Homework 2.1

Andy Long, Spring, 2024

Section 2.1, pp. 47--, \#1, 2a-e, 4a-e, 7, 9, 13, 17, 26
The first problems (through 9) are solved in Octave:
https://octav.onl/teaTime2_1
The rest of the problems $(13,17,26)$ are here:
13. The graph of $f(x)$ over the interval $[0.75,2]$ is shown below. Notice $f(x)$ has three roots on this interval: approximately $.795,1.06$, and 1.59 . To which of the three roots does the bisection method converge if we let $a=.75$ and $b=2$? How do you know?

The third: the signs of m and b are different, so that interval will be chosen.
17. Suppose you are using the bisection method on an interval of length 3 . How many iterations are necessary to guarantee accuracy of the approximation to within 10^{-6} ?
At each iteration, the interval is cut in half: $3 / 2^{\wedge} n<=10^{\wedge}(-6)$. We can solve it, and then take the ceiling:
$2^{\wedge} \mathrm{n}=3000000$, so Ceiling[Log[3000000]/Log[2]]
$\mathrm{n}=22$
$m[f=$ Ceiling[Log[3000000] / Log [2]]
out $[0=22$
26. The function shown has roots at approximately 2.41 , $4.11,5.62,7.01,8.32,9.57,10.78$, and 11.94 . To which root will the bisection method converge with the given starting interval?

$$
\begin{aligned}
& \text { a. }[2,3]-2.41\} \text { ont, roots in the interval } \\
& \text { b. }[6,8]-7.01 \\
& \text { c. }[2,6] \rightarrow[2,4] \rightarrow 2.41 \\
& \text { d. }[5,9] \rightarrow[5,7] \rightarrow 5.62 \\
& \text { e. }[10,12] \rightarrow[10,11] \text { because the }{ }^{\text {st }} \text { comparison } \\
& \text { is wi the left endpoint } \\
&
\end{aligned}
$$

(a) $[2,3]$
(b) $[6,8]$
(c) $[2,6]$
(d) $[5,9]$
(e) $[10,12]$ Note: the assumptions of the bisection are not met on this interval. Nonetheless, the method as outlined in the pseudo-code will converge to a root!

