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1 From Newton to Secant

Consider f(x), with root . Assume that {x;} is a sequence of iterates obtained using the
secant method, and converging to r.

Defining the errors e, = x, — r, we conclude that convergence of the iterates z, to r
implies that kli_r}n()() er = 0.

The secant method is derived from Newton’s method (quadratic order of convergence)
by replacing a derivative by a finite difference:
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which converges quadratically with

- ew—a| | f7(r)
lim = ’2]”(7‘)

h—oo |eg|?
Of course we use this iteratively, so that
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Instead of knowing and computing the derivative, we can use an approximation to the
derivative in this iterative scheme (if we have two starting points):
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It is this scheme, the secant method, that we want to analyze for convergence.

2 Secant’s Convergence is order ¢ (the golden ratio)

2.1 The Taylor Series and Big-Oh Notation
This is what we did last time, arriving at

I err  f(r)
im = :
k—oo epep_1  2f'(r)




2.2 Computation of p
Order of Convergence is defined on page 87. We seek p > 0 and C' > 0 such that
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So we have two limits involving e;,; and ey:
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Now the only way two ratios of these terms converging to 0 can both converge to finite
non-zero values is for the relative ratios of the exponents to be the same. This means
that
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or (1 —p)p = —1; that is, p is a root of the quadratic
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As one can compute, the positive root p = ~ 1.618 is the order of convergence of

the secant method.
If you're a little confused about the relative ratios argument, think about squares, for
example: if
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Both converge to a finite, non-zero number, and the relative ratios of the exponents are
equal.
Here’s another concrete example, if that still didn’t sit well: we know, for example, that
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and so

This means, for example, that
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So the ratio of the exponents on the terms (1/1 and 2/2) has to be the same for convergence
to a finite, non-zero value. Thus
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2.3 Computation of
Now that we’'ve got p, it’s simple to get C: from
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So if 1 raise the quantity on the left to the power 1 — p, then the limits must be the same:
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