MAT225 Section Summary: 6.5

Least-Squares Problems

Summary

Okay! This is it: the section with the formula for the solution of the least-squares problem, which is known as the linear regression problem in statistics. This is how we find a nice fit to linear (and specialized types of non-linear) models. What an amazingly powerful tool this is, and it's based on some simple linear algebra....
least-squares solution: If $A_{m \times n}$ and \mathbf{b} is in \mathbb{R}^{m}, then a least-squares solution of $A \mathbf{x}=\mathbf{b}$ is $\hat{\mathbf{x}}$ in \mathbb{R}^{n} such that

$$
\|\mathbf{b}-A \hat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\|
$$

for all \mathbf{x} in \mathbb{R}^{n}.
Q: Take a look at that equation above, and tell me where the name "leastsquares" comes from....

Now, consider the projection of \mathbf{b} onto the $\operatorname{Col} A$,

$$
\hat{\mathbf{b}}=\operatorname{proj}_{\mathrm{Col}}^{A}{ }_{A}^{\mathbf{b}}
$$

and let $\hat{\mathbf{x}}$ be defined as the solution of

$$
A \hat{\mathbf{x}}=\hat{\mathbf{b}} .
$$

Q: How do we know that there is such a solution?
We know that $\mathbf{b}-\hat{\mathbf{b}}$ is orthogonal to $\operatorname{Col} A$, so

$$
A^{T}(\mathbf{b}-A \hat{\mathbf{x}})=\mathbf{0} .
$$

from which we arrive at

$$
A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b} .
$$

Hence $\hat{\mathbf{x}}$ is a solution of the equation

$$
A^{T} A \mathbf{x}=A^{T} \mathbf{b}
$$

(the so-called normal equations). There may be many (in infinite number!) of solutions of the normal equations.

Theorem 13: The set of least-squares solutions of $A \mathbf{x}=\mathbf{b}$ coincides with the nonempty set of solutions of the normal equations $A^{T} A \mathbf{x}=A^{T} \mathbf{b}$.

However, if $A^{T} A$ is invertible, then the solution is unique:
Theorem 14: The matrix $A^{T} A$ is invertible \Longleftrightarrow the columns of A are linearly independent. In this case, the equation $A \mathbf{x}=\mathbf{b}$ has only one leastsquares solution $\hat{\mathbf{x}}$, and it is

$$
\hat{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}
$$

Problems:

1. $\# 2$, p. 416
2. $\# 5$, p. 416
3. \#13, p. 416
4. \#23, p. 417
5. \#24, p. 417
6. \#25, p. 417
