
MAT225 Section Summary: 7.4

The Singular Value Decomposition (SVD):

Fundamental Theorem of Linear Algebra

Summary

That’s right: The Fundamental Theorem of Linear Algebra. The SVD
ties it all together. Rather than focus on the technicalities, I want to focus
on the “bang”. If you can understand the Singular Value Decomposition,
then you understand this course. If you are weak in any part, then you will
not really understand this theorem. Understanding this section is the best
preparation for the final exam.

The Singular Value Decomposition: Let A be an m x n matrix with
rank r. There exists

1. an m x n matrix

Σ =

[

Dr x r 0
0 0

]

m x n

for which D is diagonal, with positive entries (the singular values)
σ2 ≥ σ2 ≥ . . . ≥ σr > 0, and

2. orthogonal matrices Um x m and Vn x n

such that
A = UΣV

T

The 0 matrices are included simply to pad D (if necessary) to make the
dimensions right. Here is Σ with the dimensions indicated explicitly:

Σ =

[

Dr x r 0r x (n−r)

0(m−r) x r 0(m−r) x (n−r)

]

m x n

For example, if A happens to be invertible, then there are no zero matrices,
and Σ = D.

Now your first impulse might be to say “so what?” (But don’t say it in
my hearing!) Understanding this is the true key to understanding A either
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1. as an image made up as rank-one subimages, or

2. as a linear transformation x → Ax taking a ball to an ellipsoid

(my two favorite applications of matrices).

You might also want to know what this has to do with all the symmet-

ric matrices we’ve been looking at: the connection is crucial. One way
that the SVD arises is by considering the problem of solving a constrained
optimization problem:

What is the maximum value of ‖Ax‖ given that ‖x‖ = 1?

Solving this is equivalent to solving the problem

What is the maximum value of ‖Ax‖2 given that ‖x‖ = 1?

But this is equivalent to solving

What is the maximum value of xT (AT A)x given that ‖x‖ = 1?

So it’s equivalent to solving a problem about constrained optimization of

quadratic forms....

Now, to make my life easy, I’m going to think of m ≥ n (A is rectangular,
and its “height” is greater than or equal to its “width”).

The matrix AT A is positive semi-definite: that is, it has positive (≥ 0)
eigenvalues, which we can calculate as

A
T
An x n = Vn x nΛn x nV

T

n x n

Now, here’s a curious fact, which I’m going to gloss over entirely (in order
to get to the “bang!”): AAT (which is also positive semi-definite) can be
orthogonally diagonalized as

AA
T = Um x m

[

Λ 0
0 0

]

m x m

U
T

m x m

(Same Λ! - same eigenvalues). Again, the zero matrices are only included
to (possibly) make the dimensions work out. If r = m, then they disappear.
Now for the kicker:
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1. the singular values of A, σ1, σ2, ..., σr are the positive square roots
of the elements of Λ! I.e., D =

√
Λ.

2. The singular vectors are the eigenvectors of AT A and AAT .

It’s easy to check that the SVD formula recreates AT A and AAT . Give it a
try!

Now the best way to think about A from the standpoint of the image
problem is to throw out the irrelevant stuff, and write

A = Um x rDV
T

r x n

where we’ve thrown out the eigenvectors of A
T
A and the eigenvectors of AA

T

corresponding to the zero weights of Σ. This might be called the reduced

SVD of A. Hence we can write a decomposition analogous to the spectral
decomposition of a symmetric matrix for A, as

A = σ1u1v
T

1 + σ2u2v
T

2 + . . . + σrurv
T

r

This is the matrix A composed of a sum of rank-one outer product matrices,
weighted from most important to least (by the size of σi). An example of this
can be found at http://www.nku.edu/∼longa/classes/mat225/days/dad/Abe.jpg

You know that the rank of A and AT is the same. The row space of one
and the column space of the other are equivalent. The SVD makes that
clear.

From the standpoint of the transformation x → Ax, taking a ball in IRnto
an ellipsoid in IRm, the better way to think of A is as

A = UΣV
T

where by Ax we understand the succession of transformations Ax = UΣV Tx

as follows:
1.

V
Tx

(the expression of x in the basis of V , as projections onto the basis
vectors). This is effectively a rotation/reflection of the unit (radius)
ball in IRninto position for easy scaling.
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2.

ΣV
Tx

represents the scaling of the vector along each of the principal axes (the
conversion of a ball into an ellipsoid), including possible squashing of
some of the dimensions corresponding to the null-space of A. The
resulting vectors are in IRm.

3. Then
UΣV

Tx

represents the rotation/reflection of the resulting ellipsoid in IRmso that
the result is oriented as it should be, since Ax is not necessarily alligned
well with the standard basis. This is the image of the vector x in the
column space of A, as a linear combination of the column space basis
U of A.

Here’s a nice picture due to Cliff Long and Tom Hern that captures these
three steps, at

http://www.nku.edu/∼longa/classes/mat225/days/dad/SVD.jpg

The rank of a matrix is equal to the number of non-zero singular values.
The condition number (or at least the most common definition of it) is
given as the ratio of the largest to smallest singular values (infinity if rank
r 6= n, since it’s as if the matrix has a singular value of 0).

It is all really too marvellous for words. We’ll need to look at some
pictures, and a few example problems.

Example: #15, p. 481

Note: in order to calculate the SVD of a matrix, you need only find D and
either U or V – you don’t need both. That’s because if A = UDV T , then if
we know D and V , then U = AV D−1

This leads to the idea of a pseudo-inverse of a matrix:

A
+ = V D

−1
U

T
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This is the closest thing to an inverse that a general matrix A has!

There’s a nice picture due to Cliff Long and Tom Hern at

http://www.nku.edu/∼longa/classes/mat225/days/dad/pseudo.jpg

Example: #9, p. 481
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