques

- Provides automatic data analysis such as smoothing and interpolation

- Able to access remote data

- Able to analyze data as a background process and recommend alternate viewing strategies

- Allows the user to perform data exploration via “what if?” scenarios

- Able to determine the highest level of visual complexity to use in order to optimize user interactivity

- Responds to requests quickly or gives an estimated completion time

Task Partitioning/Parallel Processing: Although not included as an abstract component, for large amounts of data it is vital to be able to effectively partition the workload and process it in parallel when possible. The WAVES Model initially focuses on effective task partitioning over the Internet, but will eventually incorporate parallel processing techniques to improve the overall performance. The attributes of these components include:
- Can provide dynamic partitioning of processes based on network speed, computing power, volume of data, and location of data

- Able to coordinate multiple processing tasks over a network

- Able to perform automatic data analysis in the areas of compression and formatting in preparation for transmission over a network

- Able to spawn processes on multiple machines to achieve optimum performance

Other Work
The WAVES Model incorporates several different areas into a unified package. Because of this, it is important to review some of the work being done in the areas of expert systems, visualization, intelligent agents, and task partitioning/parallel processing. The following paragraphs detail work being done in these four areas.

Expert Systems: The WAVES Advanced Model includes two separate expert systems, one to provide advice on visualization and the other to assist in partitioning the tasks required to perform the selected visualization. [Brown and O’Leary, 1994] outline some of the available methods to make machines “intelligent.” These methods include rule-based reasoning, case-based reasoning, fuzzy logic, and neural networks. Our initial implementation would incorporate rule-based reasoning for task partitioning and an appropriately trained neural network for the visualization expert system.

[Jones and Barrett, 1989] point out that expert systems are not suited to all types of problems. They suggest using the “telephone test” to help determine if a problem is amenable being solved by an expert system. That is, if the domain expert can solve the problem via a telephone exchange with the end-user, then an expert system can probably be used to solve the problem. The telephone test ensures the domain expert is not gaining additional information about the problem from other senses and also ensures that the user is able to adequately describe the problem in words. Further research into their proposed development stages shows that the requirements of the WAVES model should be adequately fulfilled using expert systems. This is also supported by the many ways in which expert systems are being utilized. For example, [McDuffie and Oden, et al, 1994] focus on the successful use of an expert system in obtaining tax advice while [Expert Systems Development Group (ESDG)] is working on providing expert advice on agricultural sciences.
Visualization: There are numerous visualization packages available today. The WAVES Model does not attempt to create a new package, but to utilize existing packages via a Web interface and a coordinated visualization expert system. Initially, the focus will be on public domain visualization tools, but it could also be used to access commercial products under a licensing agreement or some form of pay-by-use system.

In their paper, [Shu, Yang, and Lee, 1996] address remote scientific visualization based on Singapore’s National Supercomputing Research Center’s networking infrastructure. This infrastructure is based on ATM switches with a network speed of 150Mbit/s, however, it still provides some insight into the complications that will have to be addressed when visualizing data over the Internet. The goal of their project is to present scientists with a consistent set of intelligent visualization tools.

In addition to remote visualization, it is also necessary to review what’s currently available as a local visualization package. [Belien and Leenders, 1996] have done broad testing on four major visualization packages; namely, Data Visualizer 3.0, IRIS Explorer 3.0, Application Visualization System 5.0, and Visualization Data Explorer 2.1. Their paper extensively details the advantages and disadvantages of each system and shows that there is currently a trend towards “application builder” packages over easier to use “turnkey” packages. While application builders provide greater flexibility and opportunities to extend features with user-written functions, they take much longer to learn how to use. This is a distinct disadvantage to new users who often do not have the time to invest in learning a new system. Since ease of access (and use) is a primary goal of the WAVES model, our focus will be on providing a turnkey approach, but the model also allows the possibility of creating turnkey interfaces to implement user-written functions stored in a library of visualization tools.

In addition to the aforementioned commercial visualization packages there are a host of other visualization tools. They range from the public domain GNU Plot package [Williams and Kelly, 1996] to specialized Java applets; such as those of [Houle, 1997] and [Warner, 1997] which demonstrate how applets are being used as visualization tools in fracture mechanics, membrane physics, and other scientific areas. [Advanced Visual Systems] has even developed limited web extensions to some of their commercial products. The basic models of all these systems will be compared to the WAVES model in the “Current Models” section of this paper.

Intelligent Agents: WAVES will incorporate an intelligent agent to assist the client in using and adapting the interface. Eventually, the agent will also interact with the visualization expert system to provide customized visualization guidance.

[Maes] and [Nissen] provide good insight into various types of intelligent agents along with their attributes. [Nissen] goes on to define six key characteristics of intelligent agents: autonomy, communication ability, capacity for cooperation, capacity for reasoning, adaptive behavior, and trustworthiness. In addition, he points out that current agent applications include: Watcher Agents, which autonomously look for specific information or events; Learning Agents, which tailor their performance to an individual’s preference; Shopping Agents, which are capable of doing comparison shopping; Information Retrieval Agents, which search for information in an intelligent fashion; and Helper Agents, which perform tasks autonomously without human interaction.
Using these definitions, the WAVES Models will consist of a “Learning Agent” which will include some of the attributes of a “Helper Agent.”

IBM Corporation is working on several different agent applications [Gilbert] along with tool-kits designed to allow software developers to build applications based on intelligent agents. Applications include Alter Ego, a rule-based intelligent agent which can handle e-mail, and Web Browser Intelligence (WBI or “webby”), an agent designed to personalize users’ Web browsing. [Lieberman, 1995] has also created a user interface agent to assist in browsing the Web. The agent is called “Letizia” and it tracks the users behavior while web browsing and attempts to anticipate items of interest by doing concurrent, autonomous exploration of links. Also of particular interest, is the COACH (COgnitive Adaptive Computer Help) system [Selker, 1994] which models user actions and uses an inference engine to provide both proactive and adaptive assistance. COACH has been applied to both application-specific environments and general-purpose system interfaces.

[Sommers, 1997] believes that Java is the perfect agent language due to its network-centricity, its security model, and its platform independence. He goes on to detail how IBM’s “Aglet” Workbench (“agent” plus “applet”) provides a laboratory for creating Java-based mobile agent applications. An additional benefit of this approach is that the aglets can be used to perform simple parallel processing, which is another attribute of the WAVES Model.
Task Partitioning/Parallel Processing: For large amounts of scientific data, it is important to have the ability to efficiently partition the necessary tasks and run them in parallel if possible. Once all parallel tasks are completed, they can be combined into a highly compressed visual representation which is sent back to the user.

Since the WAVES Model utilizes the Internet, it is dependent on the Internet’s relatively slow connection speed. This makes effective task partitioning and parallel processing even more important because when large quantities of data are located remotely (relative to the visualization engine), the internet connection speed becomes the limiting factor in data processing due to its slow data transfer rate. Utilizing parallel processing on server side machines will help make up for the additional time delay caused by the Internet, and will also improve processing time when the data is already located on the server side.

 [Advanced Visual Systems] provides a parallel version of their Application Visualization System called CM/AVS. [Vaziri et al, 1994] have successfully created a distributed environment between a Silicon Graphics IRIS Crimson workstation and a CM-5 Connection Machine parallel supercomputer using CM/AVS. The resulting distributed system is used to visualize data generated from simulations on the CM-5. While this is obviously a platform dependent approach, it does demonstrate the possibility of using parallel processing for visualizations.

[Los Alamos National Laboratory] has begun a pilot project to investigate the usefulness of a Distributed Computing Environment (DCE) for processing visualizations. DCE is the distributed computing model from Open Software Foundation which runs on most Unix platforms. They have developed a simple DCE server which opens an X-window display on a remote client and takes calls to draw lines in that window. Future expansions could include 3-D capabilities using the OpenGL graphics library. The usefulness of the project may be limited however, because it would require both DCE and OpenGL to be supported on the client’s workstation.

[Fox and Furmanski] have been researching the “distributed computing hardware of the Web.” While they point out that the Web does not support the low latency and high bandwidth required by most parallel simulations, they attempt to improve performance by adding a loosely coupled distributed computing model on top of Web software. They discuss the importance of the Java language in their approach and point out how a Java applet can implement multiple threads to allow access, display, and manipulation of scientific data.

Current Models

Prior to looking at the details of the WAVES model, it is important to have a perspective on some of the visualization tools that are currently available. The following paragraphs and diagrams show the abstract modeling of these tools.

The tool models are composed of the abstract components described in the System Components section of this paper. The flow of unprocessed data is shown with a dotted arrow, while the flow of control signals and processed data is shown with a solid arrow. It is also important to note that components on the “server” side of the models do not necessarily need to run on the same machines; multiple servers could be utilized in certain cases to provide optimum performance.

Java Applet Model (Visible Human Project [Chang and Coddington]): This visualization tool is used to display thin “slices” of a human body from a huge data base of slices taken from MRI images. The visualization engine is downloaded into a web browser as an applet. The interface allows users to interactively place horizontal and vertical lines across a 3-axis view of a body in order to request the slice locations they are looking for. Once this is done, the applet retrieves the proper slices from the database and displays them in a separate window on the client’s monitor.

Figure 1.1 Java Applet Model

Although limited to retrieving static images from a large database, this project possess an easy-to-use interface which does not require a medical degree to use. It is a good example of how the web can provide easy access to large amounts of data.

The block diagram above (Figure 1.1) shows the system as a client side visualization engine and interface which interacts with a server side database to bring the desired information to the user’s display.

Web Interface Model (Cyberview/GeomView [Burchard]/[Munzner Levy, and Phillips] and Gsharp Model [Advanced Visual Systems]): For these two packages, an HTML form is used to pass a set of visualization parameters through a request handler (CGI program) and onto a visualization engine with limited features. The visualization request is processed on the server side visualization engine (normally using data stored on the server) and the final result is passed back to the user’s display as an image, a VRML object, an animation, or possibly a Java applet.

Figure 1.2 Web Interface Model

An advantage of this model is that remote users can access a server side visualization engine, although they can only utilize a limited number of features. A major disadvantage is that the model does not provide any form of real-time interactivity. For example, to get a different view of the data, users must resubmit the form and wait for their requests to be processed and the results returned to their displays.

Figure 1.2 shows the system as a client side interface which interacts with a server side request handler, database, and visualization engine, in order to bring static visualization results to the user’s display.

Browser Plug-in Model (Cyberview with GeomView Plugin [Munzner, Burchard and Chi]): This model attempts to get around the limitations of the previous model’s lack of real-time interaction by installing a visualization engine as a browser plug-in on the user’s machine. When the browser attempts to download a file with a particular extension (which identifies the file as a 3-D object file readable by the GeomView plug-in), then the browser automatically launches the plug-in. Once launched, the plug-in provides real-time interaction with the data via client side processing.

While this model demonstrates the possibility for real-time interaction, the actual package is severely limited by the type of data it can actually visualize. To visualize the data, it must be stored in a geometric input format know as OOGL. To be useful to a much wider audience, the WAVES model is designed to process many different data types.

Figure 1.3 Browser Plug-in Model

The block diagram above (Figure 1.3) shows the system as a client side interface which interacts with a server side request handler and database. The resulting data download automatically causes a visualization engine, which is implemented as a plug-in, to be launched on the client side.

Standalone Package Model (Visage [MAYA Design Group], AVS/Express [Advanced Visual Systems], and Tecate [SDSC]): These tools are standalone visualization packages, of which one (Tecate) has the ability to access remote data across the internet. All these tools have intelligent interfaces and/or expert systems to help even the most novice users perform complex data visualization.

Figure 1.4 Standalone Package Model with Remote Data Access

The advantage of these packages are their ability to help the users arrive at useful visualizations through the use of intelligent interfaces, visualization expert systems, and a variety of visualization techniques. The disadvantage is that they cannot be accessed from the web, and since they all have unique interfaces, users may not want to take the time to learn how to use each one. In addition, one of the packages (Tecate) requires the user to learn a programming language called the Abstract Visualization Language (AVL) which is comparable to learning Tcl or VRML.

WAVES Basic Model

The WAVES Basic Model (Figure 1.5) brings together the strengths of the current models into one package. The model allows data to be accessed on the client’s machine, the server, or a remote site. A client side intelligent interface (with a server side interface knowledge base) provides a dynamic, user centered, method to interact with the visualization expert system. A request handler coordinates the communication between the client side and server side elements. The visualization expert system provides access to an entire toolbox of visualization engines along with intelligent recommendations on how users can best view their data. In addition, downloadable visualization engines provides real-time, client side, interaction with the user’s data.

The basic model demonstrates how the best attributes of the existing models can be efficiently combined into a single system. To help in understanding all the pieces which must be brought together, the model has been broken down into functional components. Of particular interest are the Intelligent Interface, the Request Handler, and the Visualization Expert System. The following paragraphs detail these components for the WAVES basic model.

Figure 1.5 WAVES Basic Model
At the basic level, WAVES’ Intelligent Interface provides a multi-level interactive interface to the Visualization Expert System. These levels correspond to the expertise of the user and provide a basic level of functionality for novice users, and increasing options and complexity for advanced users. The interface accepts user input and coordinates requests between the user and the other modules through the Request Handler. It outputs processed data to the display and assists in the transfer of client side data to the server for processing.

The Request Handler coordinates the interaction between the Intelligent Interface and the Visualization Expert System. It also assists in transmitting the data to the desired location for visualization processing.

The Visualization Expert System, shown in Figure 1.6, helps the user determine the “best” visualization technique and the “best” visualization engine for the user’s data. The goal of this system is for users to simply specify the data they want to visualize along with key information on the data’s context; the expert system will then show them how visualize it. This interface contains the following functional modules:

Visualization Knowledge Base: This module contains knowledge on visualization, visual perception, and graphic design. It also contains information mapping all available visualization techniques to the various visualization tools available in the toolbox. In addition, it holds examples of all available visualization techniques.

Figure 1.6 Visualization Expert System Block Diagram
Data Analyzer/Converter: Analyzes the user’s data to help determine the best visualization technique or alternate viewing strategies. Also has the ability to convert the user’s data into the format required by the selected visualization tool.

Visualization Engine I/O Converter: Uses information stored in the Visualization Engine I/O Conversion Database to convert the requests of the Intelligent Interface into a format readable by the selected visualization tool.

Performance Optimizer: This module attempts to optimize the performance of the selected visualization tool with respect to real-time user interaction and visual complexity. For example, it may determine that it is best to initially display a wire frame representation instead of displaying complex 3-D surfaces. This unit balances visual complexity and system responsiveness to optimize user performance (i.e. does the user require high detail at the expense of interactivity or vice versa?) If necessary, it recommends an alternate tool or a downloadable interactive plug-in or applet to improve overall interactive performance.

The WAVES Basic Model is intended to allow for rapid prototyping of the overall design concept. It does not, however, address two important issues, namely efficient task partitioning and additional user interaction via an intelligent “agent.” These two issues are addressed in the WAVES Advanced Model.

WAVES Advanced Model

The WAVES Advanced Model (Figure 1.7) builds upon the basic model by providing a task partitioning expert system which determines the most efficient way to process the data based on the location of the data, the amount of data to process, the level of real-time interactivity desired, and the relative processing power of the platforms. In addition, the task partitioning expert system has access to a variety of compression tools which are used to minimize the total number of bytes that must be transmitted across the network.

Figure 1.7 WAVES Advanced Model

Another addition to the basic WAVES model is an Intelligent Agent System. The Intelligent Agent acts as the system’s artificial intelligence, helping users accomplish their tasks. This system also has a knowledge base which tracks and records user actions and feedback to attempt to anticipate future actions.

The following paragraphs detail the additional components necessary for the advanced model. While the Visualization Expert System remains the same, there are changes to the Intelligent Interface along with the addition of the Intelligent Agent System and Task Partitioning Expert System.

The internal components of the Intelligent Interface are shown in Figure 1.8. This interface is the user’s standard connection to the Visualization Expert System, the Task Partitioning Expert System, and the Intelligent Agent System. The Intelligent Interface has the following functional components.

Interface Manager: This component accepts user input and coordinates requests between the user and the other modules through the Request Handler. It outputs processed data to the display and assists in the transfer of client side data to the server for processing.

Figure 1.8 Intelligent Interface Components

Interface Adapter: Adapts the interface to the user’s skill level based on recommendations given by the Intelligent Agent System. Also provides additional interfaces for more precise user profiling by the Interface Agent.

User Action Tracker: Tracks and stores user actions in a server side database. These actions are user specific, and utilized by the Interface Agent to anticipate user requests. This is done primarily by detecting recurrent patterns in the user’s actions. This component is also used to track any errors the user has in operating the interface.

User Feedback Tracker: Tracks whether or not the Agent’s advice is taken by the user. Feedback can be direct, with the user explicitly informing the agent “do not give this advice ever again,” or indirect, with the user simply declining the advice and continuing on with another course of action. The results are stored in the User Actions/Feedback Database.

Figure 1.9 Interface Agent Expert System Components

The Intelligent Agent System block diagram is shown in Figure 1.9. This system provides the artificial intelligence when dealing with the user. Its goal is to provide the best interface for users to complete their visualization tasks, along with the ability to anticipate users’ requests. The system learns from its mistakes, so the longer the user works with the system, the better the system can anticipate the user’s actions. This system is based on [Maes, 1994] metaphor of an agent as a “personal assistant” which has various ways to learn the needs of its supervisor. Internal components of the Intelligent Agent include:

Interface Agent: The Interface Agent is the workhorse of the entire system. It coordinates its actions with the Intelligent Interface, User Evaluator, and Action Anticipator to provide intelligent recommendations throughout the user’s session. This complex component can be broken down into several smaller components. They are:

Agent Database Manager: Maintains the current settings and attributes of all existing interface agents for all current users and stores this information in the Agent Database. Also contains a set of pre-defined agents based on user models; such as a novice user or an experienced user; or even more specific user models such as a fluid dynamics specialist, or a meteorologist.

User Action Monitor: Detects recurrent patterns in the user’s actions based on the User Actions/Feedback Database and passes this information to the Action Anticipator for use in making recommendations. This monitor also passes information to the User Evaluator to track any user errors in using the interface.

Feedback Monitor: Uses the contents of the User Actions/Feedback Database to evaluate suggestions made by the Interface Agent. The evaluation is used to adjust future decisions.

Explicit Training Module: Provides the Intelligent Interface a method for the user to explicitly train the agent by giving the agent a hypothetical situation and telling the agent how to respond.

Alternate Agent Selector: If the existing agent does not have a recommendation for a specific situation, this unit will probe the Agent Database polling existing agents for recommendations. Recommendations may be selected by comparing the profile of the current user with the user profiles of the existing agents. The agent with the closest matching user profile will be used to make a recommendation.

Interface Agent Knowledge Base: This component interacts with the Interface Databases to provide the knowledge base necessary for the system to make intelligent decisions about user actions.

User Evaluator: This module evaluates the expertise of users based on their actions, feedback, and response to certain questions. Based on this evaluation, the current intelligent interface can be dynamically adjusted to better accommodate the user. This module consists of the following internal components:

User Database Manager: Maintains the current settings and attributes of the current user and stores this information in the User Actions/Feedback Database. Keeps records of user “profiles” and historical use patterns for future use. This unit is also linked to the Agent Database to help match similar users to similar agents.

User Action Evaluator: This unit evaluates the user’s skill level based on the user’s historical actions, errors, and feedback. [Lennard and Parkes] point out that to gain the required information from the user’s errors, it is necessary for the evaluator to accurately deduce, “What went wrong?,” “Why was the action performed incorrectly?,” and “How can the error be fixed?” In addition, it may be possible to evaluate the user’s “time on task” to determine if the user becomes confused in a certain area.

Interface Update Unit: Recommends interface changes to the Intelligent Interface in response to the User Action Evaluator. Primarily responsible for recommending specific levels of interface control (i.e. novice or expert) for a particular user.

Active Profiling Module: If desired, users can complete a questionnaire for a more accurate evaluation as to their needs and expertise. This module stores the profiling information as a part of the User Actions/Feedback Database.

Action Anticipator: This module attempts to predict what the user is going to do next based on data store in the Interface Databases. Internally, this module consists of the following elements:

Anticipation Evaluator: This unit evaluates a possible action or group of actions that the user may wish to perform and rates them with a specific degree of confidence.

Anticipation Activator: Based on the output from the Anticipation Evaluator, this module will signal the Interface Agent to recommend a certain course of action if a particular anticipated action exceeds a certain degree of confidence. Specific confidence levels can be changed by the user, but there are normally only three types of actions performed by the agent based on its “confidence.” At a high degree of confidence, the agent performs a task without asking for confirmation from the user (however, the user is able to “undo” the action.) At a medium degree of confidence, the agent makes a recommendation to the user and the user must accept the recommendation in order for the agent to continue. At a low degree of confidence, the agent makes no recommendation and simply records the situation for future reference.

Explanation Module: In conjunction with the Anticipation Evaluator, this unit quantifies the reason a certain action is proposed. For example, if historically the user has always worked with file X and file Y at the same time, the Explanation Module would provide the Interface Agent with this reason, while the Anticipation Activator would provide the Interface Agent with the proposed action of opening up file Y in addition to file X.

Scenario Modifier: This unit proposes and evaluates “what if?” scenarios. This allows the user to better understand relationships within the data.

The Task Partitioning Expert System (Figure 1.10) splits the required visualization processing between the client and the server based on their relative processing power, the location of the data, the network speed, and the amount of data that must be transmitted across the network. Eventually, it will break down tasks into parallel processes and run the tasks on separate machines. It also works with the Visualization Expert System to divide tasks between the client and server based on the desired level of interactivity. Within this system are the following components:

Task Partitioning Knowledge Base: This module provides the information necessary for the system to make intelligent decisions on how to partition user requests. It contains expert knowledge on compression, processing, and network speeds. It also has access to information on all the available compression tools via the Compression Tools Database.

Figure 1.10 Task Partitioning Expert System Block Diagram
Performance Optimizer: This component uses information in the Knowledge Base along with the current task request to determine the optimum way to partition the task.

Task Coordinator: Keeps track of all the current tasks and coordinates the

processing of the results. Ensures all tasks are completed with no errors.

Compression Unit: This unit determines the best compression method for sending the user’s data over the network. It implements the best method available to transmit the data from its current location to the selected visualization engine along with the best method to return the processed data to the user’s display (i.e. pixels, graphical object, or an application specific data format.)

WAVES Process Model
After viewing the internal components of the WAVES project, it is important to understand the actual process typical users will go through to achieve their visualization goals. The following is a simplified process model:

1. User connects to WAVES via a standard browser.

2. The Intelligent Interface works with the user to select the Intelligent Agent which most closely matches the user’s profile.

3. The user specifies the location of the data he would like to visualize along with key information on the data’s context.

4. The Visualization Expert System analyzes information on the data and offers a choice of the best visualization technique to use.

5. The user selects from one of the recommendations (or explicitly chooses a different technique.)

6. The Task Partitioning Unit determines the most efficient method to split up the visualization tasks.

7. The Task Partitioning Unit coordinates data transfer and task completion through the Request Handler.

8. When completed, visualization results are sent to the user’s display.

9. The user reviews the results and works with the Intelligent Interface to alter the current view, select a different visualization technique, enter more data, or save the current results.

This process continues until the user is satisfied with the results. With every request, the Intelligent Agent is adapting to the needs of the user and recording this information for future reference.

Basic Model Implementation Strategy
A strategy has been developed to implement the WAVES Basic Model. The strategy involves using forms to communicate with an artificial neural network which has been trained to match data attributes to their corresponding “best” visualization technique The resulting recommendation is used to create a new form which will allow users to interface with the features in the GNU Plot program which will give them the best results. The following paragraphs gives a more detailed description of the process.

Initially, users will be given an HTML form on which they will answer questions pertaining to their data and the way they want to view their data. Example questions include: Is the data in Polar coordinates or Cartesian coordinates? Is the data two dimensional or three dimensional? Does the data represent a scalar or vector? etc. When finished, users will submit this form to a CGI program. The CGI program will pass the information to an artificial neural network (ANN) which has been trained on which input values best correspond to the visualization techniques available in GNU Plot. In this context, the ANN will take on the role as the visualization expert system and will attempt to propose good visualization techniques for previously unseen combinations of user input.

[The National Center for Supercomputing Applications] attempts a similar approach on a very limited bases in their Visbook project. Although they do not provide details on how they derive a recommended visualization technique, they do interface with their “inference engine” via a CGI script.

Using the output of the ANN (or using a specific user request), a CGI program will dynamically construct a new form and return it to the user’s browser. This form will provide the user access to all the features available for the recommended GNU Plot visualization. Most of these features will begin at intelligently selected default values (i.e. automatic scaling and plot ranges) so users can simply specify the location of their data and submit the form. The data can be submitted via the form or possibly by providing a URL which points to the data file.

After the visualization form is submitted, the data is collected and processed by GNU Plot (running on the server side). The resulting visualization is returned to the user as a GIF image. The user can then go back to form and make any necessary corrections. This process is an expanded version of a process that [Maestri] is currently working for use as a GNU Plot tutorial. [Maestri] provides the user with a Web-based, command line interface with a GNU Plot program running on the server.

This implementation strategy will be tested and refined. The experience gained in this process will be used to implement a more interactive interface using Java. The major milestones of the entire WAVES project are described in the next section.

Major Project Milestones
The creation of the WAVES model will take places in several stages. From an initial implementation strategy of CGI forms, the project will progress to the use of various complex Java applets and server based expert systems and intelligent agents.

The initial project breaks out into four unique phases. While subject to change, the follow is a list of these phases along with their major milestones:

PHASE I: Initial CGI Implementation

- Complete GNU Plot web interface using CGI Forms.

- Complete Basic Visualization Expert System which can

recommend existing GNU visualization techniques.

- Integrate the interface and the expert system.

- Test and refine CGI Form implementation strategy.

PHASE II: Initial Java Applet Implementation

- Complete interactive applet GNU Plot web interface.

- Complete interactive applet Visualization Expert Sytem.

- Integrate the applet interface and expert system.

- Test and refine Java applet implementation strategy.

PHASE III: Development of Client Side Visualization Methods

- Finish building several simple visualization applets.

- Integrate the selection and use of the visualization applets

with the existing interface.

- Test the design concept of the WAVES Basic Model.

PHASE IV: Initial Implementation of WAVES Advanced Model Components

- Implement basic, algorithmic, task partitioning based on the quantity and location of the data source (i.e. implement visualization on the server side or on the client side using a visualization applet.)

- Complete implementation of a basic “Helper” agent to assist the user when using the interface.

- Test and refine the basic design concept of the WAVES Advanced Model.

- Re-evaluate project focus. Decide whether to focus on adding additional tools and functionality to the Basic Model or to focus on implementing more complex features of the Advanced Model.

- Develop a new list of milestones according to desired focus.

It is interesting to note that portions of the WAVES model are highly compartmentalized and could be developed in parallel to other sections. Additionally, since many of the components rely on state of the art developments, significant improvements could possibly be achieved through the release of new development tools. To remain aware of current developments, one of the major milestones will also be a periodic literature review.

Future Additions
Usability Testing: Define usability factors for the WAVES Model and tests involving these factors.

Reduce System Complexity: Define the attributes of a system which will provide the “proof of concept” necessary for the WAVES Advanced Model in a reasonable amount of time.

Conclusions
The WAVES Model combines
 state of the art advances in intelligent interfaces, visualization techniques, optimal task partitioning, and data compression into an integrated visualization expert system. Based at a supercomputing center, WAVES can provide a familiar, easy to access, interface to a visualization expert system for users across the globe. A supercomputing center provides the processing backbone of the entire system along with a host of visualization tools, compression tools, and advanced interface features. Once implemented, WAVES will bring expert data visualization to scientists everywhere. It is a project which has the opportunity to dramatically change the way the “little guy” can view the world around him.

References

Advanced Visual Systems, http://www.avs.com/

Belien, Sander, Leenders, Rik, “Comparison of Visualization Techniques and Packages

(version 2.0),” SARA Visualization Center, http://www.sara.nl/Rik/REPORT.update/Report.html, 17 Jan 96.

Burchard, Paul, “Cyberview-X 2.0 (a 3D Viewer for the Web) A World Wide Web application based on the W3Kit Tool-kit,” The Geometry Center, Univ. of Minnesota,

http://www.geom.umn.edu/apps/cyberview/

Brown, Carol, O’Leary, Daniel, “Introduction to Artificial Intelligence and Expert Systems,” Oregon State University and University of Southern California, http://www.bus.orst.edu/faculty/brownc/es_tutor/ES_tutor.htm

17 Dec 1994.

Chang, Michael, Coddington, Paul, “The NPAC Visible Human Viewer,”

http://www.npac.syr.edu/projects/vishuman/VisibleHuman.html

26 June 1996.

Decision Theory and Adaptive Systems Group, “Lumier Project: Bayesian Reasoning for Automated Assistance,” Microsoft Corporation, http://www.research.microsoft.com/research/dtg/horvitz/lum.htm

Expert Systems Development Group (ESDG), “The ESDG is Committed to User Based Development and Design and Continuing Support of Expert Systems in the Agricultural Sciences…,” http://server.age.psu.edu/esdg/

Fox, Geoffrey, Furmanski, Wojtek, “Computing on the Web: New Approaches to Parallel Processing Petaop on Exaop Performance in the Year 2007,” Northeast Parallel Architectures Center, Syracuse University, http://www.npac.syr.edu/, 1 Jan 1997.

Fox, Geoffrey, Furmanski, Wojtek, “Java for Parallel Computing and as a General Language for Scientific and Engineering Simulation and Modeling,” Northeast Parallel Architectures Center Technical Report SCCS-793, Syracuse University, http://www.npac.syr.edu/techreports/html/0750/abs-0793.html, 1 May 1997.

Gilbert, Don, “Intellignet Agents: The Right Information at the Right Time,” IBM Intelligent Agents White Paper, http://www.networking.ibm.com/iag/iagwp1.html

Guyer, Linda, “Intelligent Agents,” IBM Corp., http://www.networking.ibm.com/iag/iaghome/html, 1996.

Hackstadt, Stever, Malony, Allen, “Case Study: Applying Scientific Visualization To Parallel Performance Visualization,” University of Oregon,

http://www.cs.uoregon.edu/~hacks/research/papers/ist-spie95/abstract.html

Hook, Kristina, “Steps to take before IUI becomes Real,”

http://www.dcs.napier.ac.uk/~sandra/hook.html

Houle, “Java Applet for Crack Propagation,” http://www.msc.cornell,edu/house/cracks, 1997.

Jern, Mikael, “Information Drill-down Using Web Tools,” Advanced Visual Systems

http://www.uniras.dk/info/seminars/Drilldown.htm

Jones, D. D., Barret, J. R., “Building Expert Systems, Knowledge Engineering in Agriculture,” ASAE Monograph No. 8, ASAE, St. Joseph, MI, 1989.

Kay, Jeffrey, “Interactive Java Applets for Web Searching,” Dr. Dobb’s Sourcebook, http://www.ddj.com/ddsbk/1996/1996.11/kay.htm, Nov/Dec 1996.

Lennard, Anthony, Parkes, Alan, “Facilitating a Fully Adaptive Intelligent Interface,” Lancaster University Computing Department,

http://www.dcs.napier.ac.uk/~sandra/lennard.html

Lieberman, Henry, “Introduction to Intelligent Interfaces,” Media Laboratory, Massachusetts Institute of Technology,

http://lcs.www.media.mit.edu/people/lieber/Teaching/Int-Int/Int-Int-Intro.html

28 May 97.

Lieberman, Henry, “Letzia: An Agent That Assists Web Browsing,” International Joint Conference on Artificial Intelligence, Montreal, August 1995,

http://lieber.www.media.mit.edu/people/lieber/Lieberary/Letizia/Letizia-AAI/Letizia.html

Los Alamos National Laboratory, “Distributed Client/Server Visualization Capability,”

http://www-c8.lanl.gov/graphics_vis/vis_distributed/client_server.html

Los Alamos National Laboratory, “Parallel Runtime Visualization,”

http://www-c8.lanl.gov/graphics_vis/vis_distributed/parallel_vis.html

Maes, Pattie, “Agents that Reduce Work and Information Overhead,” Communications of the ACM, Vol. 37, No. 7, pp. 31-40, 146, ACM Press, Jul 1994.

Maes, Pattie, “Intelligent Software,” Scientific American, Vol. 273, No. 3, pp. 84-86, Scientific American, Inc., September 1995.

Maes, Pattie, Kozierok, R., “Learning Interface Agents,” Proceedings of the Eleventh National Conference on Artificial Intelligence ’93, Washington, DC, pp. 459-465, MIT Press, July 1993.

Maestri, Jon, “Interactive GNU Plot Tutorial,” Oregon State University

http://nacphy.physics.orst.edu/DATAVIS/GNU Plotint.html

MAYA Design Group and Carnegie Mellon University, “Visage,”

http://www.maya.com/visage/welcome.html

McDuffie, Steve, Oden, Bebra, Porter, Eugent, “Tax Expert Systems and Future Development,” CPA Journal, Vol 1, Jan 1994, pp. 73-75.

Munzner, Tamara, Burchard, Paul, Chi, Ed, “Visualization through the World Wide Web with Geomview, Cyberview, W3Kit, and WebOOGL,” The Geometry Center, University of Minnesota,

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/VR/munzner/munzner-abstract.html,

7 Dec 1994.

Munzner, Tamara, Levy, Stuart, Phillips, Mark, “Geomview: 3D Visualization Software,” The Geometry Center, University of Minnesota, http://www.geom.umn.edu/software/geomview/

The National Center for Supercomputing Applications Visualization (NCSA), “VisBook is a Collection of Information on Using Graphics and Sound to Explore Scientific Data,”

http://andree.ncsa.uiuc.edu/VisBook/

Nissen, Mark, “Intelligent Agents: A Technology and Business Application Analysis,” http://www.mines.u-nancy.fr/~gueniffe/CoursEMN/I31/heilmann/heilmann.html,

30 Nov 1995.

The San Diego Supercomputer Center (SDSC) in collaboration with the Digital

Equipment Corporation, “The Tecate Visualization System,”

http://www.sdsc.edu/Tecate/tecate.html, 28 Feb 1997.

Selker, T., “COACH: A Teaching Agent that Learns,” CACM, 7, 92-9, 1994.

Shu, Renben, Yang, Li, Lee Yih, “Remote Scientific Visualization,” National Supercomputing Research Center, Singapore, http://www.nsrc.nus.sg/visual/remote/rep.html, 30 Jan 1996.

Sommers, Bret, “Agents: Not Just for Bond Anymore,” JavaWorld, http://www.javaworld.com/javaworld/jw-04-1997/agents/jw-04-agents.tar.gz, Apr 1997.

The Technology Advantages for Organizations (TAO) Group, “WebIt! White Paper: Intelligent Agents,” http://www.webitcomcom/agentpaper.html,

Mar 1997.

University of Michigan, “Decision Support Tools: Expert Systems,” http://informatics.dent.umich.edu/dental/education/information/old_lectures/expert.html

1995.

University of Minnesota Supercomputing Institute, “Scientific Visualization at the Supercomputing Institute,” http://www.msi.umn.edu/user_support/scivis/scivis-list.html.

Vaziri, Arsi, Kremenetsky, Mark, Fitzgibbon, Matt, Levit, Creon, “Experiences with CM/AVS to Visualize and Compute Simulation Data on the CM-5,” RNR Technical Report RNR-94-005,

http://wk122.nas.nasa.gov/NAS/TechReports/RNRreports/avaziri/RNR-94-005/RNR-94-005.html, Mar 1994.

The Visualization and Intelligent Interfaces Group, “SAGE (System for Automated Graphics and Explanation),” Carnegie Mellon University

http://www.cs.cmu.edu/Groups/sage/sage.html

Waterman, D. A., “A Guide to Expert Systems,” Addison-Wesley Publishing Co., Reading, MA, 1986.

Warner, S., Catterall, S., Lipson, E., “Java Simulations for Physics Education,” Concurrency: Practive and Experience, March 1997.

Williams, Thomas, Kelley, Colin, “gnuplot: An Interactive Plotting Program.” http://science.nas.nasa.gov/~woo/gnuplot/gnuplot.html

1996.

�PAGE \# "'Page: '#'�'" ��

PAGE
15

_929906423.doc
����������

Server

Data

Display

Server

Visualization Engine/ Interface (Java)

Client

_929906516.doc
���������������

Server

Data

Visualization Engine/

Interface (Plug-in)

Display

Server

Client

Request

Handler

Interface

_929907428.doc
��������������������������������������

Intelligent

Agent

System

Intelligent Agent

Databases

Task

Partitioning

Expert System

Compression Toolbox

Server

Client

Visualization Engine/

Interface (Java or Plug-in)

Server/

Remote

Data

Client

Data

Display

Visualization

Expert

System

Visualization

Engine Toolbox

Request

Handler

Intelligent

Interface

_929907552.doc
���������������

- Knowledge Base

- Performance Optimizer

- Task Coordinator

- Compression Unit

- Compression Tools Database

- Compression Tools

Server

Compression

Toolbox

Task Partitioning

 Expert System

Request

Handler

Server/

Remote

Data

_929906553.doc
������������������

Client

Remote Site

Remote

Data

Display

Client

Data

Visualization

Engine

Visualization

Expert

System

Intelligent

Interface

_929906475.doc
����������������

Server

Visualization

Engine

Server

Data

Display

Client

Request

Handler

Interface

(Form)

_928655210.doc
��������������������������

Server

Client

Visualization Engine/

Interface (Java or Plug-in)

Server/

Remote

Data

Client

Data

Display

Visualization

Expert

System

Visualization

Engine Toolbox

Request

Handler

Intelligent

Interface

_929265698.doc
��������

Data

Display

Interface

Visualizer

_928655206.doc
�������������

- Interface Manager

- Interface Adapter

- User Action Tracker

- User Feedback Tracker

Display

Intelligent

Interface

Client

Data

Request

Handler

Server

Client

_928655209.doc
����������������

- Knowledge Base

- Data Analyzer/Convert.

- Visualization Engine I/O Converter

- Performance Optimizer

- Visualization Engine

Database

- Vis. Engine Input Conversion Database

- Visualization Tools

Server

Visualization

Engine Toolbox

Visualization

 Expert System

Request

Handler

Server/

Remote

Data

_928655205.doc
���������������

- Interface Agent

- Knowledge Base

- User Evaluator

- Action Anticipator

- User Actions/Feedback Database

- Agent Database

Server

Intelligent Agent

Databases

Intelligent Agent

 System

Request

Handler

Server/

Remote

Data

